多环芳烃胁迫对菜心生长及生理特性的影响

    梁勇生, 黄杏, 龙明华, 巫桂芬, 张会敏, 乔双雨

    梁勇生, 黄杏, 龙明华, 等. 多环芳烃胁迫对菜心生长及生理特性的影响[J]. 华南农业大学学报, 2018, 39(6): 54-60. DOI: 10.7671/j.issn.1001-411X.2018.06.009
    引用本文: 梁勇生, 黄杏, 龙明华, 等. 多环芳烃胁迫对菜心生长及生理特性的影响[J]. 华南农业大学学报, 2018, 39(6): 54-60. DOI: 10.7671/j.issn.1001-411X.2018.06.009
    LIANG Yongsheng, HUANG Xing, LONG Minghua, WU Guifen, ZHANG Huimin, QIAO Shuangyu. Effects of polycyclic aromatic hydrocarbons stress on growth and physiological characteristics of Brassica parachinensis[J]. Journal of South China Agricultural University, 2018, 39(6): 54-60. DOI: 10.7671/j.issn.1001-411X.2018.06.009
    Citation: LIANG Yongsheng, HUANG Xing, LONG Minghua, WU Guifen, ZHANG Huimin, QIAO Shuangyu. Effects of polycyclic aromatic hydrocarbons stress on growth and physiological characteristics of Brassica parachinensis[J]. Journal of South China Agricultural University, 2018, 39(6): 54-60. DOI: 10.7671/j.issn.1001-411X.2018.06.009

    多环芳烃胁迫对菜心生长及生理特性的影响

    基金项目: 国家自然科学基金(31360479);国家现代农业产业技术体系广西蔬菜瓜果创新团队项目(nycytxgxcxtd-10-03);广西自然科学基金(2013GXNSFBA019091);广西研究生教育创新计划项目(YCBZ2012007)
    详细信息
      作者简介:

      梁勇生(1979—),男,高级农艺师,博士研究生,E-mail:b9523@163.com

      通讯作者:

      龙明华(1961—),男,教授,博士,E-mail: longmhua@163.com

    • 中图分类号: S511;S502

    Effects of polycyclic aromatic hydrocarbons stress on growth and physiological characteristics of Brassica parachinensis

    • 摘要:
      目的 

      明确多环芳烃(PAHs)胁迫对菜心 Brassica parachinensis 生长的影响,探讨PAHs胁迫对菜心的生理毒性。

      方法 

      采用萘(Nap)、菲(Phe)、荧蒽(Flt)、苯并芘(BaP)和茚并芘(InP)5种PAHs混合溶液施入土壤胁迫菜心,在移栽定植后第10、17和24天分析菜心叶片丙二醛(MDA)、H2O2和脯氨酸(Pro)含量以及抗氧化酶活性的变化,观察测定定植后第24天菜心的生长情况。

      结果 

      PAHs胁迫下菜心株高增加,以10.0 mg·kg–1处理的株高最高;0.4和0.8 mg·kg–1处理对菜心的茎粗影响不大,对提高单株鲜质量和根鲜质量有一定的促进作用,2.0、5.0和10.0 mg·kg–1处理不同程度地降低了菜心的茎粗、单株鲜质量和根鲜质量;PAHs胁迫下,菜心叶片中MDA、H2O2和Pro含量随着胁迫时间的延长和PAHs含量的增大而升高。超氧化物歧化酶(SOD)活性随着胁迫浓度的增大而增强;过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性随着PAHs含量的增大呈先升高后下降的趋势。

      结论 

      低含量PAHs胁迫对菜心的生长影响不大,高含量PAHs胁迫抑制菜心的正常生长,表现为茎径变小、单株鲜质量和根鲜质量降低且开花提前。PAHs胁迫下,H2O2和膜脂过氧化产物MDA含量提高,对菜心产生不利的效应,可以通过提高脯氨酸含量和抗氧化酶活性来缓解。

      Abstract:
      Objective 

      To determine the effects of polycyclic aromatic hydrocarbons (PAHs) stress on the growth of Chinese flowering cabbage (Brassica parachinensis), and explore the physiological toxicity of PAHs.

      Method 

      The PAHs solution mixing naphthalene, phenanthrene, fluoranthene, benzopyrene and indenopyrene was applied to soil to stress the growth of B. parachinensis. The changes of malondialdehyde(MDA), H2O2 and proline contents and antioxidase activites in leaves of B. parachinensis were analyzed on the 10th, 17th, and 24th day after planting, and the growth was measured on the 24th day after planting.

      Result 

      The plant height of B. parachinensis was increased by PAHs treatments, and it was highest under 10.0 mg·kg–1 PAHs treatment. The treatments of 0.4 and 0.8 mg·kg–1 PAHs had little effects on stem diameter of B. parachinensis, but had some promotions on individual plant fresh weight and root fresh weight. The stem diameter, individual plant fresh weight and root fresh weight of B. parachinensis were decreased by 2.0, 5.0 and 10.0 mg·kg–1 PAHs treatments for different degrees. The contents of MDA, H2O2 and proline in leaves of B. parachinensis increased with the stress time and PAHs content increasing. With the PAHs content increasing, the activity of superoxide dismutase(SOD) increased, and the activities of peroxidase(POD), catalase(CAT) and ascorbic acid peroxidase(APX) increased firstly and then decreased.

      Conclusion 

      Stress from low content of PAHs has little effect on the growth of B. parachinensis, while stress from high content of PAHs can inhibit plant normal growth as it decreases stem diameter, individual plant fresh weight and root fresh weight and also causes earlier blooming. B. parachinensis could alleviate the disadvantageous effects from increasing contents of H2O2 and MDA under PAHs stress by increasing proline content and antioxidant enzyme activities.

    • 图  1   不同含量PAHs胁迫下菜心叶片MDA含量的变化

      图中相同处理时间的柱子上方凡是有一个相同小写字母者,表示不同处理间差异不显著(P>0.05,Duncan’s法)

      Figure  1.   Changes of MDA content in leaves of Brassica parachinensis under stress from different contents of PAHs

      图  2   不同含量PAHs胁迫下菜心叶片H2O2含量的变化

      图中相同处理时间的柱子上方凡是有一个相同小写字母者,表示不同处理间差异不显著(P>0.05,Duncan’s法)

      Figure  2.   Changes of H2O2 content in leaves of Brassica parachinensis under stress from different contents of PAHs

      图  3   不同含量PAHs胁迫下菜心叶片脯氨酸含量的变化

      图中相同处理时间的柱子上方凡是有一个相同小写字母者,表示不同处理间差异不显著(P>0.05,Duncan’s法)

      Figure  3.   Changes of proline content in leaves of Brassica parachinensis under stress from different contents of PAHs

      图  4   不同含量PAHs胁迫下菜心叶片抗氧化酶活性的变化

      各图中相同处理天数的不同处理间凡是有一个相同小写字母者,表示差异不显著(P>0.05,Duncan’s法)

      Figure  4.   Changes of antioxidant enzyme activities in leaves of Brassica parachinensis under stress from different contents of PAHs

      表  1   PAHs胁迫下菜心生长的影响1)

      Table  1   The effects of PAHs on the growth of Brassica parachinensis

      w(PAHs)/(mg·kg–1) 株高/cm 茎径/cm 单株鲜质量/g 根鲜质量/g 定植至开花天数/d
      0 (CK) 26.91±2.57b 1.98±0.10a 86.78±6.72ab 1.89±0.12a 22.83±0.33a
      0.4 27.25±3.09b 1.98±0.13a 89.94±4.38a 1.93±0.19a 22.61±0.63a
      0.8 27.37±2.86b 1.96±0.16a 88.73±5.12ab 1.95±0.13a 23.00±0.33a
      2.0 28.21±1.05b 1.85±0.09ab 84.26±8.26ab 1.87±0.12a 22.56±0.35a
      5.0 29.76±1.83ab 1.79±0.11ab 83.51±7.42ab 1.78±0.07ab 22.28±0.10a
      10.0 32.29±2.86a 1.58±0.14b 73.65±5.84b 1.66±0.08b 20.72±0.35b
       1)表中数据为6次重复的平均值±标准误;同列数据后凡是有一个相同小写字母者,表示差异不显著(P>0.05, Duncan’s法)
      下载: 导出CSV
    • [1]

      JUNG J E, LEE D S, KIM S J, et al. Proximity of field distribution of polycyclic aromatic hydrocarbons to chemical equilibria among air, water, soil, and sediment and its implications to the coherence criteria of environmental quality objectives[J]. Environ Sci Technol, 2010, 44(21): 8056-8061. doi: 10.1021/es1017416

      [2]

      CHEN F, TAN M, MA J, et al. Efficient remediation of PAH-metal co-contaminated soil using microbial-plant combination: A greenhouse study[J]. J Hazard Mater, 2016, 302: 250-261. doi: 10.1016/j.jhazmat.2015.09.068

      [3]

      PATROLECCO L, ADEMOLLO N, CAPRI S, et al. Occurrence of priority hazardous PAHs in water, suspended particulate matter, sediment and common eels (Anguilla anguilla) in the urban stretch of the River Tiber (Italy)[J]. Chemosphere, 2010, 81(11): 1386-1392. doi: 10.1016/j.chemosphere.2010.09.027

      [4]

      GHOSAL D, GHOSH S, DUTTA T K, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review[J]. Front Microbiol, 2016, 7: 1369.

      [5]

      LI X F, HOU L J, LIU M, et al. Abundance and diversity of polycyclic aromatic hydrocarbon degradation bacteria in urban roadside soils in Shanghai[J]. Appl Microbiol Biotechnol, 2015, 99(8): 3639-3649. doi: 10.1007/s00253-014-6299-x

      [6]

      NIU J, DAI Y, GUO H, et al. Adsorption and transformation of PAHs from water by a laccase-loading spider-type reactor[J]. J Hazard Mater, 2013, 248/249: 254-260. doi: 10.1016/j.jhazmat.2013.01.017

      [7] 焦婷婷. 多环芳烃荧蒽对植物和土壤生物毒害的剂量–效应关系及其土壤环境基准初探[D]. 南京: 南京农业大学, 2009.
      [8]

      ALKIO M, TABUCHI T M, WANG X, et al. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms[J]. J Exp Bot, 2005, 56(421): 2983-2994. doi: 10.1093/jxb/eri295

      [9]

      MALISZEWSKA-KORDYBACH B, SMRECZAK B. Ecotoxicological activity of soils polluted with polycyclic aromatic hydrocarbons (PAHs): Effect on plants[J]. Environ Technol, 2000, 21(10): 1099-1110. doi: 10.1080/09593330.2000.9618996

      [10] 蔡顺香, 颜明娟, 林琼, 等. 黑麦草根系抗氧化系统和细胞质膜透性对土壤中芘胁迫的响应[J]. 福建农业学报, 2012, 27(2): 162-166. doi: 10.3969/j.issn.1008-0384.2012.02.011
      [11] 柯钦雨, 叶媛蓓. 不同浓度多环芳烃(菲)胁迫下拟南芥的生理响应[J]. 环境卫生工程, 2009, 17(S1): 110-116.
      [12]

      SERGIEV I, ALEXIEVA V, KARANOV E. Effect of spermine, atrazine and combination between them on some endogenous protective system and stress markers in plant[J]. Cr Acad Bulg Sci, 1997, 51: 121-124.

      [13] 赵世杰, 刘华山, 董新纯. 植物生理学实验指导[M]. 北京: 中国农业科技出版社, 1998: 120-164.
      [14] 李关荣, 李天俊, 冯建成. 生物化学实验教程[M]. 北京: 中国农业大学出版社, 2011: 116-119.
      [15] 刘祖祺, 张石城. 植物抗性生理学[M]. 北京: 中国农业出版社, 1994: 369-385.
      [16] 王晶英. 植物生理生化实验技术与原理[M]. 哈尔滨: 东北林业大学出版社, 2003: 83.
      [17] 沈文鹰, 徐朗莱, 叶茂炳, 等. 抗坏血酸过氧化物酶活性测定的探讨[J]. 植物生理学通讯, 1996, 32(3): 203-205.
      [18] 洪有为, 袁东星. 秋茄(Kandelia candel)幼苗对菲和荧蒽污染的生理生态效应[J]. 生态学报, 2009, 29(1): 445-455. doi: 10.3321/j.issn:1000-0933.2009.01.053
      [19] 马丽, 盛连喜, 何春光, 等. 萘对松前水稻(Oryza sativa cv. Matsumae)生长和生理的影响及其残留[J]. 农业环境科学学报, 2009, 28(10): 1997-2004. doi: 10.3321/j.issn:1672-2043.2009.10.001
      [20] 陈世军, 祝贤凌, 冯秀珍, 等. 多环芳烃对植物的影响[J]. 生物学通报, 2010, 45(2): 9-11. doi: 10.3969/j.issn.0006-3193.2010.02.004
      [21] 徐胜, 王慧, 陈玮, 等. 土壤中多环芳烃污染对植物生理生态的影响[J]. 应用生态学报, 2013, 24(5): 1284-1290.
      [22] 蔡顺香, 何盈, 邱孝煊, 等. 多环芳烃芘对小白菜生长和元素吸收及营养品质的影响[J]. 土壤通报, 2010, 41(2): 452-457.
      [23] 汤章城. 逆境条件下植物脯氨酸的累积及其可能的意义[J]. 植物生理学通讯, 1984(1): 15-21.
      [24]

      RATHINASABAPATHI B. Metabolic engineering for stress tolerance: Installing osmoprotectant synthesis pathways[J]. Ann Bot-London, 2000, 86(4): 709-716. doi: 10.1006/anbo.2000.1254

      [25] 周源. 多环芳烃(菲)胁迫对苏柳172幼苗生理特性的影响[J]. 江西理工大学学报, 2012, 33(1): 1-5.
      [26] 尹颖, 孙媛媛, 郭红岩, 等. 芘对苦草的生物毒性效应[J]. 应用生态学报, 2007, 18(7): 1528-1533. doi: 10.3321/j.issn:1001-9332.2007.07.020
      [27]

      BACCOUCH S, CHAOUI A, FERJANI E E. Nickel-induced oxidative damage and antioxidant responses in Zea mays shoots[J]. Plant Physiol Biochem, 1998, 36(9): 689-694. doi: 10.1016/S0981-9428(98)80018-1

      [28]

      LI J H, GAO Y, WU S C, et al. Physiological and biochemical responses of rice (Oryza sativa L.) to phenanthrene and pyrene[J]. Int J Phytoremediat, 2008, 10(2): 106-118. doi: 10.1080/15226510801913587

      [29]

      LI J H, YU X Z, WU S C, et al. Responses of bioaugmented ryegrass to PAH soil contamination[J]. Int J Phytoremediat, 2011, 13(5): 441-455. doi: 10.1080/15226510903353104

    图(4)  /  表(1)
    计量
    • 文章访问数:  1415
    • HTML全文浏览量:  10
    • PDF下载量:  1169
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-04-02
    • 网络出版日期:  2023-05-18
    • 刊出日期:  2018-11-09

    目录

      QIAO Shuangyu

      1. On this Site
      2. On Google Scholar
      3. On PubMed

      /

      返回文章
      返回