• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

有机肥对高速公路建设损毁土壤的微生物学性状及酶活性的影响

袁中友, 梁中龙, 杨淇钧, 刘青, 吴家龙, 戴军

袁中友, 梁中龙, 杨淇钧, 等. 有机肥对高速公路建设损毁土壤的微生物学性状及酶活性的影响[J]. 华南农业大学学报, 2017, 38(6): 58-63. DOI: 10.7671/j.issn.1001-411X.2017.06.009
引用本文: 袁中友, 梁中龙, 杨淇钧, 等. 有机肥对高速公路建设损毁土壤的微生物学性状及酶活性的影响[J]. 华南农业大学学报, 2017, 38(6): 58-63. DOI: 10.7671/j.issn.1001-411X.2017.06.009
YUAN Zhongyou, LIANG Zhonglong, YANG Qijun, LIU Qing, WU Jialong, DAI Jun. Effects of organic fertilizer on microbial characteristics and enzyme activities of soil degraded by highway construction[J]. Journal of South China Agricultural University, 2017, 38(6): 58-63. DOI: 10.7671/j.issn.1001-411X.2017.06.009
Citation: YUAN Zhongyou, LIANG Zhonglong, YANG Qijun, LIU Qing, WU Jialong, DAI Jun. Effects of organic fertilizer on microbial characteristics and enzyme activities of soil degraded by highway construction[J]. Journal of South China Agricultural University, 2017, 38(6): 58-63. DOI: 10.7671/j.issn.1001-411X.2017.06.009

有机肥对高速公路建设损毁土壤的微生物学性状及酶活性的影响

基金项目: 广东省科技计划项目(2014B020206002);广东省交通运输厅科技项目(科技-2012-02-064)
详细信息
    作者简介:

    袁中友(1974—),男,副教授,博士,E-mail: yuanzhongyou@scau.edu.cn

    通讯作者:

    戴 军(1958—),男,教授,博士,E-mail: jundai@scau.edu.cn

  • 中图分类号: S156.99

Effects of organic fertilizer on microbial characteristics and enzyme activities of soil degraded by highway construction

  • 摘要:
    目的 

    研究不同施肥处理短期内对高速公路工程建设损毁赤红壤的微生物学性状及酶活性的影响。

    方法 

    利用温室盆栽类芦Neyraudia reynaudiana试验,以高速公路工程建设损毁的赤红壤为对照(CK),设计3个处理,分别为与蚓粪等NPK量的化肥(HF)、牛粪(NF)和蚓粪(YF),采用主成分分析法研究不同处理对土壤微生物学性状及土壤酶活性的影响。

    结果 

    施NF处理较施HF处理的土壤微生物量碳、微生物量氮、土壤呼吸、代谢熵、细菌、真菌和放线菌数量分别显著提高了70%、96%、1 239%、699%、300%、1 155%和272%,土壤转化酶、脲酶、过氧化氢酶、酸性磷酸酶、β–葡萄糖苷酶、乙酰氨基葡萄糖苷酶、多酚氧化酶和过氧化物酶活性分别显著提高了61%、37%、36%、119%、259%、1 973%、175%和550%,YF处理较施HF处理的相应微生物指标分别显著提高了80%、130%、1 458%、773%、295%、324%和285%,相应土壤酶活性分别显著提高了66%、40%、52%、128%、302%、1 641%、182%和428%(P<0.05)。

    结论 

    短期内,施NF和YF的有机肥处理比施HF处理更有助于改善土壤微生物学性状,提高土壤酶活性,提升工程建设损毁土壤的综合质量;施NF和施YF处理对土壤微生物学性状和酶活性的影响差异不大。添加有机肥是快速修复工程建设损毁土壤的有效方式。

    Abstract:
    Objective 

    To study the short-term effects of different fertilizers on microbial characteristics and enzyme activities of lateritic soil degraded by highway construction.

    Method 

    Greenhouse pot experiments were performed using Neyraudia reynaudiana. The lateritic soil degraded by highway construction was used as control(CK). Three fertilization treatments included chemical fertilizer(HF) with the same NPK degree as vermicompost, cattle manure (NF) and vermicompost (YF). The effects of different treatments on soil microbial characteristics and enzyme activities were investigated by principal component analysis.

    Result 

    Compared with HF treatment, soil microbial biomass carbon, microbial biomass nitrogen, soil respiration, amounts of metabolic entropy, bacteria, fungi and actinomycetes significantly increased by 70%, 96%, 1 239%, 699%, 300%, 1 155% and 272% respectively in NF treatment, and increased by 80%, 130%, 1 458%, 773%, 295%, 324% and 285% respectively in YF treatment(P<0.05). Soil invertase, urease, catalase, acid phosphatase,β-glucosidase, acetylglucosaminidase, polyphenol oxidase and peroxidase activities significantly increased by 61%, 37%, 36%, 119%, 259%, 1 973%, 175% and 550% respectively in NF treatment, and increased by 66%, 40%, 52%, 128%, 302%, 1 641%, 182% and 428% respectively in YF treatment (P<0.05).

    Conclusion 

    In short-term, applying organic fertilizer such as cattle manure and vermicompost is better than using chemical fertilizer for improving soil microbial properties, enhancing soil enzyme activities and improving comprehensive quality of soil degraded by construction. NF and YF treatments have no significant differences in their effects on soil microbial properties and enzyme activities. Applying organic fertilizer is an effective way to repair rapidly the soil degraded by construction.

  • 图  1   不同处理土壤的微生物学性状和酶活性主成分分析

    a:主成分载荷图,矢量箭头表示各参数变量,变量在主成分轴上的投影长短代表其对主成分的贡献,矢量箭头的余弦角度代表其相关关系;b:不同处理对土壤微生物学性状和酶活性综合影响得分图,其位置与空间载荷图上的参数矢量位置相对应。

    Figure  1.   Principal component analysis of soil microbial characteristics and enzyme activities in different treatments

    表  1   土壤、牛粪和蚓粪的基本理化性质

    Table  1   Basic physicochemical properties of soil, cattlemanure and vermicompost

    项目 pH w/(g·kg–1) w/(mg·kg–1)
    有机质 全氮 全磷 全钾 碱解氮 速效磷 速效钾
    土壤 6.09 10.05 0.12 0.31 11.23 39.21 0.67 66.03
    牛粪 7.96 311.31 17.98 7.76 17.55
    蚓粪 6.76 450.71 21.05 5.79 17.30
    下载: 导出CSV

    表  2   不同施肥处理对土壤微生物学性状的影响1)

    Table  2   Effects of different fertilizing treatments on soil microbial characteristics

    处理 微生物量碳/
    (mg·kg–1)
    微生物量氮/
    (mg·kg–1)
    微生物
    碳氮比
    土壤呼吸/
    (g·kg–1·d–1)
    代谢熵/
    (g·g–1)
    细菌数量/
    (×105 cfu·g–1)
    真菌数量/
    (×102 cfu·g–1)
    放线菌数量/
    (×104 cfu·g–1)
    CK 171.53±15.32b 19.49±0.93b 8.86±0.93a 17.70±2.00c 0.11±0.02c 0.14±0.01c 1.17±0.18c 3.57±0.28b
    HF 148.13±5.25b 20.59±1.61b 7.35±0.75a 3.03±0.20d 0.02±0.00b 1.10±0.15b 0.60±0.11d 3.76±0.28b
    NF 251.71±13.58a 40.39±2.36a 6.32±0.59a 40.61±2.31b 0.16±0.02a 4.41±0.08a 7.51±0.18a 13.99±0.79a
    YF 267.31±18.39a 47.37±4.46a 5.87±0.90a 47.26±1.59a 0.18±0.02a 4.35±0.14a 2.54±0.14b 14.47±0.49a
     1) 表中数据为平均值±标准误,n=4;同列数据后凡具有一个相同小写字母者,表示处理间差异不显著(P>0.05,DMRT 多重比较法)。
    下载: 导出CSV

    表  3   不同施肥处理对土壤酶活性的影响 1)

    Table  3   Effects of different fertilizing treatments on soil enzyme activities

    处理 酶活性/(g·g–1) 酶活性/(μg·kg–1·h–1) 酶活性/(μmol·g–1·h–1)
    转化酶 脲酶 过氧化氢酶 酸性磷酸酶 β–葡萄糖苷酶 乙酰氨基葡萄糖苷酶 多酚氧化酶 过氧化物酶
    CK 0.91±0.14b 0.52±0.02b 0.17±0.01c 0.20±0.01b 9.16±0.27b 18.28±0.83c 0.14±0.01c 0.18±0.01b
    HF 1.12±0.20b 0.56±0.02b 0.10±0.01c 0.26±0.04b 8.09±0.16b 15.42±0.57c 0.02±0.00d 0.17±0.01b
    NF 1.80±0.09a 0.77±0.01a 0.64±0.05a 0.35±0.02a 17.76±0.72a 55.34±2.33b 0.38±0.02a 0.47±0.03a
    YF 1.86±0.14a 0.79±0.05a 0.52±0.02b 0.40±0.03a 18.42±0.70a 62.06±1.83a 0.32±0.01b 0.49±0.02a
     1) 表中数据为平均值±标准误,n=4;同列数据后凡具有一个相同小写字母者,表示处理间差异不显著(P>0.05,DMRT 多重比较法)。
    下载: 导出CSV
  • [1] 袁中友, 郭彦彪, 李强, 等. 有机无机肥配施对生态重建先锋植物类芦生长的影响[J]. 水土保持学报, 2014, 28(5): 302-308.
    [2]

    GIL-SOTRES F, TRASAR-CEPEDA C, LEIRÓS M C, et al. Different approaches to evaluating soil quality using biochemical properties[J]. Soil Biol Biochem, 2005, 37(5): 877-887.

    [3]

    LAGOMARSINO A, MOSCATELLI M C, TIZIO A D, et al. Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a Mediterranean environment[J]. Ecol Indic, 2009, 9(3): 518-527.

    [4]

    DORAN J W, SARRANTONIO M, LIEBIG M A. Soil health and sustainability[J]. Adv Agron, 1996, 56(8): 1-54.

    [5]

    VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biol Biochem, 1987, 19(6): 703-707.

    [6]

    SPARLING G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter[J]. Soil Res, 1992, 30(2): 195-207.

    [7]

    WANG W J, DALAL R C, MOODY P W, et al. Relationships of soil respiration to microbial biomass, substrate availability and clay content[J]. Soil Biol Biochem, 2003, 35(2): 273-284.

    [8]

    ANDERSON T H. Microbial eco-physiological indicators to asses soil quality[J]. Agric Ecos Environ, 2003, 98(1/2/3): 285-293.

    [9] 李振高, 骆永明, 滕应. 土壤与环境微生物研究法[M]. 北京: 科学出版社, 2008.
    [10]

    IYYEMPERUMAL K, SHI W. Soil enzyme activities in two forage systems following application of different rates of swine lagoon effluent or ammonium nitrate[J]. Appl Soil Eco, 2008, 38(2): 128-136.

    [11]

    EIVAZI F, TABATABAI M A. Glucosidases and galactosidases in soils[J]. Soil Biol Biochem, 1988, 20(5): 601-606.

    [12]

    THIOULOUSE J, CHESSEL D, DOLE D S, et al. ADE-4: A multivariate analysis and graphical display software[J]. Statcomput, 1997, 7(1): 75-83.

    [13]

    EBHIN MASTO R, CHHONKAR P K, SINGH D, et al. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol[J]. Soil Biol Biochem, 2006, 38(7): 1577-1582.

    [14]

    PLAZA C, HEMÁNDEZ D, GARCIA-GIL J C, et al. Microbial activity in pig slurry-amended soils under semiarid conditions[J]. Soil Biol Biochem, 2004, 36(10): 1577-1585.

    [15]

    KAUTZ T, WIRTH S, ELLMER F. Microbial activity in a sandy soil is governed by the fertilization regime[J]. Eur J Soil Biol, 2004, 40(2): 87-94.

    [16] 张聪俐, 戴军, 周波, 等. 不同比例蚓粪对玉米生长以及土壤肥力特性的影响[J]. 华南农业大学学报, 2013, 34(2): 137-143.
    [17] 贾德新, 李士平, 王风丹, 等. 蚯蚓粪对豇豆根际土壤生物学特征及微生物活性的影响[J]. 浙江农业学报, 2016, 28(2): 318-323.
    [18] 井大炜. 施用蚯蚓粪对杨树苗根际土壤生物学特征的影响[J]. 水土保持通报, 2014, 34(1): 133-137.
    [19] 杨丽娟, 杨启迪, 周崇峻, 等. 施用蚓粪堆肥对温室番茄产量和品质及土壤微生物数量的影响[J]. 土壤通报, 2013, 44(6): 1455-1459.
    [20]

    JOERGENSEN R G, ANDERSON T H, WOLTERS V. Carbon and nitrogen relationships in the microbial biomass of soils in beech (Fagus sylvatica L.) forests[J]. Biol Fertil Soil, 1995, 19(2): 141-147.

    [21] 黎宁, 李华兴, 朱凤娇, 等. 菜园土壤的理化性质和微生物生态特征与种植年限的关系[J]. 生态环境, 2005, 14(6): 925-929.
    [22] 张池, 陈旭飞, 周波, 等. 不同比例蚓粪对旱地土壤微生物学特性以及酶活性的影响[J]. 中国农业大学学报, 2014, 19(1): 118-124.
    [23] 张宝贵, 李贵桐, 申天寿. 威廉环毛蚯蚓对土壤微生物量及活性的影响[J]. 生态学报, 2000, 20(1): 169-173.
    [24] 李君剑, 严俊霞, 李洪建. 矿区不同复垦措施对土壤碳矿化和酶活性的影响[J]. 生态学报, 2015, 35(12): 4178-4185.
    [25] 苏晓红, 高志岭, 刘建玲, 等. 蚯蚓粪和磷肥配施对油菜生长和土壤性质的影响[J]. 河北农业大学学报, 2010, 33(3): 8-12.
    [26] 马晓霞, 王莲莲, 黎青慧, 等. 长期施肥对玉米生育期土壤微生物量碳氮及酶活性的影响[J]. 生态学报, 2012, 32(17): 5502-5511.
图(1)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-08
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2017-11-09

目录

    /

    返回文章
    返回