• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

考虑颗粒间黏结力的黏性土壤离散元模型参数标定

武涛, 黄伟凤, 陈学深, 马旭, 韩子奇, 潘潼

武涛, 黄伟凤, 陈学深, 马旭, 韩子奇, 潘潼. 考虑颗粒间黏结力的黏性土壤离散元模型参数标定[J]. 华南农业大学学报, 2017, 38(3): 93-98. DOI: 10.7671/j.issn.1001-411X.2017.03.015
引用本文: 武涛, 黄伟凤, 陈学深, 马旭, 韩子奇, 潘潼. 考虑颗粒间黏结力的黏性土壤离散元模型参数标定[J]. 华南农业大学学报, 2017, 38(3): 93-98. DOI: 10.7671/j.issn.1001-411X.2017.03.015
WU Tao, HUANG Weifeng, CHEN Xueshen, MA Xu, HAN Ziqi, PAN Tong. Calibration of discrete element model parameters for cohesive soil considering the cohesion between particles[J]. Journal of South China Agricultural University, 2017, 38(3): 93-98. DOI: 10.7671/j.issn.1001-411X.2017.03.015
Citation: WU Tao, HUANG Weifeng, CHEN Xueshen, MA Xu, HAN Ziqi, PAN Tong. Calibration of discrete element model parameters for cohesive soil considering the cohesion between particles[J]. Journal of South China Agricultural University, 2017, 38(3): 93-98. DOI: 10.7671/j.issn.1001-411X.2017.03.015

考虑颗粒间黏结力的黏性土壤离散元模型参数标定

基金项目: 

国家自然科学基金 51405164

国家科技支撑计划 2014BAD06B03-01

详细信息
    作者简介:

    武涛(1979—),男,副教授,博士,E-mail:wt55pub@scau.edu.cn

    通讯作者:

    陈学深(1977—),男,副教授,博士,E-mail: chenxs@scau.edu.cn

  • 中图分类号: S220.1

Calibration of discrete element model parameters for cohesive soil considering the cohesion between particles

  • 摘要:
    目的 

    实现黏性土壤离散元模型的接触参数与接触模型参数标定。

    方法 

    基于土壤堆积角物理试验结果,采用考虑颗粒间黏结力的“Hertz-Mindlin with JKR”接触模型进行土壤堆积角仿真试验,借助GEMM(Generic EDEM material model database)数据库获得离散元模型关键参数(包括JKR表面能、恢复系数、静摩擦系数与动摩擦系数),进一步运用Box-Behnken试验方法进行堆积角仿真试验。

    结果 

    通过对试验结果进行多元回归拟合分析获得了堆积角回归模型,回归模型的方差分析表明该模型极显著,试验因素对堆积角的影响为二次多项式,且存在复杂的一次与二次交互作用。以堆积角40.45°为目标对回归模型进行寻优,得到了优化解:JKR表面能7.91 J·m-2;恢复系数0.66;静摩擦系数0.83;动摩擦系数0.25。以此优化解进行仿真试验获得的堆积角为39.73°。堆积角仿真试验与物理试验在堆积角度和形状上具有较高的相似性。

    结论 

    可利用该优化参数对样品土壤进行进一步的黏性土壤与触土部件间的离散元仿真,从而揭示黏性土壤在触土部件作用下的运动规律。

    Abstract:
    Objective 

    To calibrate contact parameters and contact model parameters for the cohesive soil discrete element model.

    Method 

    The Hertz-Mindlin with JKR contact model which consider the cohesion between particles was employed for the repose angle simulation test. The simulation test was based on the results of physical test for angle of repose. The key parameters including JKR surface energy, coefficient of restitution, coefficient of static friction and coefficient of rolling friction were obtained from the GEMM (Generic EDEM material model) database. A Box-Behnken design was then used to perform the simulation test for repose angle in above value ranges.

    Result 

    The regression model for repose angle was acquired from the test results by multiple regression analysis. Analysis of variance showed that the model was extremely significant, and the relationship between experimental factors and repose angle was fitted to a quadratic polynomial with complex liner and quadratic interactions. The optimized solution was acquired by using 40.45° as the target of repose angle. The optimized solution was as follow, JKR surface energy was 7.91 J·m-2, coefficient of restitution was 0.66, coefficient of static friction was 0.83, and coefficient of rolling friction was 0.25. The optimized solution was then used for simulation test and the obtained repose angle was 39.73°. The simulation test was highly matched with physical test on both angle and shape of repose.

    Conclusion 

    For the soil sample used in this research, the optimized parameters can be used for further simulation of kinematics and dynamics between cohesive soil and soil contact components, and for providing the motion characteristics of cohesive soil under the actions of soil contact components.

  • 图  1   堆积角测试仪

    Figure  1.   Testing instrument of repose angle

    图  2   堆积角虚拟试验几何模型

    Figure  2.   A geometric model of virtual test of repose angle

    图  3   土壤颗粒的堆积形态

    Figure  3.   Stack shape of soil particles

    图  4   优化解下的堆积角仿真试验与物理试验结果

    Figure  4.   Results of the physical test and simulation test under the optimal solution

    表  1   堆积角仿真试验因素及水平

    Table  1   Factors and levels of simulation test for repose angle

    变量 试验因素 低水平 中心水平 高水平
    x1 JKR表面能 3.50 7.00 10.50
    x2 恢复系数 0.15 0.45 0.75
    x3 静摩擦系数 0.44 0.80 1.16
    x4 滚动摩擦系数 0.05 0.15 0.25
    下载: 导出CSV

    表  2   堆积角仿真试验设计及结果

    Table  2   Results and arrangement of simulation test for repose angle

    试验序号 JKR表面能/(J·m-2 碰撞恢复系数 静摩擦系数 动摩擦系数 堆积角/(°)
    1 10.5 0.45 0.80 0.05 42.19
    2 7.0 0.45 0.44 0.05 36.44
    3 3.5 0.45 1.16 0.15 37.00
    4 10.5 0.45 0.44 0.15 39.03
    5 7.0 0.45 0.44 0.25 37.16
    6 7.0 0.15 0.44 0.15 36.50
    7 7.0 0.75 1.16 0.15 36.40
    8 7.0 0.45 0.80 0.15 37.90
    9 10.5 0.45 1.16 0.15 36.86
    10 7.0 0.75 0.80 0.05 28.85
    11 3.5 0.45 0.44 0.15 37.33
    12 10.5 0.15 0.80 0.15 33.02
    13 3.5 0.15 0.80 0.15 32.76
    14 10.5 0.75 0.80 0.15 38.54
    15 3.5 0.45 0.80 0.25 39.92
    16 10.5 0.45 0.80 0.25 38.52
    17 7.0 0.45 0.80 0.15 37.98
    18 7.0 0.15 0.80 0.05 40.07
    19 7.0 0.15 0.80 0.25 35.62
    20 7.0 0.45 1.16 0.05 37.71
    21 3.5 0.45 0.80 0.05 30.69
    22 3.5 0.75 0.80 0.15 33.03
    23 7.0 0.45 0.80 0.15 37.28
    24 7.0 0.75 0.80 0.25 39.60
    25 7.0 0.75 0.44 0.15 34.29
    26 7.0 0.45 1.16 0.25 37.78
    27 7.0 0.15 1.16 0.15 31.09
    28 7.0 0.45 0.80 0.15 37.39
    29 7.0 0.45 0.80 0.15 37.46
    下载: 导出CSV

    表  3   堆积角回归模型的方差分析

    Table  3   ANOVA of regression model of repose angle

    方差源 平方和 自由度 均方 F P
    模型 257.11 24 10.71 107.00 0.000 2
    x1 25.50 1 25.50 254.72 <0.000 1
    x2 13.10 1 13.10 130.89 0.000 3
    x3 0.89 1 0.89 8.92 0.040 5
    x4 0.16 1 0.16 1.56 0.280 0
    x1x2 6.89 1 6.89 68.82 0.001 2
    x1x3 0.85 1 0.85 8.45 0.043 8
    x1x4 41.60 1 41.60 415.53 <0.000 1
    x2x3 14.14 1 14.14 141.21 0.000 3
    x2x4 57.76 1 57.76 576.91 <0.000 1
    x3x4 0.11 1 0.11 1.05 0.362 4
    x12 0.24 1 0.24 2.36 0.198 9
    x22 19.19 1 19.19 191.65 0.000 2
    x32 3.39 1 3.39 33.86 0.004 3
    x42 1.36 1 1.36 13.56 0.021 2
    x12x2 21.22 1 21.22 211.97 0.000 1
    x12x3 2.41 1 2.41 24.06 0.008 0
    x12x4 2.84 1 2.84 28.41 0.006 0
    x1x22 2.34 1 2.34 23.41 0.008 4
    x1x32 9.12 1 9.12 91.06 0.000 7
    x22x3 3.37 1 3.37 33.63 0.004 4
    x22x4 3.80 1 3.80 37.90 0.003 5
    x2x32 13.36 1 13.36 133.48 0.000 3
    x12x22 0.62 1 0.62 6.23 0.067 0
    x12x32 1.42 1 1.42 14.14 0.019 8
    纯误差 0.40 4 0.10
    总和 257.51 28
    下载: 导出CSV
  • [1] 李博, 陈军, 黄玉祥. 机械与土壤相互作用的离散元仿真研究进展[J]. 农机化研究, 2015, 37(1): 217-222. http://www.cnki.com.cn/Article/CJFDTOTAL-NJYJ201501052.htm
    [2] 徐中华, 王建华. 有限元法分析土壤切削问题的研究进展[J]. 农业机械学报, 2005, 36(1): 134-137. http://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200501036.htm
    [3]

    CUNDALL P A, STRACK O D. A discrete numerical model for granular assemblies [J]. Geotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47

    [4] 方会敏, 姬长英, AHMED Ali Tagar, 等. 秸秆-土壤-旋耕刀系统中秸秆位移仿真分析[J]. 农业机械学报, 2016(1): 60-67. doi: 10.6041/j.issn.1000-1298.2016.01.009
    [5]

    MAK J, CHEN Y, SADEK M A. Determining parameters of a discrete element model for soil-tool interaction [J]. Soil Tillage Res, 2012, 118: 117-122. doi: 10.1016/j.still.2011.10.019

    [6]

    CHEN Y, MUNKHOLM L J, NYORD T. A discrete element model for soil-sweep interaction in three different soils[J]. Soil Tillage Res, 2013, 126: 34-41. doi: 10.1016/j.still.2012.08.008

    [7] 张锐. 基于离散元细观分析的土壤动态行为研究[D]. 长春: 吉林大学, 2005.
    [8]

    KWORK C Y, BOLTON M D. Dem simulations of soil creep due to particle crushing [J]. Geotechnique, 2013, 63(16): 1365. doi: 10.1680/geot.11.P.089

    [9] 徐泳, 孙其诚, 张凌, 等. 颗粒离散元法研究进展[J]. 力学进展, 2003, 33(2): 251-260. doi: 10.6052/1000-0992-2003-2-J2002-044
    [10]

    JOHNSON K L, KENDALL K, ROBERTS A D. Surface energy and the contact of elastic solids [J]. Proc R Soc London: A, 1971,324(1558): 301-313. doi: 10.1098/rspa.1971.0141

    [11]

    DEM Solutions. EDEM 2. 6 theory reference guide [M]. Edinburgh: DEM Solutions, 2014.

    [12]

    COETZEE C J, ELS D N J. Calibration of discrete element parameters and the modelling of silo discharge and bucket filling [J]. Comput Electron Agric, 2009, 65(2): 198-212. doi: 10.1016/j.compag.2008.10.002

    [13]

    UCGUL M, FIELKE J M, SAUNDERS C. Three-dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil [J]. Biosyst Eng, 2014, 121: 105-117. doi: 10.1016/j.biosystemseng.2014.02.005

    [14] 冯俊小, 林佳, 李十中, 等. 秸秆固态发酵回转筒内颗粒混合状态离散元参数标定[J]. 农业机械学报, 2015, 46(3): 208-213. doi: 10.6041/j.issn.1000-1298.2015.03.030
    [15] 日用化学工业科学研究所. 表面活性剂、粉体和颗粒休止角的测量GB11986—1989[S]. 北京: 国家技术监督局, 1989.
图(4)  /  表(3)
计量
  • 文章访问数:  2270
  • HTML全文浏览量:  126
  • PDF下载量:  3203
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-03
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2017-05-09

目录

    /

    返回文章
    返回