• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

普通荞麦种内丝裂原活化蛋白激酶序列分析

梁成刚, 陈晴晴, 石桃雄, 陈其皎, 孟子烨, 陈庆富

梁成刚, 陈晴晴, 石桃雄, 陈其皎, 孟子烨, 陈庆富. 普通荞麦种内丝裂原活化蛋白激酶序列分析[J]. 华南农业大学学报, 2016, 37(4): 90-96. DOI: 10.7671/j.issn.1001-411X.2016.04.015
引用本文: 梁成刚, 陈晴晴, 石桃雄, 陈其皎, 孟子烨, 陈庆富. 普通荞麦种内丝裂原活化蛋白激酶序列分析[J]. 华南农业大学学报, 2016, 37(4): 90-96. DOI: 10.7671/j.issn.1001-411X.2016.04.015
LIANG Chenggang, CHEN Qingqing, SHI Taoxiong, CHEN Qijiao, MENG Ziye, CHEN Qingfu. Sequence analysis of mitogen-activated protein kinases of common buckwheat, Fagopyrum esculentum[J]. Journal of South China Agricultural University, 2016, 37(4): 90-96. DOI: 10.7671/j.issn.1001-411X.2016.04.015
Citation: LIANG Chenggang, CHEN Qingqing, SHI Taoxiong, CHEN Qijiao, MENG Ziye, CHEN Qingfu. Sequence analysis of mitogen-activated protein kinases of common buckwheat, Fagopyrum esculentum[J]. Journal of South China Agricultural University, 2016, 37(4): 90-96. DOI: 10.7671/j.issn.1001-411X.2016.04.015

普通荞麦种内丝裂原活化蛋白激酶序列分析

基金项目: 

国家自然科学基金 31471562

国家自然科学基金 31171609

国家燕麦荞麦现代农业产业技术体系专项 CARS-08-A4

贵州省高层次创新型人才培养对象十百千计划 2014GZ97588

贵州省荞麦工程技术研究中心项目 黔科合农G字【2015】4003号

详细信息
    作者简介:

    梁成刚(1985—),男,助理研究员,博士,E-mail: jesselcg@163.com

    通讯作者:

    陈庆富(1966—),教授,博士,E-mail: cqf1966@163.com

  • 中图分类号: S517; S321

Sequence analysis of mitogen-activated protein kinases of common buckwheat, Fagopyrum esculentum

  • 摘要:
    目的 

    比较普通荞麦Fagopyrum esculentum种内丝裂原活化蛋白激酶基因(MAPK)序列的差异,研究MAPK基因序列在普通荞麦栽培进化过程中的变化。

    方法 

    以普通荞麦的9个栽培品种和3个落花落果野生种质为材料,PCR特异性扩增获得MAPK基因的保守片段,对基因片段序列进行差异分析和蛋白结构预测。

    结果 

    荞麦MAPK基因cDNA全长为2 835 bp,开放阅读框1 827 bp, 编码609个氨基酸,含有TDY的三肽模块,为植物D组MAPK蛋白。PCR扩增获得12个供试材料的MAPK序列,其单型不变位点为723个,多态位点为70个。9个栽培品种间开放阅读框(ORF)区域无序列差异,3个野生种质间ORF区域也无序列差异。栽培品种与野生品种的ORF区域序列含有8个差异位点,编码3个差异氨基酸。其中,ORF区域第13位点组氨酸(H)→酪氨酸(Y)发生置换,导致1个α-螺旋构象发生变化。

    结论 

    普通荞麦MAPK基因序列高度保守,栽培驯化对ORF区域第13位点差异氨基酸的选择具有高度一致性。

    Abstract:
    Objective 

    To identify the difference of mitogen-activated protein kinase gene (MAPK) sequences among intraspecific common buckwheat, Fagopyrum esculentum, and study the sequence change during the chronical domestication process.

    Method 

    The common buckwheat varieties, containing nine cultivars and three wild types with shattering habit, were selected for PCR amplification of the conservative fragments of MAPK gene. Sequences were analyzed and protein conformations were predicted.

    Result 

    The full length of buckwheat MAPK cDNA was 2 835 bp, the length of the open readling frame (ORF) was 1 827 bp, and 609 amino acids containing the TDY tripeptide module were encoded. The buckwheat MARK belonged to the group D of plant MARK proteins. A total of 723 invariable sites and 70 polymorphic sites in MAPK sequence of common buckwheat were identified in 12 tested materials. We did not find difference among the ORF sequences of nine cultivars, neither among three wild types. There were eight differential nucleotides in the ORF of MAPK gene which encoded three amino acid polymorphisms between the cultivars and wild types. We found a change of α-helix conformation which was induced by transforming histidine (H) to tyrosine (Y) at the 13th site in the ORF of MARK.

    Conclusion 

    The MAPK sequence is highly conserved and the 13th amino acid site has been highly consistently selected during the chronical process of domestication.

  • 致谢: 感谢贵州师范大学黎瑞源老师给予的支持和帮助!
  • 图  1   荞麦MAPK基因的开放阅读框序列及其编码的氨基酸序列

    *标记MAPK典型的TDY结构。

    Figure  1.   The open reading frame and its coding amino acid sequence of buckwheat MAPK gene

    图  2   普通荞麦特异引物PCR扩增结果

    M:Marker条带;P:阳性对照。

    Figure  2.   Amplification products of common buckwheat DNA using specified primers

    图  3   普通荞麦DNA序列比对结果

    Figure  3.   The output of common buckwheat DNA sequence alignment

    图  4   不同植物MARK蛋白序列的聚类分析

    Figure  4.   Phylogenetic tree of MAPK protein sequences from different plant species

    图  5   普通荞麦MARK蛋白结构域分析

    A:栽培品种;B:野生种质; C、D、E分别为栽培品种MAPK蛋白第3位点Y→C(C)、第13位点H→Y(D)和第23位点M→L(E)发生转换后的结构域;箭头指向结构发生改变的区域。

    Figure  5.   Domain analysis of MAPK protein of common buckwheat

    表  1   供试的普通荞麦材料

    Table  1   The common buckwheat materials used in this study

    下载: 导出CSV

    表  2   普通荞麦栽培品种与野生种质间MARK ORF片段的碱基和氨基酸差异位点

    Table  2   The differential sites of the nucleotides and amino acids in MARK ORF fragments between cultivars and wild types of common buckwheat

    下载: 导出CSV
  • [1] 陈庆富.荞麦属植物科学[M].北京:科学出版社, 2012: 1-9.
    [2]

    AHMED A, KHALID N, AHMED A, et al. Phytochemicals and biofunctional properties of buckwheat: A review[J]. J Agri Sci, 2014, 152(3): 349-369. http://journals.cambridge.org/article_S0021859613000166

    [3]

    WIJNGAGRD H H, ARENDT E K. Buckwheat[J]. Cereal Chem, 2006, 83(4): 391-401. http://d.old.wanfangdata.com.cn/Periodical/spyfx201707036

    [4]

    SEDEJ I, SAKAČ M, MANDIĆ A, et al. Buckwheat (Fagopyrum esculentum Moench) grain and fractions: Antioxidant compounds and activities[J]. J Food Sci, 2012, 77(9): 954-959. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228172236/

    [5]

    JACQUEMART A L, LEDENT J F O, QUINET M, et al. Is buckwheat (Fagopyrum esculentum Moench) still a valuable crop today?[J]. Eur J Plant Sci Biotech, 2012, 6(Special Issue 2): 1-10. https://core.ac.uk/display/20324795

    [6]

    OHNISHI O. Discovery of the wild ancestor of common buckwheat[J]. Fagopyrum, 1991, 11:5-10. http://ci.nii.ac.jp/naid/10003760002

    [7]

    OHNISHI O, ASANO N. Genetic diversity of Fagopyrum homotropicum, a wild species related to common buckwheat[J]. Gen Res Crop Evol, 1999, 46(4): 389-398. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0214852600

    [8] 朱斌, 梁颖.植物MAPK C族基因的研究进展[J].生物技术通报, 2012 (11): 27-31. http://d.old.wanfangdata.com.cn/Periodical/swjstb201211005
    [9] 崔菁菁, 刘玮.植物特有的TDY类丝裂原活化蛋白激酶研究综述[J].现代农业科技, 2008(14): 271-272. doi: 10.3969/j.issn.1007-5739.2008.14.200
    [10]

    BOUDSOCQ M, DANQUAH A, DE ZÉLICOURT A, et al. Plant MAPK cascades: Just rapid signaling modules?[J]. Plant Signal Behav, 2015, 10(9): e1062197. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ022404057/

    [11] 张腾国, 刘玉冰, 夏小慧.植物MAP激酶级联途径研究进展[J].西北植物学报, 2008, 28(8): 1704-1714. doi: 10.3321/j.issn:1000-4025.2008.08.032
    [12] 龚小卫, 姜勇.丝裂原活化蛋白激酶(MAPK)生物学功能的结构基础[J].中国生物化学与分子生物学报, 2003, 19(1): 5-11. doi: 10.3969/j.issn.1007-7626.2003.01.002
    [13] 张茂迎, 宗晓娟, 李德全.植物MAPK级联途径参与调控ABA信号转导[J].生命科学, 2010, 22(8): 736-743. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002080192
    [14]

    NAKAGAMI H, PITZSCHKE A, HIRT H. Emerging MAP kinase pathways in plant stress signalling[J]. Trends Plant Sci, 2005, 10(7): 339-346. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0210140020

    [15]

    DANQUAH A, DE ZÉLICOURT A, COLCOMBET J, et al. The role of ABA and MAPK signaling pathways in plant abiotic stress responses[J]. Biotech Adv, 2014, 32(1): 40-52. http://www.sciencedirect.com/science/article/pii/S0734975013001626

    [16] 高华健, 任静, 蔡凤香, 等. MAPK调节水稻幼苗根系生长的分子机制[J].江苏农业科学, 2014, 42(1): 18-21. doi: 10.3969/j.issn.1002-1302.2014.01.006
    [17] 梁卫红, 毕佳佳, 彭威风, 等.水稻促分裂原活化蛋白激酶基因OsMPK14的克隆及表达分析[J].中国水稻科学, 2010, 24(2): 125-130. doi: 10.3969/j.issn.1001-7216.2010.02.04
    [18]

    CHO S K, LARUE C T, CHEVALIER D, et al. Regulation of floral organ abscission in Arabidopsis thaliana[J]. Proc Nati Acad Sci USA, 2008, 105(40): 15629-15634. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2563077

    [19] 陈晴晴, 石桃雄, 陈庆富.荞麦不同种间BW10KD过敏蛋白基因序列比较[J].广东农业科学, 2013, 40(9): 133-139. doi: 10.3969/j.issn.1004-874X.2013.09.039
    [20]

    ARNOLD K, BORDOLI L, KOPP J, et al. The SWISS-MODEL workspace: A web-based environment for protein structure homology modeling[J]. Bioinformatics, 2006, 22: 195-201. http://www.ncbi.nlm.nih.gov/pubmed/16301204?dopt=AbstractPlus

    [21]

    SCHWEDE T, KOPP J, GUEX N, et al. Swiss-model: An automated protein homology-modeling server[J]. Nucl Acids Res, 2003, 31(13): 3381-3385. http://d.old.wanfangdata.com.cn/Periodical/smdhx200601021

    [22]

    GUEX N, PEITSCH M C. Swiss-model and the swiss-pdb viewer: An environment for comparative protein modeling[J]. Electrophoresis, 1997, 18: 2714-2723. doi: 10.1002/(ISSN)1522-2683

    [23] 岳鹏, 陈庆富.植物种子蛋白的分子生物学研究进展[J].种子, 2011, 30(1): 58-62. doi: 10.3969/j.issn.1001-4705.2011.01.017
    [24] 肖文娟, 宾金华, 武波.植物体中的MAPK[J].植物学通报, 2004, 21(2): 205-215. doi: 10.3969/j.issn.1674-3466.2004.02.011
    [25] 李凤梅.植物丝裂原活化蛋白激酶激酶的生物信息学分析[J].北方园艺, 2010(3): 196-199. http://d.old.wanfangdata.com.cn/Periodical/bfyany201003075
    [26]

    MENG X, WANG H, HE Y, et al. A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation[J]. Plant Cell, 2012, 24(12): 4948-4960. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0229555557

图(5)  /  表(2)
计量
  • 文章访问数:  1267
  • HTML全文浏览量:  1
  • PDF下载量:  1306
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-03
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2016-07-09

目录

    /

    返回文章
    返回