The expressions of CsHSFs gene in relation to chilling tolerance of cucumber fruits
-
摘要:目的
研究CsHSFs基因的表达特征与热处理和冷锻炼处理提高黄瓜果实耐冷性的关系.
方法测定了低温(8 ℃)贮藏过程中热处理(低温贮藏前50 ℃热水处理1 min)、冷锻炼处理(15 ℃预贮2 d后再低温贮藏)和对照处理的黄瓜果实的相对电导率、可溶性固形物(TSS)含量、叶绿素含量和果实色泽等生理指标, 并用qRT-PCR法检测CsHSFs基因的表达特征.
结果和结论热处理和冷锻炼处理均可提高果实耐冷性, 主要表现为热处理和冷锻炼处理均显著抑制了果实相对电导率的升高和叶绿素含量的降低, 较好地保持了果实的色泽和商品性状, 相比较而言, 冷锻炼处理减轻果实冷害的效果比热处理明显, 同时, 热处理与冷锻炼处理都不影响果实TSS含量.并且, CsHSF7和CsHSF11基因表达水平与热处理和冷锻炼诱导的果实耐冷性密切相关, 但其参与冷害的机制可能不同, 体现为CsHSF7在酵母中具有转录激活活性, 而CsHSF11在酵母中不具有转录激活活性.
Abstract:ObjectiveThe relationship between the expression patterns of CsHSFs genes and the chilling tolerance of cucumber fruits treated by heat shock and cold acclimation treatments were analyzed.
MethodRelative electrolyte leakages, total soluble solids (TSS), contents of chlorophyll and color in cucumber fruits pre-treated by heat shock (pre-treated by 50 ℃ hot water for 1 min) or cold acclimation (pre-storage at 15 ℃ for 2 day) were investigated during low temperature storage (8 ℃), and the expression of CsHSFs gene was determined using qRT-PCR.
Result and conclusionThe results showed that the pretreatments with heat shock and cold acclimation enhanced the chilling tolerance in cucumber fruit, reflected by inhiting increase in relative electrolyte leakages and a decrease in chlorophyll contents in heat shock or cold acclimation-treated fruits, with a stronger effect created by cold acclimation treatment. There was no significant difference in TSS content between the two treatments.Moreover, the expression levels of CsHSF7 and CsHSF11 genes significantly increased in heat shock and cold acclimation treatments compared to the control, suggesting that they were likely to get closely involved in the chilling tolerance induced by heat shock and cold acclimation in cucumber fruits.However, CsHSF7 and CsHSF11 genes might participate in the response to chilling with different mechanisms, as CsHSF7 showed transcriptional activation in yeast cells, while CsHSF11 did not.
-
Keywords:
- cucumber fruit /
- heat shock /
- cold acclimation /
- chilling injury /
- CsHSFs gene
-
-
表 1 本文所用引物序列
Table 1 The primer sequences used in this study
-
[1] 王志坤, 秦智伟, 周秀艳.黄瓜果实成熟衰老过程中几种物质的变化[J].中国蔬菜, 2010(12):41-45. http://d.old.wanfangdata.com.cn/Periodical/zgsc201012008 [2] 胡位荣. 荔枝(Litchi chinensis Sonn. )果实冷害生理及冰温贮藏技术的研究[D]. 广州: 华南农业大学, 2003. [3] 王艳颖, 胡文忠, 刘程惠, 等.低温贮藏引起果蔬冷害的研究进展[J].食品科技, 2010, 35(1):72-75. http://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ201001022.htm [4] 王平. 基于乙烯信号转导元件的采后枇杷果实冷害木质化机制研究[D]. 杭州: 浙江大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10335-1012313748.htm [5] 杨绍兰. 1-MCP处理对黄瓜冷藏期间保鲜效果的影响[J].中国农学通报, 2009, 25(6):70-72. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb200906017 [6] MAO L, PANG H, WANG G, et al. Phospholipase D and lipoxygenase activity of cucumber fruit in response to chilling stress[J]. Postharvest Biol Tec, 2007, 44(1):42-47. doi: 10.1016/j.postharvbio.2006.11.009
[7] 吴光斌, 陈发河, 张其标, 等.热激处理对冷藏枇杷果实冷害的生理作用[J].植物资源与环境学报, 2004, 13(2):1-5. doi: 10.3969/j.issn.1674-7895.2004.02.001 [8] ZHANG X H, SHEN L, LI F J, et al. Arginase induction by heat treatment contributes to amelioration of chilling injury and activation of antioxidant enzymes in tomato fruit [J]. Postharvest Biol Tec, 2013, 79:1-8. doi: 10.1016/j.postharvbio.2012.12.019
[9] CAO S F, HU Z C, ZHENG Y H, et al. Synergistic effect of heat treatment and salicylic acid on alleviating internal browning in cold-stored peach fruit[J]. Postharvest Biol Tec, 2010, 58(2):93-97. doi: 10.1016/j.postharvbio.2010.05.010
[10] LAUXMANN M A, BORSANI J, OSORIO S, et al. Deciphering the metabolic pathways influencing heat and cold responses during post-harvest physiology of peach fruit [J]. Plant Cell Environ, 2014, 37(3):601-616. doi: 10.1111/pce.2014.37.issue-3
[11] BASSAL M, EL-HAMAHMY M. Hot water dip and pre-conditioning treatments to reduce chilling injury and maintain postharvest quality of Navel and Valencia oranges during cold quarantine[J]. Postharvest Biol Tec, 2011, 60 (3):186-191. doi: 10.1016/j.postharvbio.2011.01.010
[12] 王慧, 张艳梅, 王大鹏, 等.热激处理对青椒耐冷性及抗氧化体系的影响[J].食品科学, 2013, 34(2):312-316. http://d.old.wanfangdata.com.cn/Periodical/spkx201302065 [13] CAI C, XU C, SHAN L, et al. Low temperature conditioning reduces postharvest chilling injury in loquat fruit [J]. Postharvest Biol Tec, 2006, 41(3):252-259. doi: 10.1016/j.postharvbio.2006.04.015
[14] MAUL P, MCCOLLUM G, GUY C L, et al. Temperature conditioning alters transcript abundance of genes related to chilling stress in 'Marsh' grapefruit flavedo[J]. Posthar-vest Biol Tec, 2011, 60(3):177-185. doi: 10.1016/j.postharvbio.2010.06.007
[15] WOOLF A B, COX K A, WHITE A, et al. Low temperature conditioning treatments reduce external chilling injury of 'Hass' avocados[J]. Postharvest Biol Tec, 2003, 28 (1):113-122. doi: 10.1016/S0925-5214(02)00178-3
[16] JIN P, WANG K, SHANG H, et al. Low-temperature conditioning combined with methyl jasmonate treatment reduces chilling injury of peach fruit[J]. J Sci Food Agric, 2009, 89(10):1690-1696. doi: 10.1002/jsfa.v89:10
[17] SHAN W, KUANG J F, LU W J, et al. A banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1[J]. Plant Cell Environ, 2014, 37 (9): 2116-2127. doi: 10.1111/pce.2014.37.issue-9
[18] ZHAO M L, WANG J N, SHAN W, et al. Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit[J]. Plant Cell Environ, 2013, 36(1): 30-51. doi: 10.1111/pce.2013.36.issue-1
[19] ZHANG S, XU Z, LI P, et al. Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures[J]. Plant Mol Biol Rep, 2013, 31(3):688-697. doi: 10.1007/s11105-012-0546-z
[20] LI H Y, CHANG C S, LU L S, et al. Over-expression of Arabidopsis thaliana heat shock factor gene (AtHsfA1b) enhances chilling tolerance in transgenic tomato[J]. Bot Bull Acad Sin, 2003, 44(2): 129-140.
[21] VON KOSKULL-DORING P, SCHARF K D, NOVER L. The diversity of plant heat stress transcription factors[J]. Trends Plant Sci, 2007, 12(10):452-457. doi: 10.1016/j.tplants.2007.08.014
[22] LIU J, SUN N, LIU M, et al. An autoregulatory loop controlling Arabidopsis HsfA2 expression: Role of heat shock-induced alternative splicing[J]. Plant Physiol, 2013, 162 (1):512-521. doi: 10.1104/pp.112.205864
[23] 韩雅珊, 刘惠君.食品化学实验指导[M].北京:中国农业大学出版社, 1996:75-77. [24] WAN C Y, WILKINS T A. A modifed hot borate method signifcantly enhances the yield of high quality RNA from cotton (Gossypium hirsutum L.)[J]. Anal Biochem, 1994, 223(1):7-12.
[25] WAN H, ZHAO Z, QIAN C, et al. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber[J]. Anal Biochem, 2010, 399(2):257-261.
[26] 翁锦周, 洪月云.植物热激转录因子在非生物逆境中的作用[J].分子植物育种, 2006, 4(1):88-94. doi: 10.3969/j.issn.1672-416X.2006.01.016 [27] 伊淑莹.植物热激因子网络[J].生命的化学, 2008, 28(4):383-387. doi: 10.3969/j.issn.1000-1336.2008.04.003 [28] MITTAL D, CHAKRABARTI S, SARKAR A, et al. Heat shock factor gene family in rice: Genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses[J]. Plant Physiol Biochem, 2009, 47(9):785-795. doi: 10.1016/j.plaphy.2009.05.003
[29] SCHARF K, BERBERICH T, EBERSBERGER I, et al. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution[J]. BBA-Gene Regul Mech, 2012, 1819(2):104-119.
[30] 王国栋, 孔凡英, 孟庆伟.番茄热激转录因子研究进展[J].植物生理学报, 2013, 49(3):217-224. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013052100024219 [31] HÁBEL A, SCHÖFFL F. Arabidopsis heat shock factor: Isolation and characterization of the gene and the recombinant protein[J]. Plant Mol Biol, 1994, 26(1):353-362. doi: 10.1007/BF00039545
[32] NOVER L, BHARTI K, DÖRING P, et al. Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need?[J]. Cell Stress Chaperon, 2001, 6(3):177-189. doi: 10.1379/1466-1268(2001)006<0177:AATHST>2.0.CO;2
[33] WU C. Heat shock transcription factors: Structure and regulation[J]. Ann Rev Cell Dev Biol, 1995, 11 (1): 441-469. doi: 10.1146/annurev.cb.11.110195.002301