Isolation and identification of Burkholderia contaminans strain GD1-1 and its bio-control potential against Fusarium wilt of banana
-
摘要:目的
从香蕉根际土壤中筛选出对香蕉枯萎病具有良好防治效果的生防菌。
方法采用对峙培养法,从健康香蕉根际土壤中筛选对尖孢镰刀菌古巴专化型热带4号小种(Fusarium oxysporum f. sp. cubense tropical race 4,Foc TR4)具有拮抗作用的生防菌株,根据菌落形态和生理生化特征并利用分子生物学技术对生防菌株进行鉴定。通过显微观察分析该菌株对Foc TR4菌丝生长和分生孢子萌发的影响,通过对峙培养法分析其抑菌谱,通过盆栽试验分析该菌株对香蕉枯萎病的防治效果和促生潜力。
结果筛选出了1株对Foc TR4具有显著抑制作用的拮抗菌GD1−1,鉴定为洋葱伯克霍尔德菌Burkholderia contaminans。菌株GD1−1对Foc TR4菌丝生长的抑制率为72.5%,对分生孢子萌发的抑制率为99.8%,并可以导致Foc TR4菌丝膨大变粗、畸形等。菌株GD1−1具有解钾、解磷、产蛋白酶和产铁载体的能力,对10种植物病原真菌均具有较好的抑制效果,表现出广谱抑菌作用。盆栽试验结果表明,菌株GD1−1对香蕉枯萎病的防效为55.6%,且对香蕉植株具有良好的促生作用。
结论洋葱伯克霍尔德菌GD1−1对Foc TR4具有明显的抑制作用,对香蕉枯萎病具有良好的防治效果,对香蕉植株具有促生作用。作为优质的生防菌源,菌株GD1−1具有一定的开发应用潜力。
-
关键词:
- 香蕉枯萎病 /
- 尖孢镰刀菌古巴专化型 /
- 洋葱伯克霍尔德菌 /
- 拮抗作用 /
- 生物防治
Abstract:ObjectiveTo isolate and screen antagonistic bacteria against Fusarium wilt disease from healthy banana rhizosphere soil.
MethodsThe bacterial strain antagonizing Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) was screened from banana rhizosphere soil using the plate confrontational culture method. The antagonistic strain was identified by colony morphology, physiological and biochemical characteristics, and phylogenetic analysis of multiple genes including 16S rDNA, GyrB, AtpD and GltB. The effect of this strain on Foc TR4 hyphae growth and spore germination was analyzed by microscopic observation, the antifungi spectrum was determined by the plate confrontation culture method, the biological control and growth-promoting efficiency were tested by banana plant inoculation assay in greenhouse.
ResultAn antagonistic strain of GD1-1 was screened with the inhibition rate of 72.5% on Foc TR4 hyphal growth and the inhibition rate of 99.8% on Foc TR4 spore germination, which was identified as Burkholderia contaminans. The strain GD1-1 could cause hyphal distortion, enlargement and malformation of Foc TR4 under microscope observation. The strain GD1-1 possessed the broad-spectrum antibacterial activity with a good inhibitory effect on the selected ten phytopathogenic fungi. The results of pot inoculation experiment showed that the strain GD1-1 successfully promoted the growth of banana seedlings and suppressed the incidence of banana Fusarium wilt with the biocontrol efficacy of 55.6%.
ConclusionThe strain GD1-1 has the significant inhibitory effect on Foc TR4 with a good control effect on banana wilt disease, and promotes the growth of banana plant. As a high-quality source of biocontrol bacteria, the strain GD1-1 has certain potential for development and application.
-
-
表 1 本文所用引物
Table 1 Primers used in this study
引物名称
Primer
name引物序列(5′→3′)
Primer sequence (5′→3′)参考
文献
Reference27-F AGAGTTTGATCCTGGCTCAG [12] 1492 -RGGTTACCTTGTTACGACTT GyrB-F ACCGGTCTGCAYCACCTCGT [12] GyrB-R YTCGTTGWARCTGTCGTTCCACTGC AtpD-F ATGAGTACTRCTGCTTTGGTAGAAGG [12] AtpD-R CGTGAAACGGTAGATGTTGTCG GltB-F CTGCATCATGATGCGCAAGTG [13] GltB-R CTTGCCGCGGAARTCGTTGG 表 2 菌株GD1−1对不同植物病原真菌的抑制作用
Table 2 Inhibition of different phytopathogenic fungi by the strain GD1-1
病原菌
Pathogen抑制率1)/%
Inhibition rate病原菌
Pathogen抑制率1)/%
Inhibition rate尖孢镰刀菌番茄专化型 Fol 78.0±0.3a 香蕉枯萎病菌1号小种 Foc1 72.0±0.5bc 香蕉炭疽病菌 C. musae 77.9±0.3a 尖孢镰刀菌苦瓜专化型 Fom 71.3±0.3bc 链格孢菌 A. alternata 76.8±1.1a 变红镰刀菌 F. incarnatum 69.9±0.5cd 腐皮镰刀菌 F. solani 76.4±0.9a 多主棒孢菌 C. cassiicola 67.9±0.2de 尖孢镰刀菌冬瓜专化型 Fob 73.5±0.4b 禾谷镰刀菌 F. graminearum 66.1±2.6e 1)表中数据为平均值±标准误,不同小写字母表示差异显著(P<0.05,Duncan’s 法)。
1) Values were the means ± SE and different lowercase letters indicated significant difference (P<0.05, Duncan’s method). -
[1] 董梁, 许铁敏, 徐广才. 全球谷物供需格局和增产潜力及我国粮食安全策略研究[J]. 中国农业资源与区划, 2024, 45(10): 80-85. [2] GARCIA R O, RIVERA-VARGAS L I, PLOETZ R, et al. Characterization of Fusarium spp. isolates recovered from bananas (Musa spp. ) affected by Fusarium wilt in Puerto Rico[J]. European Journal of Plant Pathology, 2018, 152(3): 599-611. doi: 10.1007/s10658-018-1503-y
[3] 王海希, 郝志鹏, 张莘, 等. 丛枝菌根真菌防治尖孢镰孢枯萎病的效应、机制及其应用研究进展[J]. 微生物学通报, 2022, 49(7): 2819-2837. [4] 蔡文涌, 方香玲. 植物病原尖孢镰刀菌致病因子研究进展[J]. 分子植物育种, 2024, 22(24): 8270-8278. [5] 李华平, 李云锋, 聂燕芳. 香蕉枯萎病的发生及防控研究现状[J]. 华南农业大学学报, 2019, 40(5): 128-136. doi: 10.7671/j.issn.1001-411X.201905062 [6] 周登博, 井涛, 张锡炎, 等. 香蕉枯萎病拮抗菌筛选及其抑菌活性[J]. 植物保护学报, 2016, 43(6): 913-921. [7] 黄建凤, 张发宝, 逢玉万, 等. 两株香蕉枯萎病拮抗细菌的筛选及抑菌机理[J]. 微生物学通报, 2017, 44(4): 835-844. [8] 李锦, 谭德东, 邱济平, 等. 香蕉抗枯萎病株系内生菌的分离鉴定及抑菌促生效果[J]. 华南农业大学学报, 2024, 45(2): 256-265. doi: 10.7671/j.issn.1001-411X.202308003 [9] 施俊凤, 孙常青, 张婧婷. 采前喷施洋葱伯克霍尔德菌Burkholderia contaminans对草莓采后腐烂和品质的影响[J]. 植物保护学报, 2018, 45(2): 382-388. [10] SHEN F, LIU Z, DU C, et al. Induction of resistance of antagonistic bacterium Burkholderia contaminans to postharvest Botrytis cinerea in Rosa vinifera[J]. Computational and Mathematical Methods in Medicine, 2022, 2022: 7134161. doi: 10.1155/2022/7134161
[11] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. [12] SUKRAMA I D M, FRANCISKA J, SUARDANA I W. Evaluation of the bacteriocin produced by strain 9 lactic acid bacteria isolate for biopreservation[J]. Veterinary World, 2020, 13(9): 2012-2019. doi: 10.14202/vetworld.2020.2012-2019
[13] SPILKER T, BALDWIN A, BUMFORD A, et al. Expanded multilocus sequence typing for Burkholderia species[J]. Journal of Clinical Microbiology, 2009, 47(8): 2607-2610. doi: 10.1128/JCM.00770-09
[14] 朱艳蕾. 细菌生长曲线测定实验方法的研究[J]. 微生物学杂志, 2016, 36(5): 108-112. [15] 黄素梅, 韦绍龙, 韦莉萍, 等. 8种香蕉种质对枯萎病的抗性比较与分析[J]. 热带作物学报, 2019, 40(11): 2189-2196. doi: 10.3969/j.issn.1000-2561.2019.11.013 [16] 张静, 张腾, 肖耀鹏, 等. 黄骅盐碱地玉米根系内生真菌分离及耐盐促生功能[J]. 微生物学通报, 2024, 51(10): 4089-4103. [17] 陈佳兴, 秦琴, 邱树毅, 等. 磷尾矿土壤中解磷细菌的筛选及解磷能力的测定[J]. 生物技术通报, 2018, 34(6): 183-189. [18] 白玥, 郝青芳, 周俊栏, 等. 产蛋白酶海洋细菌Bacillus sp. 4sp5分离鉴定及降解南极磷虾原肌球蛋白的研究[J]. 食品安全质量检测学报, 2024, 15(4): 98-105. [19] 李雅琳, 李素艳, 孙向阳, 等. 1株木质素降解菌的筛选、鉴定及液态发酵条件优化[J]. 浙江农林大学学报, 2021, 38(6): 1297-1304. doi: 10.11833/j.issn.2095-0756.20200814 [20] ZHANG H, BAI X, HAN Y, et al. Stress-resistance and growth-promoting characteristics and effects on vegetable seed germination of Streptomyces sp. strains isolated from wetland plant rhizospheres[J]. Current Microbiology, 2023, 80(5): 190. doi: 10.1007/s00284-023-03297-x
[21] 张瑞福. 根际微生物: 农业绿色发展中大有作为的植物第二基因组[J]. 生物技术通报, 2020, 36(9): 1-2. [22] 张淑瑶, 文霞, 苏皑庭, 等. 日化产品中洋葱伯克霍尔德氏菌复合群(Bcc)的分类和神秘伯克霍尔德氏菌的耐药性研究[J]. 微生物学报, 2023, 63(9): 3616-3627. [23] PARKE J L, GURIAN-SHERMAN D. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains[J]. Annual Review of Phytopathology, 2001, 39: 225-258. doi: 10.1146/annurev.phyto.39.1.225
[24] 范青, 田世平, 姜爱丽, 等. 采摘后果实病害生物防治拮抗菌的筛选和分离[J]. 中国环境科学, 2001, 21(4): 313-316. doi: 10.3321/j.issn:1000-6923.2001.04.007 [25] HWANG J, BENSON D M. Biocontrol of Rhizoctonia stem and root rot of Poinsettia with Burkholderia cepacia and binucleate Rhizoctonia[J]. Plant Disease, 2002, 86(1): 47-53. doi: 10.1094/PDIS.2002.86.1.47
[26] HEO A Y, KOO Y M, CHOI H W. Biological control activity of plant growth promoting rhizobacteria Burkholderia contaminans AY001 against tomato Fusarium wilt and bacterial speck diseases[J]. Biology (Basel), 2022, 11(4): 619.
[27] 李亚莉, 侯栋, 岳宏忠, 等. 黄瓜枯萎病拮抗菌Burkholderia gladioli L1-3的分离鉴定及防病促生效果[J]. 中国蔬菜, 2022(12): 52-58. [28] 权春善, 郑维, 曹治明, 等. 洋葱伯克霍尔德菌CF-66抗菌物质的分离纯化及性质的研究[J]. 微生物学报, 2005, 45(5): 707-710. doi: 10.3321/j.issn:0001-6209.2005.05.010 [29] 范三红, 李静, 施俊凤. 拮抗菌Burkholderia contaminans对玫瑰香葡萄采后灰霉病的抗性诱导[J]. 食品科学, 2016, 37(2): 266-270. doi: 10.7506/spkx1002-6630-201602047 [30] 宫安东, 朱梓钰, 路亚南, 等. 吡咯伯克霍尔德菌WY6-5的溶磷、抑菌与促玉米生长作用研究[J]. 中国农业科学, 2019, 52(9): 1574-1586. [31] WANG X Q, LIU A X, GUERRERO A, et al. Occidiofungin is an important component responsible for the antifungal activity of Burkholderia pyrrocinia strain Lyc2[J]. Journal of Applied Microbiology, 2016, 120(3): 607-618. doi: 10.1111/jam.13036
[32] 邓声坤, 雷锋杰, 张焕荣, 等. 人参产铁载体拮抗细菌GR-39的筛选鉴定及发酵条件优化[J]. 中国生物防治学报, 2024, 40(1): 167-177. [33] 杨凯元, 韩玲娟, 梁银萍, 等. 达乌里胡枝子产铁载体根瘤内生细菌的鉴定及其促生抗逆效应[J]. 微生物学通报, 2023, 50(10): 4413-4432. [34] 章嘉会, 魏艳丽, 李红梅, 等. 两株西洋参根际拮抗细菌的鉴定及其抑菌促生效果[J]. 山东农业科学, 2022, 54(7): 143-148. [35] 王贻莲, 郭凯, 陈凯, 等. 越南伯克霍尔德氏菌B418杀线虫活性产物的稳定性研究[J]. 湖北农业科学, 2014, 53(5): 1066-1068. doi: 10.3969/j.issn.0439-8114.2014.05.021