Evaluating the effect of sludge application on soil aggregates based on Meta-analysis
-
摘要:目的
利用Meta分析探讨污泥施用促进土壤团聚的效果,并挖掘其影响因素。
方法收集整理1990—2023年间已发表文献,在获取的568篇中、英文文献中精筛出36篇高度匹配文献,运用Meta分析总结污泥施用对土壤团聚体和土壤性质的影响,并利用线性拟合和随机森林模型等方法,分析污泥施用条件下土壤团聚体与土壤性质的关系。
结果污泥施用显著提高土壤大团聚体(粒径>0.25 mm)相对含量以及团聚体平均质量直径;与表施(0.20)相比,污泥混施大团聚体相对含量的效应值(0.84)更高;污泥施用显著提高表层(0~20 cm)和深层(20<~40 cm)土壤团聚体平均质量直径,但仅显著增加表层土壤大团聚体相对含量;土壤黏粒含量越低,污泥施用对大团聚体相对含量的效应值越高,土壤黏粒含量<15%、15%~25%和>25%的大团聚体相对含量效应值分别为0.26、0.13和0.05;针对不同污泥施用量,施用量为100<~200 t/hm2时大团聚体相对含量效应值最高(0.35)。线性拟合显示,污泥施用条件下土壤有机质、碳水化合物、全氮、碱解氮、总磷、速效磷含量和磷酸酶活性与大团聚体相对含量呈显著正相关,土壤碱化度和土壤电导率与大团聚体相对含量呈显著负相关。随机森林分析进一步确认,污泥施用提高土壤有机质和碳水化合物含量是促进土壤大团聚体形成的关键原因。Meta回归分析表明,有机质含量的增长可以解释93.79%的大团聚体相对含量效应值变异,碳水化合物含量的增长可以解释76.30%的大团聚体相对含量效应值变异。
结论污泥最佳施用条件是按100<~200 t/hm2混施于黏粒含量<15%的0~20 cm土壤中。污泥施用通过提高土壤有机质和碳水化合物含量促进土壤聚集。
Abstract:ObjectiveTo evaluate the effect of sludge application promoting soil aggregation by using Meta-analysis, and excavate the influencing factors.
MethodWe fine screened 36 highly matched papers from 568 papers published in international and domestic journals between 1990 and 2023. The effects of sludge application on soil aggregates and soil properties were evaluated by Meta-analysis. The relationships between soil aggregates and soil properties under sludge application were further analyzed by linear fitting analysis and random-forest model method.
ResultSludge application significantly increased the relative content of soil macroaggregate (particle diameter > 0.25 mm) and the mean weight diameter of aggregates. Compared with surface application (0.20), mixed application of sludge had a higher effect size (0.84) in the relative content of macroaggregate. Sludge application significantly increased the mean weight diameter of aggregates in both surface (0−20 cm) and deep (20<−40 cm) soil layers, but only significantly increased the relative content of macroaggregate in the surface soil layer. The effect size of the relative content of macroaggregate in soils with clay content <15%, 15%−25%, and >25% under sludge application was 0.26, 0.13, and 0.05, respectively, indicating that the higher effect size occurred in soils with lower clay content. For different sludge application rates, the highest effect size (0.35) of macroaggregate relative content was found in rate of 100<−200 t/hm2. Linear fitting analysis showed that the relative content of macroaggregate had significant and positive correlations with the contents of soil organic matter, carbohydrate, total nitrogen, alkaline hydrolyzable nitrogen, total phosphorus, available phosphorus, and phosphatase activity, while having significant and negative correlations with soil exchangeable sodium percentage and electrical conductivity. Random-forest analysis further indicated that the increase of soil organic matter and carbohydrate contents by sludge application was the main reason for the improvement of soil aggregation. Meta-regression analysis showed that the increase of organic matter content could explain 93.79% of the effect size of macroaggregate relative content, and the increase of carbohydrate content could explain 76.30%.
ConclusionThe optimal application condition of sludge is mixed in 0−20 cm depth soil with clay content <15% at the amount of 100<−200 t/hm2. The sludge application increases soil organic matter content and carbohydrate content, and then promotes soil aggregation.
-
Keywords:
- Soil improvement /
- Soil structure /
- Sludge recycling /
- Soil aggregate /
- Soil organic matter
-
1. S22系基础群建立
S22以2006年从加拿大DGI公司引进的杜洛克原种公猪35头、18个血缘、281头母猪为基础育种素材建立核心育种群,在水台原种场分场沙湖原种场组群和选育。
2. S22系的育种目标
按照专门化父系来选育,以饲料报酬高、体型高长、眼肌面积大、生长速度快为选育方向,以30~115 kg料重比、30~115 kg日增重、达115 kg时背膘厚、达115 kg时眼肌面积作为主选性状,注重体型高长、骨架大的选择。具体指标如下:
1) 体型外貌:头大小适中、较清秀,颜面稍凹、嘴筒短直,耳中等大小,向前倾,耳尖稍弯曲;体躯高长,骨架大,胸宽深,背腰平阔,腹线平直,前后躯较发达,肌肉丰满;四肢粗壮有力,肢蹄结实;毛色以棕黑色、棕红色为主;乳头排列整齐,有效乳头6对。
2) 肥育性状:校正30~115 kg料重比,公猪2.35、母猪2.45;校正30~115 kg日增重,公猪850 g、母猪820 g。
3) 胴体性状:校正115 kg背膘厚,公猪13.0 mm、母猪14.0 mm;校正115 kg眼肌面积,公猪36 cm2、母猪34 cm2。
4) 初配日龄220~245 d,初配体重120 kg以上。
5) 各性状经济加权值:料重比0.20、校正日增重0.30、校正背膘厚0.35、校正眼肌面积0.15。
3. 选育方法
以数量遗传学结合分子遗传学理论为基础,采用开放式核心群群体继代选育方法,根据实际需要在中途适度引进部分优秀公猪精液和活体公猪补充血缘,淘汰群体中差血缘,并从扩繁群中选留少量优秀母猪进入核心群来提高群体的遗传性能。
种猪的选留经过出生、断奶、进测定站、终测选留多个阶段。种猪选留主要根据自身的遗传性能以及父母的遗传缺陷,根据核心群选育要求进行性能测定,生长性状和繁殖性状用BLUP法多性状模型估计主选性状育种值,并按照各主选性状的经济加权合成选择指数,结合现场体型外貌评估、分子标记检测结果选择后备种猪。
选配方面,在控制血缘配种量和近交系数上升的情况下,主要采用优配优,辅以优配差等精细化选配方式,提高遗传进展,根据种猪的遗传性能和选留标准做好各阶段种猪选留工作,期间采取控制选择强度、加快核心群种猪更新来加快遗传进展的传递速度。
4. S22品系选育过程
4.1 S22品系血统和选育性状的演变
S22系来源是2006年从加拿大DGI公司引进的杜洛克母猪316头、公猪35头,共18个血统。在选育过程中,淘汰生长速度慢、背膘厚、料重比高、体型粗短的血统共8个;保留了体型好、背膘薄、生长快、饲料报酬高、适应性好、综合指数高的10个血统,即006504、001188、002102、003762、001305、001525、056406、002543、112102、038904,具体见表 1。由于该品系体型高长,生长速度快,饲料报酬高,将它作为父系猪来选育,在选育中同时保留各个血统的特点。
表 1 S22系的血统选择演变情况项目 引入时的血统 淘汰血统 目前血统 编号 006504、001188、004834、002102、003762、
001305、001525、056406、038904、002543、
112102、030804、063912、169910、044807、
030007、030303、030502030804、063912、169910、
044807、030007、030303、
030502、004834006504、001188、002102、001305、
001525、056406、038904、002543、
112102、003762数量 18 8 10 在建群初期,S22系主要选育校正30~100 kg日增重、校正100 kg背膘厚以及体型等性状。2008年开始利用奥饲本全自动生产性能测定系统,开始测定料重比数据,并对该性状进行遗传评估;2011开始,肉猪市场趋向于大体重上市,肉猪的体型也是定价指标之一,所以公司开始注重对父系猪的体型评分、体长、体高的选择。2012年开始利用ALOK500型B超仪测定种猪的活体背膘厚、眼肌面积、肌内脂肪含量等指标,并将它们纳入遗传评估。
4.2 S22系血统的近交系数
S22系各个血统的近交系数见表 2。由表 2可以看出,该品系各血统的近交系数控制总体比较好,但有3个血统,006504、002102和003762的生产公猪和后备公猪的近交系数都大于2%,所以在选配时要注意控制近交,另外,需要在适当的时候引入外血,补充优秀血缘,增加群体的多样性。
表 2 S22系中各血统的近交系数% 血统 选留前 后备 生产公猪 生产母猪 合计 006504 0.89 2.20 0.59 0.85 001188 0.87 0.00 0.89 0.87 002102 1.02 2.33 1.53 1.09 1.04 003762 1.05 2.15 1.11 2.11 001305 0.74 0.78 0.99 0.85 001525 0.97 0.82 1.25 0.99 0.97 056406 1.18 0.57 0.66 1.17 002543 1.09 0.78 0.82 1.04 112102 1.79 1.79 038904 0.85 0.85 4.3 S22系分子标记辅助选择
在分子标记辅助育种方法方面,对该品系肋骨数基因标记进行检测和验证,发现其阳性基因纯合子QQ与肋骨数呈较高的遗传相关,而且该品系的阳性基因Q的频率为92.5%,所以采用选配加分子检测方法对肋骨数基因进行纯合选育,存栏公母猪的肋骨数基因型都是QQ,保证肋骨数有利等位基因纯合。
4.4 S22品系的选育进展
S22系各年度测定主要生长性状的表型变化趋势见表 3~5。由表 3可以看出,S22系30~115 kg日增重基本呈逐年上升趋势,校正背膘厚逐年下降。2008年公司引进奥饲本全自动种猪生产性能测定系统,开始测定种猪的料重比,料重比的表型值也基本呈下降趋势。2012年开始对眼肌面积进行选择,眼肌面积的表型值也有所提高。由表 4可以看出,S22系的体长、体高近10年来提高明显,这与对该品系往高长的大体型方向选育有关。尽管父系猪主要关注生长发育性能选育,但该品系的繁殖性能近10年也有所提高,见表 5。
表 3 专门化品系S22主要生长性状表型测定的变化趋势1)年份 性别 校正30~115 kg日增重 校正115 kg背膘厚 校正30~115 kg料重比 校正115 kg眼肌面积 样本量 表型值/g CV/% 样本量 表型值/mm CV/% 样本量 表型值/g CV/% 样本量 表型值/cm2 CV/% 2006 母 280 759.60±73.18 9.63 280 18.57±2.15 11.58 公 35 859.89±59.81 6.96 35 15.94±1.80 11.29 2007 母 734 762.60±74.88 9.82 737 18.49±2.25 12.17 公 375 871.89±58.12 6.67 379 15.24±1.71 11.22 2008 母 1 523 798.19±67.95 8.51 1 531 17.71±1.78 10.05 89 2.51±0.25 10.36 公 750 922.99±76.08 8.24 765 14.78±1.41 9.54 162 2.41±0.19 7.88 2009 母 1 651 805.11±71.69 8.90 1 659 17.58±1.49 8.48 121 2.45±0.20 8.16 公 824 928.24±64.59 6.96 831 14.23±1.03 7.24 215 2.40±0.18 7.92 2010 母 1 761 820.94±58.82 7.16 1 774 16.13±1.50 9.30 154 2.43±0.19 7.82 公 877 943.16±64.80 6.87 885 14.11±1.21 8.58 650 2.38±0.21 8.82 2011 母 1 897 778.07±66.90 8.60 1 932 16.61±1.53 9.21 320 2.42±0.27 9.50 公 949 875.49±73.24 8.37 958 14.78±1.15 7.78 729 2.36±0.21 8.90 2012 母 2 162 775.35±72.09 9.30 2 175 15.93±1.29 8.10 433 2.37±0.23 8.02 2 175 41.27±4.30 10.42 公 1 049 877.34±72.59 8.27 1 054 14.31±1.31 9.15 1287 2.35±0.19 8.09 1 051 40.18±4.03 10.03 2013 母 2 197 866.70±69.18 7.98 2 215 12.63±1.16 9.18 323 2.37±0.22 8.86 2 215 40.33±3.89 9.65 公 1 085 987.40±81.32 8.24 1 105 11.86±0.98 8.26 1 819 2.26±0.18 7.96 1 105 39.05±3.82 9.78 2014 母 2 508 865.96±76.02 8.78 2 546 12.51±1.01 8.07 471 2.35±0.17 7.23 2 546 42.09±3.89 9.24 公 1 233 958.33±66.66 6.96 1 257 12.05±0.95 7.88 1925 2.17±0.19 8.76 1 257 40.02±3.72 9.30 1)表型值为平均数±标准差 表 4 专门化品系S22主要体尺性状表型测定的变化趋势1)年份 性别 样本量 终测体长 终测体高 表型值/cm CV/% 表型值/cm CV/% 2006 母 280 108.95±3.23 3.52 60.59±2.88 2.88 公 35 112.09±2.98 3.34 61.89±2.34 2.34 2007 母 737 109.15±3.35 3.66 61.12±2.78 2.78 公 379 112.11±2.75 3.08 62.18±2.52 2.52 2008 母 1 531 113.60±3.41 3.87 61.80±2.35 2.35 公 765 115.40±3.15 3.63 63.11±2.29 2.29 2009 母 1 659 112.39±2.85 3.20 61.22±2.43 2.43 公 831 115.46±2.53 2.92 63.95±2.31 2.31 2010 母 1 774 113.30±2.97 3.37 61.37±2.45 2.45 公 885 115.78±2.41 2.79 62.12±2.17 2.17 2011 母 1 932 114.42±3.58 3.13 61.64±2.27 2.27 公 958 116.72±2.63 2.25 63.11±2.14 2.14 2012 母 2 175 113.22±3.16 2.79 61.69±2.54 2.54 公 1 054 116.74±2.86 2.45 62.70±2.42 2.42 2013 母 2 215 115.71±2.70 2.33 61.39±2.35 2.35 公 1 105 118.59±2.44 2.06 62.97±2.19 2.19 2014 母 2 232 116.75±4.14 3.40 60.59±2.05 2.05 公 1 257 120.45±4.18 3.36 63.13±2.09 2.09 1)表型值为平均数±标准差 表 5 专门化品系S22主要繁殖性状表型测定情况1)头 年份 胎次 总仔数 活仔数 健仔数 样本量 表型值 样本量 表型值 样本量 表型值 2007 初 216 9.35±2.25 209 8.28±2.11 208 8.15±2.00 经 437 9.75±2.28 429 8.53±2.07 428 8.39±1.96 2008 初 254 9.52±2.14 248 8.45±2.01 247 8.32±1.90 经 517 10.12±2.25 495 8.91±2.11 494 8.77±2.00 2009 初 272 10.21±2.21 258 8.88±2.01 257 8.75±1.90 经 552 10.66±2.22 541 9.39±2.11 540 9.25±2.00 2010 初 291 10.14±2.12 287 8.90±1.80 286 8.77±1.69 经 590 10.54±1.99 578 9.35±1.91 577 9.21±1.80 2011 初 335 9.93±1.78 324 9.03±1.78 323 8.90±1.67 经 651 10.39±1.89 646 9.46±1.9 645 9.32±1.79 2012 初 342 10.12±1.98 328 9.05±1.68 327 8.92±1.57 经 715 10.48±1.89 704 9.47±1.89 703 9.33±1.78 2013 初 365 10.12±1.74 345 8.99±1.77 344 8.86±1.66 经 748 10.37±1.88 726 9.38±1.83 725 9.24±1.72 2014 初 390 9.59±1.54 378 9.06±1.81 377 8.93±1.70 经 790 10.27±1.78 770 9.40±1.82 769 9.26±1.71 1)表型值为平均数±标准差 S22主要性状的遗传趋势见表 6。由表 6可以看出,S22系近9年的日增重遗传进展上升趋势非常明显,眼肌面积有所上升,背膘厚的遗传趋势逐年下降;料重比也逐年缓慢下降。因此,该品系的生长发育性状的选育效果非常明显。
表 6 专门化品系S22主要性状的遗传趋势1)年份 校正日增重 校正背膘厚 校正料肉比 校正眼肌面积 样本量 遗传趋势 样本量 遗传趋势 样本量 遗传趋势 样本量 遗传趋势 2006 315 -9.16±12.73 315 0.15±0.82 2007 1 720 -8.36±15.73 1 776 -0.01±0.84 2008 2 385 -1.77±17.22 2 455 0.11±0.85 113 0.01±0.03 2009 3 314 9.86±18.39 3 329 -0.13±0.83 154 0.01±0.04 2010 4 183 11.15±18.65 4 407 -0.37±0.85 654 0.01±0.05 2011 7 694 22.62±18.74 7 716 -0.66±0.83 1 797 -0.01±0.04 2 110 -0.74±1.36 2012 6 772 31.86±18.93 6 772 -0.91±1.01 2 015 -0.02±0.03 6 428 -0.65±1.49 2013 4 356 40.16±20.14 4 366 -1.23±0.97 2 296 -0.02±0.04 4 365 -0.55±1.66 2014 1 159 44.50±20.67 1 163 -1.24±0.97 1 537 -0.02±0.03 1 163 -0.43±1.56 1)遗传趋势为平均数±标准差 5. S22品系的选育效果
2006—2014年,S22经过9年的选育。在选育过程中,通过优化群体血统,控制群体近交手段,加强种猪料重比、体型外貌、生长速度等性状的选育,将该品系培育成了一个体型高长、生长速度快、饲料报酬高、体型较好的父系种猪。
-
图 1 不同类别下土壤团聚体对污泥施用的响应
各小图中,括号内数字为样本数量;各个数据块的正负误差线表示95% CI,若95% CI与y=0有交点,则效应在统计学意义上不显著。
Figure 1. Response of soil aggregates to sludge application under different conditions
In each figure, numbers in parentheses are sample sizes; The positive and negative error lines of each data block indicate 95% CI, if 95% CI intersects with y=0, effects are not statistically significant.
图 2 土壤性质对污泥施用方式的响应
CC:碳水化合物含量,ANC:碱解氮含量,TPC:总磷含量,ESP:碱化度,EC:电导率,APC:速效磷含量,MCC:微生物碳含量,TNC:总氮含量,OMC:有机质含量,PA:磷酸酶活性;括号内数字为样本数量;各个数据块的正负误差线表示95% CI,若95% CI与y=0有交点,则效应在统计学意义上不显著。
Figure 2. Response of soil properties to sludge application method
CC: Carbohydrate content, ANC: Alkaline hydrolyzable nitrogen content, TPC: Total phosphorus content, ESP: Exchangeable sodium percentage, EC: Electrical conductivity, APC: Available phosphorus content, MCC: Microbial carbon content, TNC: Total nitrogen content, OMC: Organic matter content, PA: Phosphatase activity; Numbers in parentheses are sample sizes; The positive and negative error lines of each data block indicate 95% CI, if 95% CI intersects with y=0, effects are not statistically significant.
图 3 不同深度土壤性质对污泥施用的响应
ESP:碱化度,EC:电导率,TPC:总磷含量,MCC:微生物碳含量,APC:速效磷含量,OMC:有机质含量,TNC:总氮含量,PA:磷酸酶活性,CC:碳水化合物含量,ANC:碱解氮含量;括号内数字为样本数量;各个数据块的正负误差线表示95% CI,若95% CI与y=0有交点,则效应在统计学意义上不显著。
Figure 3. Response of soil properties to sludge application under different soil layers
ESP: Exchangeable sodium percentage, EC: Electrical conductivity, TPC: Total phosphorus content, MCC: Microbial carbon content, APC: Available phosphorus content, OMC: Organic matter content, TNC: Total nitrogen content, PA: Phosphatase activity, CC: Carbohydrate content, ANC: Alkaline hydrolyzable nitrogen content; Numbers in parentheses are sample sizes; The positive and negative error lines of each data block indicate 95% CI, if 95% CI intersects with y=0, effects are not statistically significant.
图 4 不同土壤黏粒含量条件下土壤性质对污泥施用的响应
ESP:碱化度,EC:电导率,TPC:总磷含量,MCC:微生物碳含量,PA:磷酸酶活性,TNC:总氮含量,OMC:有机质含量,APC:速效磷含量,CC:碳水化合物含量,ANC:碱解氮含量;括号内数字为样本数量;各个数据块的正负误差线表示95% CI,若95% CI与y=0有交点,则效应在统计学意义上不显著。
Figure 4. Response of soil properties to sludge application under different soil clay content conditions
ESP: Exchangeable sodium percentage, EC: Electrical conductivity, TPC: Total phosphorus content, MCC: Microbial carbon content, PA: Phosphatase activity, TNC: Total nitrogen content, OMC: Organic matter content, APC: Available phosphorus content, CC: Carbohydrate content, ANC: Alkaline hydrolyzable nitrogen content; Numbers in parentheses are sample sizes; The positive and negative error lines of each data block indicate 95% CI, if 95% CI intersects with y=0, effects are not statistically significant.
图 5 土壤性质对不同污泥施用量的响应
ESP:碱化度,EC:电导率,MCC:微生物碳含量,TPC:总磷含量,APC:速效磷含量,TNC:总氮含量,CC:碳水化合物含量,OMC:有机质含量,PA:磷酸酶活性,ANC:碱解氮含量;括号内数字为样本数量;各个数据块的正负误差线表示95% CI,若95% CI与y=0有交点,则效应在统计学意义上不显著。
Figure 5. Response of soil properties to different sludge application rates
ESP: Exchangeable sodium percentage, EC: Electrical conductivity, MCC: Microbial carbon content, TPC: Total phosphorus content, APC: Available phosphorus content, TNC: Total nitrogen content, CC: Carbohydrate content, OMC: Organic matter content, PA: Phosphatase activity, ANC: Alkaline hydrolyzable nitrogen content; Numbers in parentheses are sample sizes; The positive and negative error lines of each data block indicate 95% CI, if 95% CI intersects with y=0, effects are not statistically significant.
图 7 污泥施用条件下驱动大团聚体形成的潜在土壤因素
OMC:有机质含量,CC:碳水化合物含量,TPC:总磷含量,APC:速效磷含量,PA:磷酸酶活性,MCC:微生物碳含量,ANC:碱解氮含量,EC:电导率,TNC:总氮含量,ESP:碱化度;“*”表示在P<0.05水平影响显著(A3包)。
Figure 7. Potential drivers of soil indicators in macroaggregate formation under sludge application
OMC: Organic matter content, CC: Carbohydrate content, TPC: Total phosphorus content, APC: Available phosphorus content, PA: Phosphatase activity, MCC: Microbial carbon content, ANC: Alkaline hydrolyzable nitrogen content, EC: Electrical conductivity, TNC: Total nitrogen content, ESP: Exchangeable sodium percentage; “*” indicates significant differences at P<0.05 (A3 package).
表 1 数据分组
Table 1 Data grouping
类别 Category 数据分组 Data grouping 污泥施用方式1) Sludge application method 表施 Surface application 混施 Mixed application 土壤深度/cm Soil depth 0~20 20<~40 土壤黏粒含量/% Soil clay content <15 15~25 >25 污泥施用量/(t·hm−2) Sludge application amount <50 50~100 100<~200 >200 1)表施:污泥直接铺撒在土壤表面,没有与土壤进行混合;混施:污泥与土壤充分混合。
1) Surface application: Sludge is spread directly on the soil surface without mixing with the soil; Mixed application: Sludge is well mixed with the soil.表 2 正态性检验1)
Table 2 Normality test
指标
Indicatorn P R−1 lnR lgR MaC 106 0.00 0.19 0.14 OMC 109 0.00 0.04 0.06 MWD 74 0.01 0.11 0.10 MCC 41 0.01 0.36 0.36 MiC 38 0.52 0.55 0.51 TNC 34 0.00 0.17 0.17 ESP 30 0.15 0.35 0.35 CC 28 0.77 0.98 0.97 EC 22 0.48 0.82 0.82 APC 19 0.22 0.34 0.36 PA 15 0.03 0.14 0.14 TPC 12 0.53 0.79 0.79 ANC 10 0.42 0.95 0.95 pH 14 0.86 0.83 0.81 1) MaC:大团聚体相对含量,OMC:有机质含量,MWD:团聚体平均质量直径,MCC:微生物碳含量,MiC:微团聚体相对含量,TNC:总氮含量,ESP:碱化度,CC:碳水化合物含量,EC:电导率,APC:速效磷含量,PA:磷酸酶活性,TPC:总磷含量,ANC:碱解氮含量;n指纳入的研究组数,P>0.05指数据呈正态性。
1) MaC: Macroaggregate relative content, OMC: Organic matter content, MWD: Mean weight diameter of aggregate, MCC: Microbial carbon content, MiC: Microaggregate relative content, TNC: Total nitrogen content, ESP: Exchangeable sodium percentage, CC: Carbohydrate content, EC: Electrical conductivity, APC: Available phosphorus content, PA: Phosphatase activity, TPC: Total phosphorus content, ANC: Alkaline hydrolyzable nitrogen content; n refers to the number of study groups included, P>0.05 indicates data are normal.表 3 异质性与稳健性分析1)
Table 3 Heterogeneity and robustness analysis
指标
IndicatorP I2 P 补充 Supplementation 剪补前 Before clipping 剪补后 After clipping MiC 0.16 19.30 <0.01 <0.01 4(11) MWD <0.01 96.60 <0.01 <0.01 3(31) MaC <0.01 69.00 <0.01 <0.01 5(39) 1) MiC:微团聚体相对含量,MWD:团聚体平均质量直径,MaC:大团聚体相对含量;P>0.05表示数据无异质性,I2<50表示数据间无异质性;剪补前后P<0.01表示研究结果无发表偏倚;补充指剪补次数,括号中指剪补数据组数。
1) MiC: Microaggregate relative content, MWD: Mean weight diameter of aggregate, MaC: Macroaggregate relative content; P>0.05 indicates no heterogeneity in data, I2<50 means no heterogeneity between data; P<0.01 before and after clipping implies no publication bias in the findings; Supplementation refers to the number of clippings, and data in parentheses refer to the number of clipping data groups. -
[1] MUSTAFA A, XU M G, ALI SHAH S A, et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China[J]. Journal of Environmental Management, 2020, 270: 110894. doi: 10.1016/j.jenvman.2020.110894
[2] FIELD D, MORGAN C, MCBRATNEY A. Global soil security[M]. Springer, 2016.
[3] TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141-163. doi: 10.1111/j.1365-2389.1982.tb01755.x
[4] EDWARDS A P, BREMNER J M. Microaggregates in soils[J]. Journal of Soil Science, 1967, 18(1): 64-73. doi: 10.1111/j.1365-2389.1967.tb01488.x
[5] 刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望[J]. 土壤学报, 2023, 60(3): 627-643. [6] ALTUN M, DAN BADAOU A N A, DOGAN DEMIR A, et al. Improvement of the hydraulic properties of saline-sodic soil exposed to freezing-thawing using sewage sludge and wetting-drying process with wastewater[J]. Carpathian Journal of Earth and Environmental Sciences, 2023, 18(1): 37-50. doi: 10.26471/cjees/2023/018/239
[7] 董晓全, 王雨滢, 何利梅, 等. 施用污泥对鹅掌藤根系生长和重金属吸收的影响[J]. 华南农业大学学报, 2023, 44(4): 513-522. [8] MA D G, WANG Y X, YE Y, et al. Effects of three sludge products from co-treatment of wastewater on the soil properties and plant growth of silty loam[J]. International Journal of Environmental Research and Public Health, 2022, 19(7): 4385. doi: 10.3390/ijerph19074385
[9] FELZ S, AL-ZUHAIRY S, AARSTAD O A, et al. Extraction of structural extracellular polymeric substances from aerobic granular sludge[J]. Journal of Visualized Experiments, 2016(115): e54534. doi: 10.3791/54534
[10] BAI J, SUN X, XU C, et al. Effects of sewage sludge application on plant growth and soil characteristics at a Pinus sylvestris var. mongolica plantation in horqin sandy land[J]. Forests, 2022, 13(7): 984. doi: 10.3390/f13070984
[11] 中华人民共和国住房与城乡建设部. 2021年城乡建设统计年鉴[EB]. 北京: 中国统计出版社, 2023. [12] 马德刚, 叶羽, 孟凡怡. 无害化污泥对沙性土即时团聚体稳定性及黏聚力影响的研究[J]. 安全与环境学报, 2021, 21(6): 2781-2788. [13] LIPSEY M W, WILSON D B. Practical meta-analysis[M]. London: SAGE Publications Inc., 2001.
[14] 张娜娜, 孙武. 施用化肥影响土壤团聚体稳定性及有机碳有机碳、全氮含量的meta分析[J]. 草原与草坪, 2022, 42(5): 159-168. [15] 孟艳, 沈亚文, 孟维伟, 等. 生物炭施用对农田土壤团聚体及有机碳有机碳影响的整合分析[J]. 环境科学, 2023, 44(12): 6847-6856. [16] 刘海宁, 吴昊, 姚灿, 等. Meta分析中连续性数据的深度提取方法[J]. 中国循证医学杂志, 2017, 17(1): 117-121. [17] 李国春, 吴勉华, 余小金. Meta分析导论[M]. 北京: 科学出版社, 2013. [18] HEDGES L V, GUREVITCH J, CURTIS P S. The meta-analysis of response ratios in experimental ecology[J]. Ecology, 1999, 80(4): 1150-1156. doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
[19] 李春喜. 生物统计学[M]. 5版. 北京: 科学出版社, 2013. [20] EGGER M, DAVEY SMITH G, SCHNEIDER M, et al. Bias in meta-analysis detected by a simple, graphical test[J]. BMJ, 1997, 315(7109): 629-634. doi: 10.1136/bmj.315.7109.629
[21] LI Y, SHEN C, WANG Y, et al. Alleviated environmental constraints and restructured fungal microbiome facilitate aggregate formation and stabilization in coastal mudflat saline soil amended by sewage sludge[J]. Land Degradation & Development, 2023, 34(10): 3064-3075.
[22] ABDALLA K, MUTEMA M, HILL T. Soil and organic carbon losses from varying land uses: A global meta-analysis[J]. Geographical Research, 2020, 58(2): 167-185. doi: 10.1111/1745-5871.12389
[23] FONTAINE J, DUCLERCQ J, FACON N, et al. Coriander (Coriandrum sativum L. ) in combination with organic amendments and arbuscular mycorrhizal inoculation: An efficient option for the phytomanagement of trace elements-polluted soils[J]. Microorganisms, 2022, 10(11): 2287. doi: 10.3390/microorganisms10112287
[24] BEAUCHAMP E G, KIDD G E, THURTELL G. Ammonia volatilization from sewage sludge applied in the field[J]. Journal of Environmental Quality, 1978, 7(1): 141-146.
[25] 董晓全, 邢鹤严, 张书源, 等. 表施和混施污泥对团花根系生长的影响[J]. 应用生态学报, 2022, 33(12): 3388-3394. [26] GOLDAN E, NEDEFF V, BARSAN N, et al. Evaluation of the use of sewage sludge biochar as a soil amendment: A review[J]. Sustainability, 2022, 14(9): 5309. doi: 10.3390/su14095309
[27] 戴珏, 胡君利, 林先贵, 等. 免耕对潮土不同粒级团聚体有机碳含量及微生物碳代谢活性的影响[J]. 土壤学报, 2010, 47(5): 923-930. [28] YUAN M, ZHU X, SUN H, et al. The addition of biochar and nitrogen alters the microbial community and their cooccurrence network by affecting soil properties[J]. Chemosphere, 2023, 312: 137101. doi: 10.1016/j.chemosphere.2022.137101
[29] LEHMANN A, RILLIG M C. Understanding mechanisms of soil biota involvement in soil aggregation: A way forward with saprobic fungi?[J]. Soil Biology and Biochemistry, 2015, 88: 298-302. doi: 10.1016/j.soilbio.2015.06.006
[30] 王国禧, 王萍, 刘亚龙, 等. 球囊霉素在土壤团聚体中的分布特征及影响因素的Meta分析[J]. 土壤学报, 2024, 61(4): 1147-1155. [31] 李小刚, 曹靖, 李凤民. 盐化及钠质化对土壤物理性质的影响[J]. 土壤通报, 2004, 35(1): 64-72. doi: 10.3321/j.issn:0564-3945.2004.01.016