Clonal variation and selection for growth and branch traits in young Tectona grandis plantations
-
摘要:目的
研究柚木Tectona grandis无性系生长与分枝性状遗传变异及相关性,综合评价并筛选速生、优良枝型的柚木无性系。
方法调查位于广西凭祥市的19个5年生柚木无性系的生长和分枝性状,进行重复力估算和相关性分析,并通过主成分分析计算每个无性系的综合得分。
结果柚木无性系间树高、胸径和单株材积差异极显著(P<0.001),变异系数28.2%~38.8%,重复力0.821~0.863;不同无性系间平均分枝角度、分枝基径和分枝长度呈极显著差异(P<0.001),变异系数16.3%~57.9%,重复力0.497~0.817;生长和分枝性状之间存在极显著(P < 0.01)或显著(P < 0.05)相关;利用主成分得分值大小和15%的入选率,兼顾生长和分枝性状,选出了3个优良的柚木无性系(7765、6601、7703),其综合得分大于对照,它们的树高、胸径、单株材积的平均值分别为5.68 m、6.20 cm和11.52 dm3,分别比相应均值提高了10.65%、15.39%和31.51%,选择后现实增益分别达到了9.07%、10.69%和30.20%。
结论5年生柚木无性系间生长与枝条性状存在丰富的遗传变异,有较高的改良潜力。生长和分枝性状受中等至较强的遗传控制。通过对5年生柚木无性系综合评价,选出了3个速生且分枝特性优良的柚木无性系,可作为优质柚木无性系材料在桂西南地区推广种植。
Abstract:ObjectiveThis study aims to investigate the genetic variation and correlation of the growth and branch traits of teak clones, and to comprehensively evaluate and select teak clones with rapid growth and excellent branch types.
MethodWe investigated the growth and branch traits of 19 teak clones at 5-year old located in the Pingxiang City of Guangxi, and conducted repeatability estimation and phenotype correlation analysis. The comprehensive score of each clone was calculated through principal component analysis.
ResultThere were significant differences (P<0.001) in tree height (H), diameter at breast height (DBH), and individual volume (V) among the teak clones, with coefficients of variation ranging from 28.2% to 38.8%, and repeatability ranging from 0.821 to 0.863. There were significant differences (P<0.001) in average branch angle (Ang), branch base diameter (BD), and branch length (BL) among different clones, with coefficients of variation ranging from 16.3% to 57.9%, and repeatablity ranging from 0.497 to 0.817. There were significant correlations (P<0.01 or P<0.05) between growth and branch traits. Using the principal component scores and a selection rate of 15%, three excellent teak clones (7765, 6601, 7703) were selected, with their comprehensive scores exceeding the control. Their average values for H, DBH and V were 5.68 m, 6.20 cm and 11.52 dm3 respectively, representing increases of 10.65%, 15.39% and 31.51% compared to the corresponding averages. After selection, the real gains in H, DBH and V were 9.07%, 10.69% and 30.20% respectively.
ConclusionThe growth and branch traits of 5-year-old teak clones exhibit rich genetic variation and high potential for improvement. The growth and branch traits are moderately to strongly controlled by genetic factors. Through comprehensive evaluation of the 5-year-old teak clones, three teak clones with rapid growth and excellent branch characteristics were selected. These clones can serve as high-quality genetic materials for teak clones and can be promoted in the southwest region of Guangxi.
-
Keywords:
- Tectona grandis /
- Clone /
- Branch character /
- Genetic variation /
- Comprehensive evaluation /
- Young tree stage
-
-
表 1 柚木无性系各性状均值、变幅和变异系数
Table 1 The mean value, amplitude and coefficient of variation of each character in teak clones
性状
Trait均值
Mean变幅
Range表型变异系数(PCV)/%
Phenotypic variation coefficient树高/m Tree height 5.37 1.70~9.60 28.2 胸径/cm DBH 5.13 1.00~12.00 35.1 单株材积/dm3 Individual volume 8.76 0.08~64.79 38.8 分枝频率/m−1 Branch frequency 2.36 1.76~2.91 37.7 分枝角度/(°) Branch angle 54.01 33.21~88.00 17.7 分枝基底面积/(cm2·m−1) Branch basal area 28.84 6.87~109.68 57.9 分枝长度/m Branch length 1.39 0.80~2.57 16.3 分枝基径/cm Branch diameter 2.31 1.00~5.80 19.8 表 2 柚木无性系各性状方差分析与重复力
Table 2 Analysis of variance and repeatability of various indicators in teak clones
性状
TraitF1) 重复力
Repeatability无性系
Clone重复
Repeat无性系×重复
Clone×Repeat树高 Tree height 1.686*** 0.929 5.127*** 0.821 胸径 DBH 1.176*** 2.275** 3.921*** 0.863 单株材积 Individual volume 1.159*** 1.345** 3.269*** 0.846 分枝频率 Branch frequency 1.985 0.749 1.170 0.497 分枝角度 Branch angle 2.126*** 0.928 4.396*** 0.530 分枝基底面积 Branch basal area 2.856 2.827** 1.890*** 0.652 分枝长度 Branch length 3.823*** 0.552 1.517*** 0.739 分枝基径 Branch diameter 5.443*** 0.917 3.174*** 0.817 1)“**”和“***”分别表示在、0.01和0.001水平上差异显著 (F检验)
1) “**” and “***” represent significant differences at 0.01 and 0.001 levels, respectively (F statistics)表 3 柚木无性系生长和分枝性状的多重比较1)
Table 3 Multiple comparisons of growth and branch traits of teak clones
无性系
Clone胸径/cm
DBH树高/m
Tree
height单株材积/dm3
Individual
volume分枝角度/(°)
Branch
angle分枝基底面积/
(cm2·m−1)
Branch basal area分枝基径/cm
Branch
diameter分枝频率/m−1
Branch
frequency分枝长度/m
Branch
length7765 6.09a 6.46a 14.09a 51.76b 30.02ab 2.25abc 2.43a 1.45ab 7703 5.78a 6.26a 11.38ab 53.54ab 35.51a 2.35abc 1.91a 1.51ab CK 5.72ab 5.87ab 11.52ab 54.53ab 32.49ab 2.23abc 2.28a 1.52a 7559 5.62ab 5.57abc 10.55abc 57.06ab 32.41ab 2.65a 2.05a 1.40ab 7107 5.40bab 4.74bc 7.55bcde 61.08a 41.81a 2.66a 2.91a 1.37b 7514 5.40abc 5.82ab 11.78a 55.95ab 31.01ab 2.30abc 2.11a 1.51a 7111 5.39abc 5.11bc 8.42abcde 53.03ab 19.68b 2.31abc 2.66a 1.24c 7663 5.36abcd 5.63abc 9.35bc 51.98b 29.73ab 2.30abc 2.23a 1.43ab 7773 5.34abcd 5.92ab 10.44abcd 56.07ab 28.30ab 2.36abc 2.18a 1.43ab 7551 5.23abcd 5.52abc 8.66bcd 55.58ab 28.99ab 2.24abc 2.51a 1.34b 7813 5.18bcd 5.51abc 8.62abcde 52.17ab 26.31ab 2.14abc 2.69a 1.30c 6601 5.16bcd 5.87ab 9.09bc 53.05ab 18.51b 2.09bc 1.90a 1.25c 7544 5.04bcd 5.36bc 8.47abcde 54.91ab 32.73ab 2.16abc 1.76a 1.31b FS3 4.75bcd 4.46c 5.66cde 55.97ab 20.62b 2.04c 2.31a 1.30c 7886 4.75bcd 5.27bc 6.73bcde 52.85ab 29.96ab 2.30ab 2.67a 1.39ab 7549 4.38cd 5.04bc 5.36de 49.21b 28.59ab 2.36abc 2.86a 1.45ab 7114 4.37cd 4.41c 6.58bcde 52.32ab 25.21ab 2.36abc 2.62a 1.38b 7772 4.33cd 4.62bc 4.99e 54.19ab 28.96ab 2.47ab 2.55a 1.40ab 7552 4.12cd 4.52bc 5.01de 51.99b 19.87b 2.11bc 2.34a 1.32b 7024 4.11d 4.24c 7.08bcde 55.31ab 43.28a 2.65a 1.93a 1.54a 总计
Total5.13±0.08 5.37±0.06 8.76±0.34 54.01±0.58 28.84±1.27 2.31±0.33 2.36±0.06 1.39±0.23 1) 同列数据后的不同小写字母表示差异显著(P<0.05,Duncan’s法)
1) Different lowercase letters of the same column indicate significant differences (P<0.05, Duncan’s method)表 4 柚木无性系生长与分枝性状间的相关性1)
Table 4 Correlation between growth and branch traits of teak clones
性状Trait BF BA BD BBA BL DBH H V 分枝频率(BF) Branch frequency 1.00 分枝角度(BA) Branch angle 0.11* 1.00 分支基径(BD) Branch diameter 0.09* −0.18** 1.00 分枝基底面积(BBA) Branch basal area 0.19** 0.37 0.81** 1.00 分枝长度(BL) Branch length −0.12* 0.35 0.21** 0.13** 1.00 胸径(DBH) Diameter at breast height 0.10 −0.27 −0.15 0.15* 0.31** 1.00 树高(H) Tree height −0.20* −0.13* −0.16 0.11* 0.28** 0.78** 1.00 单株材积(V) Individual volume −0.15* −0.18 −0.05 0.23** 0.43** 0.86** 0.85** 1.00 1)“*”和“**”分别表示在0.05和0.01水平显著相关 (Pearson法)
1) “*” and “**” represent significant correlations at 0.05 and 0.01 levels, respectively (Pearson method)表 5 柚木无性系生长与分枝性状主成分分析
Table 5 Principal component analysis of growth and branch traits of teak clones
成分
Component特征值
Eigenvalue方差百分比/%
Variance percentage累计贡献率/%
Contribution rate1 2.953 36.914 36.914 2 1.649 20.613 57.526 3 1.143 14.287 71.813 4 0.999 12.486 84.299 5 0.650 8.123 92.422 6 0.466 5.830 98.252 7 0.084 1.045 99.296 8 0.056 0.704 100 表 6 主成分得分和综合分数排名1)
Table 6 Main component score and comprehensive score ranking
无性系
CloneF1 F2 F3 F4 综合分值
Comprehensive score排名
Ranking7765 1.722 1.288 0.228 −1.367 0.905 1 6601 0.280 1.837 0.942 0.545 0.812 2 7703 1.479 −0.110 0.166 0.545 0.730 3 CK 1.103 −0.017 0.247 −0.576 0.435 4 7514 1.014 −0.389 −0.118 0.386 0.386 5 7544 0.300 −0.421 −0.144 2.381 0.357 6 7773 0.880 −0.311 −0.650 0.717 0.306 7 7559 0.911 −0.608 0.249 −0.127 0.274 8 7663 0.546 0.056 −0.674 0.729 0.246 9 7813 −0.187 0.197 0.634 −0.333 0.024 10 7111 −0.172 0.960 −0.652 −0.421 −0.013 11 7551 0.012 −0.587 0.975 −0.473 −0.043 12 FS3 −1.065 −0.426 1.709 1.043 −0.126 13 7886 −0.531 0.374 −0.613 −0.814 −0.365 14 7552 −1.455 0.990 −0.561 0.620 −0.398 15 7549 −1.273 1.449 −0.113 −1.698 −0.474 16 7024 −1.120 −1.522 2.439 −0.708 −0.554 17 7114 −1.306 0.122 −1.304 0.651 −0.667 18 7772 −1.162 −0.451 −1.120 0.513 −0.733 19 7107 0.026 −2.432 −1.641 −1.614 −1.101 20 1) F1、F2、F3和F4代表各主成分得分值
1) F1, F2, F3 and F4 represent the scores of each principal component -
[1] YANG B G, JIA H Y, ZHAO Z G, et al. Horizontal and vertical distributions of heartwood for teak plantation[J]. Forests, 2020, 11(2): 225.
[2] PACHAS A N A, SAKANPHET S, MIDGLEY S, et al. Teak (Tectona grandis) silviculture and research: Applications for smallholders in Lao PDR[J]. Australian Forestry, 2019, 82(sup1): 94-105.
[3] 国家林业和草原局. 中国森林资源报告(2014—2018)[M]. 北京: 中国林业出版社, 2019. [4] 梁坤南, 周再知, 马华明, 等. 我国珍贵树种柚木人工林发展现状、对策与展望[J]. 福建林业科技, 2011, 38(4): 173-178. doi: 10.3969/j.issn.1002-7351.2011.04.39 [5] 陈天宇. 密度与施肥对柚木无性系生长及枝条发育的影响[D]. 北京: 中国林业科学研究院, 2020. [6] 王志海, 尹光天, 杨锦昌, 等. 不同造林密度对米老排人工林枝条发育的影响[J]. 林业科学研究, 2019, 32(2): 78-86. [7] 王志海. 米老排人工林枝条发育的密度效应[D]. 北京: 中国林业科学研究院, 2019. [8] ALCORN P J, PYTTEL P, BAUHUS J, et al. Effects of initial planting density on branch development in 4-year-old plantation grown Eucalyptus pilularis and Eucalyptus cloeziana trees[J]. Forest Ecology and Management, 2007, 252(1/2/3): 41-51. doi: 10.1016/j.foreco.2007.06.021
[9] WANG C S, ZHAO Z Z, HEIN S, et al. Effect of planting density on knot attributes and branch occlusion of Betula alnoides under natural pruning in southern China[J]. Forests, 2015, 6(12): 1343-1361. doi: 10.3390/f6041343
[10] HEIN S, MÄKINEN H, YUE C F, et al. Modelling branch characteristics of Norway spruce from wide spacings in Germany[J]. Forest Ecology and Management, 2007, 242(2/3): 155-164. doi: 10.1016/j.foreco.2007.01.014
[11] KINT V, HEIN S, CAMPIOLI M, et al. Modelling self-pruning and branch attributes for young Quercus robur L. and Fagus sylvatica L. trees[J]. Forest Ecology and Management, 2010, 260(11): 2023-2034. doi: 10.1016/j.foreco.2010.09.008
[12] WANG C S, TANG C, HEIN S, et al. Branch development of five-year-old Betula alnoides plantations in response to plantation density[J]. Forests, 2018, 9(1): 42.
[13] LIU K L, WANG C S, CHEN B Y, et al. Branch development in monoculture and mixed-species plantations of Betula alnoides, Erythrophleum fordii and Pinus kesiya var. langbianensis in southwestern China[J]. Forest Ecology and Management, 2023, 528: 120643. doi: 10.1016/j.foreco.2022.120643
[14] WEST P W, RATKOWSKY D A, SMITH R G B. Factors controlling individual branch development during early growth of an experimental plantation of Eucalyptus pilularis in subtropical Australia[J]. Trees, 2021, 35(2): 395-405. doi: 10.1007/s00468-020-02040-4
[15] 黄桂华, 梁坤南, 周再知, 等. 柚木无性系苗期抗寒生理评价与选择[J]. 东北林业大学学报, 2015, 43(9): 12-17. doi: 10.3969/j.issn.1000-5382.2015.09.003 [16] 黄桂华, 梁坤南, 周再知, 等. 柚木无性系苗期抗旱生理评价与选择的研究[J]. 中南林业科技大学学报, 2018, 38(5): 11-17. [17] 黄桂华, 梁坤南, 付强, 等. 11年生柚木无性系遗传变异与优良无性系选择[J]. 东北林业大学学报, 2023, 51(8): 18-22. [18] 黄桂华, 梁坤南, 周再知, 等. 柚木无性系生长性状的遗传变异与选择效应[J]. 华南农业大学学报, 2019, 40(1): 101-106. [19] 梁坤南, 黄桂华, 林明平, 等. 琼西南柚木次生种源/家系多性状综合选择[J]. 林业科学研究, 2020, 33(6): 13-22. [20] 王楚彪, 罗建中, 何文亮, 等. 桉树无性系多区域联合测试的G×E分析及选优[J]. 林业科学, 2022, 58(11): 108-117. [21] 王芳, 马茂, 王佳兴, 等. 日本落叶松遗传变异分析及优良家系无性系选择[J]. 森林工程, 2023, 39(4): 48-57. [22] 凌娟娟, 肖遥, 杨桂娟, 等. 灰楸无性系生长和形质性状变异与选择[J]. 林业科学研究, 2019, 32(5): 149-156. [23] 杨孟晴, 邵慰忠, 徐永宏, 等. 3年生赤皮青冈家系生长和形质性状变异与选择[J]. 林业科学研究, 2023, 36(4): 31-40. [24] CALLISTER A N. Genetic parameters and correlations between stem size, forking, and flowering in teak (Tectona grandis)[J]. Canadian Journal of Forest Research, 2013, 43(12): 1145-1150. doi: 10.1139/cjfr-2013-0226
[25] NARANJO S S, MOYA R, CHAUHAN S. Early genetic evaluation of morphology and some wood properties of Tectona grandis L. clones[J]. Silvae Genetica, 2012, 61: 58-65. doi: 10.1515/sg-2012-0008
[26] GOH D K S, JAPARUDIN Y, ALWI A, et al. Growth differences and genetic parameter estimates of 15 teak (Tectona grandis L. f.) genotypes of various ages clonally propagated by microcuttings and planted under humid tropical conditions[J]. Silvae Genetica, 2013, 62: 196-206. doi: 10.1515/sg-2013-0024
[27] 付强, 黄桂华, 周强, 等. 柚木无性系早期选择年龄的研究[J]. 中南林业科技大学学报, 2022, 42(10): 30-38. [28] 王家燚, 陈焕伟, 张蕊, 等. 木荷全同胞家系生长与分枝性状的遗传变异及效应分析[J]. 浙江农林大报, 2023, 40(4): 738-746. [29] 罗芊芊, 楚秀丽, 李峰卿, 等. 5年生南方红豆杉生长和分枝性状家系变异与选择[J]. 林业科学研究, 2020, 33(1): 136-143. [30] 黄桂华. 柚木种质资源遗传变异和优良无性系早期选择的研究[D]. 北京: 中国林业科学研究院, 2015. [31] 辛娜娜, 张蕊, 范辉华, 等. 5年生木荷生长和形质性状的家系变异和选择[J]. 林业科学研究, 2014, 27(3): 316-322. [32] 刘青华, 金国庆, 张蕊, 等. 24年生马尾松生长、形质和木材基本密度的种源变异与种源区划[J]. 林业科学, 2009, 45(10): 55-61. [33] 刘炳妤. 柚木无性系生长、光合与耐寒生理特性的研究[D]. 北京: 中国林业科学研究院, 2019.
计量
- 文章访问数: 65
- HTML全文浏览量: 10
- PDF下载量: 8