• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

GmNTLs调控大豆根系响应低磷胁迫的功能研究

李雅雪, 盘耀亮, 彭光粉, 田江, 陆星, 梁翠月

李雅雪, 盘耀亮, 彭光粉, 等. GmNTLs调控大豆根系响应低磷胁迫的功能研究[J]. 华南农业大学学报, 2023, 44(2): 221-229. DOI: 10.7671/j.issn.1001-411X.202204026
引用本文: 李雅雪, 盘耀亮, 彭光粉, 等. GmNTLs调控大豆根系响应低磷胁迫的功能研究[J]. 华南农业大学学报, 2023, 44(2): 221-229. DOI: 10.7671/j.issn.1001-411X.202204026
LI Yaxue, PAN Yaoliang, PENG Guangfen, et al. Functional characterization of phosphorus deficiency-responsive GmNTLs in soybean roots[J]. Journal of South China Agricultural University, 2023, 44(2): 221-229. DOI: 10.7671/j.issn.1001-411X.202204026
Citation: LI Yaxue, PAN Yaoliang, PENG Guangfen, et al. Functional characterization of phosphorus deficiency-responsive GmNTLs in soybean roots[J]. Journal of South China Agricultural University, 2023, 44(2): 221-229. DOI: 10.7671/j.issn.1001-411X.202204026

GmNTLs调控大豆根系响应低磷胁迫的功能研究

基金项目: 国家自然科学基金(32172659)
详细信息
    作者简介:

    李雅雪,硕士研究生,主要从事大豆适应低磷胁迫的生理机制研究,E-mail: 2504269468@stu.scau.edu.cn

    通讯作者:

    陆 星,助理研究员,博士,主要从事豆科作物根际养分调控的机制研究,E-mail: xinglu@scau.edu.cn

  • 中图分类号: Q945.78;S529

Functional characterization of phosphorus deficiency-responsive GmNTLs in soybean roots

  • 摘要:
    目的 

    低磷和铝毒胁迫是酸性土壤中限制作物生产的重要因素。植物NTL转录因子参与调控多种环境胁迫(包括铝毒胁迫)的适应性机制,本文探究GmNTLs调控大豆Glycine max 根系响应低磷胁迫的功能。

    方法 

    通过RT-qPCR分析大豆15个GmNTLs基因在根系响应低磷胁迫的表达模式,进一步构建了GmNTL1/4/7/8/10/12共6个GmNTLs基因的拟南芥超量表达材料,探究GmNTL成员在拟南芥根系中响应低磷胁迫的功能。

    结果 

    系统进化树及组织表达模式分析结果表明,GmNTLs家族分3个亚族,各亚族成员在大豆中组织表达模式不同。RT-qPCR结果表明,低磷处理12 d显著提高了GmNTL1/4/7/8/10/12在大豆根系中的表达。在拟南芥中超量表达不同GmNTL基因对低磷的响应不同。高磷处理下,超量表达GmNTL4/10/12拟南芥的鲜质量显著增加;低磷处理时,超量表达GmNTL4显著提高拟南芥鲜质量,而超量表达GmNTL1/12拟南芥的鲜质量显著降低。同时,仅超量表达GmNTL12拟南芥的主根长显著缩短,而超量表达其他基因对拟南芥植株的主根长无明显影响。

    结论 

    GmNTLs参与大豆根系对低磷胁迫的响应,该结果可为培育磷高效型大豆品种提供数据支持。

    Abstract:
    Objective 

    Low phosphorus (P) availability and aluminum (Al) toxicity constrain crop production in acid soils. NTL transcription factors play an important role in the mechanisms of plant response to various abiotic stresses, including Al toxicity. This study focused on analyzing the function of GmNTLs in soybean roots responding to P deficiency.

    Method 

    Expression pattern were performed on 15 members of the GmNTL family in the soybean by RT-qPCR assays. We further investigated the function of some GmNTLs members in adaptation to low P by overexpressing the genes of GmNTL1/4/7/8/10/12 in Arabidopsis thaliana.

    Result 

    The phylogenetic analysis and the tissue expression analysis of each subfamily members revealed that 15 GmNTLs were divided into three subgroups and different GmNTL family members had different tissue expression pattern in soybean. The RT-qPCR results showed that the expression levels of GmNTL1/4/7/8/10/12 in soybean roots significantly increased after 12 days of low P treatment. Overexpression of different GmNTLs in Arabidopsis showed different responses to low P. The fresh weight of transgenic Arabidopsis overexpressing GmNTL4/10/12 significantly increased compared to control lines under high P treatment. Overexpression of GmNTL4 significantly improved fresh weight of transgenic Arabidopsis plant under low P deficiency; Whereas, the plant fresh weight of transgene lines overexpressing GmNTL1/12 significantly decreased. Overexpression of GmNTL12 reduced the primary root length of transgenic plants; Whereas, overexpression of other GmNTLs had no significant effect on primary root length.

    Conclusion 

    GmNTLs involve in the response of soybean roots to low P stress, and these results can provide a theoretical basis for cultivating soybean varieties with high P efficiency.

  • 图  1   大豆GmNTL蛋白系统进化树及组织表达模式分析

    1:新叶;2:花;3:根;4:根瘤;5:花后14 d豆荚壳;6:花后14 d种子

    Figure  1.   Phylogenetic tree and tissue expression analysis of GmNTL proteins in soybean

    1: Young leaf; 2: Flower; 3: Root; 4: Nodule; 5: Pod shell after flowering for 14 days; 6: Seed after flowering for 14 days

    图  2   不同磷处理时间对大豆生长的影响

    Figure  2.   Effect of different phosphorus treatment time on soybean growth

    图  3   不同磷处理时间对大豆生物量和根长的影响

    “*”“**”“***”分别表示相同胁迫时间不同磷浓度处理在P < 0.05、0.01、0.001水平差异显著(t检验)

    Figure  3.   Effect of different phosphorus treatment time on soybean biomass and root length

    “*” “**” “***” indicate significant differences between different phosphorus concentration treatments at the same stress time at P < 0.05, 0.01 and 0.001 levels, respectively (t test)

    图  4   不同磷处理时间对大豆根系GmNTLs表达模式的影响

    “*”“**”“***”分别表示相同胁迫时间不同磷浓度处理在P < 0.05、0.01、0.001水平差异显著(t检验)

    Figure  4.   Effect of different phosphorus treatment time on relative expression of GmNTLs in soybean roots

    “*” “**” “***” indicate significant differences between different phosphorus concentration treatments at the same stress time at P < 0.05, 0.01 and 0.001 levels, respectively (t test)

    图  5   不同磷处理浓度下大豆根系GmNTLs相对表达量

    各小图中,柱子上方的不同小写字母表示不同磷处理浓度间差异显著(P < 0.05,Duncan’s法)

    Figure  5.   Relative expression of GmNTLs in soybean roots under different phosphorus concentrations

    In each figure, different lowercase letters on bars indicate significant differences among different phosphorus concentrations (P < 0.05, Duncan’s method)

    图  6   不同磷浓度下转基因拟南芥生长情况

    WT:拟南芥Col-0野生型;OX1和OX2:超量表达株系;标尺=1 cm

    Figure  6.   Growth of transgenic Arabidopsis under different phosphorus concentrations

    WT: Arabidopsis Col-0 wild-type; OX1 and OX2: Overexpressed lines; Bar = 1 cm

    图  7   不同磷浓度下转基因拟南芥的生物量

    WT:拟南芥Col-0野生型,OX1和OX2:超量表达株系;“*”“**”“***”分别表示相同磷浓度下超量表达株系和野生型在P < 0.05、0.01、0.001水平差异显著(t检验)

    Figure  7.   Biomass of transgenic Arabidopsis under different phosphorus concentrations

    WT: Arabidopsis Col-0 wild-type, OX1 and OX2: Overexpressed lines; “*” “**” “***” indicate significant differences between overexpressed lines and wild-type under the same phosphorus concentration at P < 0.05, 0.01 and 0.001 levels, respectively (t test)

    图  8   不同磷浓度下转基因拟南芥的主根长

    WT:拟南芥Col-0野生型,OX1和OX2:超量表达株系;“*”“**”“***”分别表示相同磷浓度下超量表达株系和野生型在P < 0.05、0.01、0.001水平差异显著(t检验)

    Figure  8.   Primary root length of transgenic Arabidopsis under different phosphorus concentrations

    WT: Arabidopsis Col-0 wild-type, OX1 and OX2: Overexpressed lines; “*” “**” “***” indicate significant differences between overexpressed lines and wild-type under the same phosphorus treatment concentration at P < 0.05, 0.01 and 0.001 levels, respectively (t test)

  • [1]

    OOKA H, SATOH K, DOI K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Research, 2003, 10(6): 239-247. doi: 10.1093/dnares/10.6.239

    [2]

    KIM S Y, KIM S G, KIM Y S, et al. Exploring membrane-associated NAC transcription factors in Arabidopsis: Implications for membrane biology in genome regulation[J]. Nucleic Acids Research, 2007, 35(1): 203-213. doi: 10.1093/nar/gkl1068

    [3] 赵翠珠, 刘振华, 赵赫, 等. 植物NAC膜结合转录因子的研究进展[J]. 生命科学, 2012, 24(1): 74-80.
    [4]

    CHI Y H, MELENCION S, ALINAPON C V, et al. The membrane-tethered NAC transcription factor, AtNTL7, contributes to ER-stress resistance in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2017, 488(4): 641-647. doi: 10.1016/j.bbrc.2017.01.047

    [5]

    ZHAO J, LIU J S, MENG F N, et al. ANAC005 is a membrane-associated transcription factor and regulates vascular development in Arabidopsis[J]. Journal of Integrative Plant Biology, 2016, 58(5): 442-451. doi: 10.1111/jipb.12379

    [6]

    WANG D, YU Y, LIU Z, et al. Membrane-bound NAC transcription factors in maize and their contribution to the oxidative stress response[J]. Plant Science, 2016, 250: 30-39. doi: 10.1016/j.plantsci.2016.05.019

    [7]

    KIM M J, PARK M, SEO P J, et al. Controlled nuclear import of the transcription factor NTL6 reveals a cytoplasmic role of SnRK2.8 in the drought-stress response[J]. Biochemical Journal, 2012, 448(3): 353-363. doi: 10.1042/BJ20120244

    [8]

    KIM S, LEE A, YOON H, et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination[J]. Plant Journal, 2008, 55: 77-88. doi: 10.1111/j.1365-313X.2008.03493.x

    [9]

    SEO P J, KIM M J, PARK J, et al. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis[J]. Plant Journal, 2010, 61(4): 661-671. doi: 10.1111/j.1365-313X.2009.04091.x

    [10]

    KOCHIAN L V, HOEKENGA O A, PINEROS M A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency[J]. Annual Review of Plant Biology, 2004, 55: 459-493. doi: 10.1146/annurev.arplant.55.031903.141655

    [11] 吴佩, 李浩, 早浩龙, 等. 植物对缺磷和铝毒协同进化应答的分子生理机制[J]. 生物技术通报, 2020, 36(7): 170-181.
    [12]

    LIAO H, WAN H, SHAFF J, et al. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance, exudation of specific organic acids from different regions of the intact root system[J]. Plant Physiology, 2006, 141(2): 674-684. doi: 10.1104/pp.105.076497

    [13]

    LIANG C, PINEROS M A, TIAN J, et al. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils[J]. Plant Physiology, 2013, 161(3): 1347-1361. doi: 10.1104/pp.112.208934

    [14]

    CHEN W, TANG L, WANG J, et al. Research advances in the mutual mechanisms regulating response of plant roots to phosphate deficiency and aluminum toxicity[J]. International Journal of Molecular Sciences, 2022, 23(3): 1137. doi: 10.3390/ijms23031137.

    [15] 于芮, 王斌, 王建忠, 等. 我国大豆市场发展现状及建议[J]. 合作经济与科技, 2021(19): 92-93. doi: 10.3969/j.issn.1672-190X.2021.19.037
    [16] 刘国选, 陈康, 陆星, 等. 大豆GmPIN2b调控根系响应低磷胁迫的功能研究[J]. 华南农业大学学报, 2021, 42(4): 33-41. doi: 10.7671/j.issn.1001-411X.202010014
    [17]

    LI S, WANG N, JI D, et al. Evolutionary and functional analysis of membrane-bound NAC transcription factor genes in soybean[J]. Plant Physiology, 2016, 172(3): 1804-1820. doi: 10.1104/pp.16.01132

    [18] 向凤宁, 王楠. 大豆威廉姆斯82中NAC膜结合转录因子基因GmNTL1及其应用: CN106167801A[P]. 2018-08-28[2022-04-16].
    [19] 向凤宁, 王楠. 大豆威廉姆斯82中NAC膜结合转录因子基因GmNTL7及其应用: CN106367423B[P]. 2017-02-01[2022-04-16].
    [20]

    LIN Y, LIU G, XUE Y, et al. Functional characterization of aluminum (Al)-responsive membrane-bound NAC transcription factors in soybean roots[J]. International Journal of Molecular Sciences, 2021, 22(23): 12854. doi: 10.3390/ijms222312854.

    [21]

    PARK J, KIM Y S, KIM S G, et al. Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis[J]. Plant Physiology, 2011, 156(2): 537-549. doi: 10.1104/pp.111.177071

    [22]

    YOON H K, KIM S G, KIM S Y, et al. Regulation of leaf senescence by NTL9-mediated osmotic stress signaling in Arabidopsis[J]. Molecules and Cells, 2008, 25(3): 438-445.

    [23]

    DUAN M, ZHANG R, ZHU F, et al. A lipid-anchored NAC transcription factor is translocated into the nucleus and activates glyoxalase I expression during drought stress[J]. Plant Cell, 2017, 29(7): 1748-1772. doi: 10.1105/tpc.17.00044

    [24]

    PERET B, CLEMENT M, NUSSAUME L, et al. Root developmental adaptation to phosphate starvation: Better safe than sorry[J]. Trends in Plant Science, 2011, 16(8): 442-450. doi: 10.1016/j.tplants.2011.05.006

    [25]

    PÉREZ-TORRES C, LÓPEZ-BUCIO J, CRUZ-RAMÍREZ A, et al. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor[J]. Plant Cell, 2008, 20(12): 3258-3272.

    [26]

    SHEN C, WANG S, ZHANG S, et al. OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativa L. )[J]. Plant Cell and Environment, 2013, 36(3): 607-620. doi: 10.1111/pce.12001

    [27]

    BALZERGUE C, DARTEVELLE T, GODON C, et al. Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation[J]. Nature Communications, 2017, 8: 15300. doi: 10.1038/ncomms15300.

    [28]

    HAM B K, CHEN J, YAN Y, et al. Insights into plant phosphate sensing and signaling[J]. Current Opinion in Biotechnology, 2018, 49: 1-9. doi: 10.1016/j.copbio.2017.07.005

    [29]

    CHEN Y N, SLABAUGH E, BRANDIZZI F. Membrane-tethered transcription factors in Arabidopsis thaliana: Novel regulators in stress response and development[J]. Current Opinion in Plant Biology, 2008, 11(6): 695-701. doi: 10.1016/j.pbi.2008.10.005

    [30]

    LEE S, LEE H J, HUH S U, et al. The Arabidopsis NAC transcription factor NTL4 participates in a positive feedback loop that induces programmed cell death under heat stress conditions[J]. Plant Science, 2014, 227: 76-83. doi: 10.1016/j.plantsci.2014.07.003

图(8)
计量
  • 文章访问数:  544
  • HTML全文浏览量:  27
  • PDF下载量:  377
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2023-03-09

目录

    /

    返回文章
    返回