• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

三七育苗播种机导种管设计与试验

杨文彩, 张效伟, 仲广远, 郑嘉鑫, 蒲望, 马永敢

杨文彩, 张效伟, 仲广远, 等. 三七育苗播种机导种管设计与试验[J]. 华南农业大学学报, 2022, 43(1): 120-132. DOI: 10.7671/j.issn.1001-411X.202104007
引用本文: 杨文彩, 张效伟, 仲广远, 等. 三七育苗播种机导种管设计与试验[J]. 华南农业大学学报, 2022, 43(1): 120-132. DOI: 10.7671/j.issn.1001-411X.202104007
YANG Wencai, ZHANG Xiaowei, ZHONG Guangyuan, et al. Design and experiment of seed tube of seedling planter for Panax notoginseng[J]. Journal of South China Agricultural University, 2022, 43(1): 120-132. DOI: 10.7671/j.issn.1001-411X.202104007
Citation: YANG Wencai, ZHANG Xiaowei, ZHONG Guangyuan, et al. Design and experiment of seed tube of seedling planter for Panax notoginseng[J]. Journal of South China Agricultural University, 2022, 43(1): 120-132. DOI: 10.7671/j.issn.1001-411X.202104007

三七育苗播种机导种管设计与试验

基金项目: 云南省科技计划农业联合专项重点项目(2018FG 001-007);云南省科技厅重大科技专项(2018ZC001-4-3,2019ZG00902-03)
详细信息
    作者简介:

    杨文彩,教授,博士,主要从事农业机械化与装备工程研究,E-mail: yangwencai2005@126.com

  • 中图分类号: S223.2

Design and experiment of seed tube of seedling planter for Panax notoginseng

  • 摘要:
    目的 

    为提高三七Panax notoginseng育苗机械化播种精确性,针对三七小行株距的特点,研究一种新型导种管。

    方法 

    分别建立有、无导种管情况下种子运动的力学模型。在土槽上开展了以投种高度、播种机前进速度、投种角度为试验因素,以理论播种点与实际播种点距离偏差的标准差和弹跳率为试验指标的三因素五水平二次回归正交旋转组合试验;借助Design-Expert 10.0.3软件建立了试验因素与指标间的回归方程及多目标优化数学模型,获取最佳投种参数组合;在最优参数组合下,使用高速摄像技术获取种子运动轨迹,结合运用图像处理技术和曲线拟合法进行种子运动轨迹曲线方程研究;借助EDEM软件进行导种管截面尺寸仿真分析,确定截面尺寸;用3D打印技术试制导种管并开展播种验证试验。

    结果 

    在有、无导种管情况下,影响种子离开排种器后运动的共同因素为排种器的周围速度、投种高度和投种角度。通过正交旋转组合试验得出最优投种参数组合为投种高度20 cm、播种机前进速度7.8 m/min、投种角度42°。在未安装导种管条件下,理论播种点与实际播种点距离偏差的标准差、弹跳率分别为51.66 mm和72.31%。研制的新型导种管出口和入口截面尺寸分别为26 mm × 30 mm和26 mm × 60 mm;安装新型导种管后验证试验结果显示,理论播种点与实际播种点距离偏差标准差为26.90,弹跳率为45.20%。

    结论 

    新型导种管满足了三七育苗机械化播种要求,播种精确性明显提高,研究结果可为三七育苗播种机导种管设计与田间播种应用提供了参考依据。

    Abstract:
    Objective 

    In order to improve the accuracy of mechanized seeding of Panax notoginseng, according to the characteristics of small row spacing of P. notoginseng, a new type of seed guide tube was studied.

    Method 

    The mechanical model was established with and without seed guide tube, respectively. The experiment was carried out in soil trough through the three-factor-five-level quadratic regression orthogonal rotation combination experiment with seed release height, seeder forward speed and seed release angle as the experimental factors, and the standard deviation of distance deviation between theoretical seeding point and actual seeding point, and bounce rate as the experimental indexes. With Design-Expert 10.0.3 software, the regression equation between test factors and indexes and the mathematical model of multi-objective optimization were established to get the best combination of seeding parameters. Under the optimal combination of parameters, high-speed camera technology was used to obtain the seed motion trajectory, and the curve equation of seed motion trajectory was studied by image processing technology and curve fitting method. With EDEM software, the cross-section size of seed guide tube was simulated and analyzed, and the cross-section size was determined. Seed guide tube was manufactured using 3D printing technology and seeding verification test was carried out.

    Result 

    The common factors affecting seed motion with and without the seed guide tube were circumferential speed of seed merering device, seed release height and seed release angle. Through orthogonal rotation combination test, the optimal combination of seeding parameters was as follows: The seed release height was 20 cm, the seeder forward speed was 7.8 m/min and the seed release angle was 42°. Without seed guide tube, the standard deviation of distance deviation between theoretical seeding point and actual seeding point was 51.66 mm, and the bounce rate was 72.31%. The exit and entrance cross-section sizes of the developed seed guide tube were 26 mm × 30 mm and 26 mm × 60 mm, respectively. The verification test results showed that after installing the new seed guide tube, the standard deviation of distance deviation between theoretical seeding point and actual seeding point was 26.90 mm and the bounce rate was 45.20%.

    Conclusion 

    The new seed guide tube satisfies the requirement of the mechanized seeding of P. notoginseng, the seeding accuracy after installing the new seed guide tube is obviously improved. The research results provide a reference basis for the design and field seeding application of the seed guide tube of P. notoginseng seedling seeder.

  • 图  1   三七育苗槽及播种示意图

    1:槽肩,2:三七种子,3:土槽基质,4:育苗槽

    Figure  1.   Structure sketch of Panax notoginseng seedling trough and seeding

    1: Slotted shoulder, 2: Panax notoginseng seeds, 3: Soil trough matrix, 4: Nursery trough

    图  2   三七育苗播种机结构示意图

    1:种箱,2:窝眼排种滚筒,3:导种装置,4:开沟器,5:镇压弹簧,6:限位拉伸手柄,7:限位轮,8:被动地轮,9:电动机,10:控制柜,11:传动装置,12:机架,13:升降螺杆,14:主动轮,15:万向轮

    Figure  2.   Structure sketch of Panax notoginseng seedling planter

    1: Seed box, 2: Hole roller seed metering device, 3: Seed guide device, 4: Ditching device, 5: Crack spring, 6: Limit stretch handle, 7: Limit wheel, 8: Passive ground wheel, 9: Electric motor, 10: Control cabinet, 11: Transmission, 12: Frame, 13: Lifting screw, 14: Driving wheel, 15: Universal wheel

    图  3   种子与导种管管壁接触过程的受力及运动分析图

    建立一个以刚进入导种管种子中心点为坐标原点、以播种机前进速度的反方向为x0轴正方向、以竖直向下为y0轴正方向的坐标系O0G为种子重力,N;N为导种管直线部分对种子的支持力,N;f为种子与导种管之间的摩擦力,N;β为导种管与水平线的夹角,(°);H为种子离开排种器时离沟底的高度,m;V0为种子脱离排种器后初始运动速度,m/s;θ为投种角度,(°);R1为排种器上型孔分布半径,m;n1为排种器转速,r/min;V2为育苗播种机的前进速度,m/s;V1为种子离开导种管时的初速度,m/s

    Figure  3.   Force and motion analysis graph of seeds which contact with seed guide tube wall

    Establish a coordinate system O0 with the center of the seed just entering the seed guide tube as the coordinate origin, the reverse direction of the seeder’s forward speed as the positive direction of x0 axis, the vertical downward direction as positive direction of y0 axis; G is seed gravity, N; N is the support force of the straight part of the seed guide tube to the seed, N; f is the friction between seed and seed guide tube, N; β is the angle between the guide tube and the horizontal line, (°); H is the height of the seed from the seed bottom of the ditch when it leaves the seed metering device, m; V0 is the initial velocity of the seed after it is removed from the seed metering device, m/s; θ is the seed release angle, (°); R1 is the upper hole distribution radius on the seed metering device, m; n1 is the rotation speed of the seed metering device, r/min; V1 is the initial velocity of the seed when it leaves the seed guide tube, m/s; V2 is the forward speed of seedling planter, m/s

    图  4   无导种装置时种子运动结构简图

    建立一个以刚脱离排种器种子中心点为坐标原点、以播种机前进速度的反方向为x1轴正方向、以竖直向下为y1轴正方向的坐标系O1H'为种子离开排种器时离沟底的高度,m;V'0为种子脱离排种器后初始运动速度,m/s;θ'为投种角度,(°);R'1为排种器上型孔分布半径,m;n'1为排种器转速,r/min;V'2为育苗播种机的前进速度,m/s;V'1为种子离开导种管时的速度,m/s;V'1xV'1的水平分速度;V'1yV'1的竖直分速度

    Figure  4.   Structural sketch of seed motion without seed guiding device

    Establish a coordinate system O1 with the center of the seed just separated from seed metering device as the coordinate origin, the reverse direction of the seeder’s forward speed as the positive direction of x1 axis; the vertical downward direction as positive direction of y1 axis; H' is the height of the seed from the bottom of the ditch when it leaves the seed metering device, m; V'0 is the initial movement speed of seeds after they are separated from the seed metering device, m/s; θ' is the seed release angle, (°); R'1 is the distribution radius of the upper hole on the seed metering device, m; n'1 is the rotation speed of the seed metering device, r/min; V'1 is the speed of seeds after leaving the seed guide tube, m/s; V'1x is the horizontal speed of V'1; V'1y is the vertical partial velocity of V'1; V'2 is the forward speed of seedling planter, m/s

    图  5   播种精确性试验台

    1:种箱,2:排种器,3:投种器,4:摄像机支架,5:机架,6:电控柜,7:传动链条,8:电动机,9:地轮

    Figure  5.   Seeding accuracy test bench

    1: Seed box, 2: Seed metering device, 3: Seed pitching device, 4: Camera bracket, 5: Frame, 6: Control cabinet, 7: Transmission chain, 8: Electric motor, 9: Ground wheel

    图  6   投种角度与播种精确性关系曲线

    Figure  6.   The curve of the relation between seed release angle and seeding accuracy

    图  7   图像试验仪器安装图

    1:高速摄像仪;2:手持云台;建立一个以排种器中心点为坐标原点、以水平正方向为x2轴正方向、以竖直向下为y2轴正方向的世界坐标系O2;$H^{\prime \prime} $为种子离开排种器时离沟底的高度,m;$V_0^{\prime \prime} $为种子脱离排种器后初始运动速度,m/s;$\theta ^{\prime \prime} $为投种角度,(°);$R_1^{\prime \prime} $为排种器上型孔分布半径,m;$n_1^{\prime \prime} $为排种器转速,r/min

    Figure  7.   Installation picture of image testing instrument

    1: High speed camera; 2: Handle stabilizer; Establish a world coordinate system O2 with the center of the seed metering device as the coordinate origin, the horizontal positive direction as x2 axis positive direction, the vertical downward direction as positive direction of y2 axis; $ H^{\prime \prime}$ is the height of the seed from the bottom of the ditch when it leaves the seed metering device, m; $V_0^{\prime \prime} $ is the initial movement speed of seeds after they are separated from the seed metering device, m/s; $\theta ^{\prime \prime} $ is the seed release angle, (°); R"1 is the distribution radius of the upper hole on the seed metering device, m; $n_1^{\prime \prime} $ is the rotation speed of the seed metering device, r/min

    图  8   种子下落轨迹序列图像处理过程

    Figure  8.   Sequential image processing of seed falling trajectory sequence

    图  9   曲线拟合图

    Figure  9.   Curve fitting chart

    图  10   EDEM仿真模型

    Figure  10.   EDEM simulation model

    图  11   种子横向偏移量分布

    Figure  11.   Distribution of seed lateral offset

    图  12   拟合曲线型导种管

    R2为导种管圆弧半径,mm;H2为拟合曲线设计高度,mm;H3为过渡放样曲线高度,mm

    Figure  12.   Fitting curve-shaped seed guide tube

    R2 is the arc radius of seed guide tube, mm; H2 is the design height of fitted curve, mm; H3 is the height of transition lofting curve, mm

    图  13   开沟及播种效果

    Figure  13.   Ditching and sowing effect

    表  1   播种精确性试验因素水平表

    Table  1   Seeding accuracy test factor level table

    水平
    level
    投种高度(Z1)/cm
    Seed release height
    播种机前进速度(Z2)/(m·min−1)
    Seeder forward
    speed
    投种角度(Z3)/(°)
    Seed release
    angle
    1.682 40 10.0 45
    1 36 9.2 41
    0 30 8.0 35
    −1 24 6.8 29
    −1.682 20 6.0 25
    Δj 6 1.2 6
    下载: 导出CSV

    表  2   播种精确性试验方案与结果

    Table  2   Seeding accuracy test scheme and result



    No.
    投种高度 (Z1)
    Seed release height
    播种机前进速度 (Z2)
    Seeder forward
    speed
    投种角度 (Z3)
    Seed release
    angle
    标准差(P1)/mm
    Standard
    deviation
    弹跳率(P2)/%
    Bounce
    rate
    1 −1 −1 −1 82.34 79.27
    2 1 −1 −1 82.79 81.67
    3 −1 1 −1 96.48 80.06
    4 1 1 −1 101.52 82.53
    5 −1 −1 1 51.08 67.98
    6 1 −1 1 56.32 79.84
    7 −1 1 1 56.80 75.95
    8 1 1 1 79.59 73.25
    9 −1.682 0 0 57.24 75.81
    10 1.682 0 0 62.87 80.43
    11 0 −1.682 0 60.04 78.79
    12 0 1.682 0 104.95 83.70
    13 0 0 −1.682 60.17 79.86
    14 0 0 1.682 63.07 74.74
    15 0 0 0 54.43 77.07
    16 0 0 0 54.95 81.07
    17 0 0 0 51.66 78.80
    18 0 0 0 75.10 82.80
    19 0 0 0 61.60 79.33
    20 0 0 0 61.05 80.93
    21 0 0 0 60.23 82.13
    22 0 0 0 59.80 83.65
    23 0 0 0 75.80 82.53
    下载: 导出CSV

    表  3   播种精确性试验方差分析1)

    Table  3   Variance analysis of seeding accuracy test

    来源
    Source
    标准差
    Standard deviation
    弹跳率
    Bounce rate
    平方和
    Sum of square
    均方
    Mean square
    F P 平方和
    Sum of square
    均方
    Mean square
    F P
    模型
    Model
    3 914.67/
    (3 600.15)
    434.96/
    (1 200.05)
    3.27/
    (11.14)
    0.026 3**/
    (0.000 2**)
    224.35/
    (161.81)
    24.93/
    (53.94)
    3.89/
    (7.03)
    0.013 5*/
    (0.002 3**)
    Z1 135.32 135.32 1.02 0.331 8 34.80/
    (34.80)
    34.80/
    (34.80)
    5.44/
    (4.54)
    0.036 5*/
    (0.046 5*)
    Z2 1382.15/
    (1 382.15)
    1 382.15/
    (1 382.15)
    10.38/
    (12.84)
    0.006 7**/
    (0.002**)
    9.33 9.33 1.46 0.248 9
    Z3 959.35/
    (959.35)
    959.35/
    (959.35)
    7.20/
    (8.91)
    0.018 8*/
    (0.007 6**)
    90.32/
    (90.32)
    90.32/
    (90.32)
    14.11/
    (11.77)
    0.002 4**/
    (0.002 8**)
    Z1Z2 61.27 61.27 0.46 0.509 5 26.25 26.25 4.10 0.063 9
    Z1Z3 63.51 63.51 0.48 0.502 0 2.30 2.30 0.36 0.559 2
    Z2Z3 1.88 1.88 0.014 0.907 2 0.01 0.01 0.00142 0.970 5
    $ {Z}_{\text{1}}^{\text{2}} $ 15.36 15.36 0.12 0.739 5 24.40 24.40 3.81 0.072 8
    $ {Z}_{\text{2}}^{\text{2}} $ 1 263.42/
    (1 258.64)
    1 263.42/
    (1 258.64)
    9.49/
    (11.69)
    0.008 8**/
    (0.002 9**)
    0.29 0.29 0.045 0.835 7
    ${Z}_{\text{3}}^{\text{2}} $ 37.52 37.52 0.28 0.604 5 37.15/
    (36.70)
    37.15/
    (36.70)
    5.80/
    (4.78)
    0.031 6*/
    (0.041 4*)
    残差
    Residual
    1 731.32/
    (2 045.85)
    133.18/
    (107.68)
    83.23/
    (145.76)
    6.40/
    (7.67)
    失拟项
    Lack of fit
    1 147.58/
    (1 462.11)
    229.52/
    (132.92)
    3.15/
    (1.82)
    0.072 9*/
    (0.202 1)
    46.31/
    (108.85)
    9.26/
    (9.90)
    2.01/
    (2.14)
    0.181 8/
    (0.144 1)
    误差
    Pure error
    583.74/
    (583.74)
    72.97/
    (72.97)
    36.91/
    (36.91)
    4.61/
    (4.61)
    总和
    Total
    5645.99/
    (5645.99)
    307.57/
    (307.57)
     1)Z1:投种高度,Z2:播种机前进速度,Z3:投种角度;“*”表示在P≤0.05水平差异显著,“**”表示在P≤0.01水平差异显著;“/”下“( )”内数字为剔除不显著项后重新进行方差分析的结果
     1) Z1: Seed release height, Z2: Seeder forward speed, Z3: Seed release angle;“*” indicates significant difference at P≤0.05 level, “**” indicates significant difference at P≤0.01 level; Data in “( )” under “/” are variance analysis result after rejecting unsignificant items
    下载: 导出CSV

    表  4   新型导种管播种验证试验结果

    Table  4   Verification experiment results of seeding with new seed guide tube

    试验编号
    Number of test
    标准差/mm
    Standard deviation
    弹跳率/%
    Bounce rate
    1 23.10 41.80
    2 23.90 45.30
    3 33.70 48.50
    均值 Mean 26.90 45.20
    下载: 导出CSV
  • [1] 赖庆辉, 于庆旭, 苏微, 等. 三七超窄行气吸式精密排种器设计与试验[J]. 农业机械学报, 2019, 50(4): 102-112. doi: 10.6041/j.issn.1000-1298.2019.04.012
    [2] 刘素, 赖庆辉, 董家宇, 等. 气吹式三七精密排种器充填性能的仿真与试验[J]. 华南农业大学学报, 2019, 40(3): 125-132. doi: 10.7671/j.issn.1001-411X.201806023
    [3] 奚琪, 杨文彩, 杜迁, 等. 三七槽式育苗配套工程技术指标分析[J]. 广东农业科学, 2013, 40(16): 29-31. doi: 10.3969/j.issn.1004-874X.2013.16.010
    [4] 杨文彩, 朱有勇, 杜迁, 等. 基于农机农艺融合的三七机械化精密播种系统研究[J]. 广东农业科学, 2014, 41(2): 175-180. doi: 10.3969/j.issn.1004-874X.2014.02.041
    [5] 李宝筏. 农业机械学[M]. 北京: 中国农业大学出版社, 2003.
    [6] 雷小龙, 廖宜涛, 丛锦玲, 等. 油菜小麦兼用气送式直播机集排器参数优化与试验[J]. 农业工程学报, 2018, 34(12): 16-26. doi: 10.11975/j.issn.1002-6819.2018.12.003
    [7] 李欢, 杨文彩, 阮解琼, 等. 三七精密排种器的参数优化设计[J]. 农机化研究, 2015, 37(7): 131-134. doi: 10.3969/j.issn.1003-188X.2015.07.030
    [8] 杨航, 杨文彩, 李超群, 等. 2BQ—27型三七精密播种机排种性能试验研究[J]. 中国农机化学报, 2016, 37(2): 33-38.
    [9] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 单粒(精密)播种机试验方法: GB/T 6973—2005[S]. 北京: 中国标准出版社, 2006.
    [10] 贾洪雷, 郑嘉鑫, 袁洪方, 等. 大豆播种机双V型筑沟器设计与试验[J]. 吉林大学学报(工学版), 2017, 47(1): 323-331.
    [11] 廖庆喜, 舒彩霞. 精播机输种管对排种均匀性影响的试验研究[J]. 湖北农业科学, 2004(4): 126-128. doi: 10.3969/j.issn.0439-8114.2004.04.045
    [12] 王金武, 唐汉, 王金峰, 等. 指夹式玉米精量排种器导种投送运移机理分析与试验[J]. 农业机械学报, 2017, 48(1): 29-37. doi: 10.6041/j.issn.1000-1298.2017.01.005
    [13] 马旭, 马成林, 张守勤, 等. 精密播种机接输种管后田间植株分布的研究[J]. 农业工程学报, 1997, 3(3): 119-123. doi: 10.3321/j.issn:1002-6819.1997.03.025
    [14]

    YAZGI A. Effect of seed tubes on corn planter performance[J]. Applied Engineering in Agriculture, 2016, 32(6): 783-790. doi: 10.13031/aea.32.11274

    [15] 刘立晶, 杨慧. 基于Geomagic Design软件的导种管三维逆向工程设计[J]. 农业工程学报, 2015, 31(11): 40-45. doi: 10.11975/j.issn.1002-6819.2015.11.006
    [16] 杨丽, 颜丙新, 张东兴, 等. 玉米精密播种技术研究进展[J]. 农业机械学报, 2016, 47(11): 38-48. doi: 10.6041/j.issn.1000-1298.2016.11.006
    [17] 丁中凯. 2BJZ-10型播种机设计及导种管结构参数研究[D]. 哈尔滨: 东北农业大学, 2012.
    [18] 贺俊林, 杨涛, 裘祖荣. 精密播种机导种管曲线的设计研究:2BQYF—6A硬茬精密播种机导种管的设计研究[J]. 山西农业大学学报, 2000(4): 389-391.
    [19]

    KOCHER M F, COLEMAN J M, SMITH J A, et al. Corn seed spacing uniformity as affected by seed tube condition[J]. Applied Engineering in Agriculture, 2011, 27(2): 177-183. doi: 10.13031/2013.36484

    [20]

    GARNER E B, THIEMKE D B, RYLANDER D J, et al. Seeding machine with seed delivery system: US9807900B2[P]. 2017-10-07.

    [21] 陈学庚, 钟陆明. 气吸式排种器带式导种装置的设计与试验[J]. 农业工程学报, 2012, 28(22): 8-15. doi: 10.3969/j.issn.1002-6819.2012.22.002
    [22] 康建明, 温浩军, 王士国, 等. 带式导种装置对排种均匀性影响的试验研究[J]. 中国农机化学报, 2015, 36(5): 42-45.
    [23] 赵淑红, 陈君执, 王加一, 等. 精量播种机V型凹槽拨轮式导种部件设计与试验[J]. 农业机械学报, 2018, 49(6): 146-158. doi: 10.6041/j.issn.1000-1298.2018.06.017
    [24] 雷小龙, 廖宜涛, 张闻宇, 等. 油麦兼用气送式集排器输种管道气固两相流仿真与试验[J]. 农业机械学报, 2017, 48(3): 57-68. doi: 10.6041/j.issn.1000-1298.2017.03.007
    [25]

    YATSKUL A, LEMIERE J P, COINTAULT F. Influence of the divider head functioning conditions and geometry on the seed’s distribution accuracy of the air-seeder[J]. Biosystems Engineering, 2017, 161: 120-134. doi: 10.1016/j.biosystemseng.2017.06.015

    [26] 戴亿政, 罗锡文, 王在满, 等. 气力集排式水稻分种器设计与试验[J]. 农业工程学报, 2016, 32(24): 36-42. doi: 10.11975/j.issn.1002-6819.2016.24.005
    [27] 陶桂香, 衣淑娟, 毛欣, 等. 水稻植质钵盘精量播种装置投种过程的动力学分析[J]. 农业工程学报, 2013, 29(21): 33-39. doi: 10.3969/j.issn.1002-6819.2013.21.005
    [28] 余佳佳, 丁幼春, 廖宜涛, 等. 基于高速摄像的气力式油菜精量排种器投种轨迹分析[J]. 华中农业大学学报, 2014, 33(3): 103-108. doi: 10.3969/j.issn.1000-2421.2014.03.018
    [29] 刘宏新, 徐晓萌, 刘俊孝, 等. 利用高速摄像及仿真分析立式浅盆型排种器工作特性[J]. 农业工程学报, 2016, 32(2): 13-19. doi: 10.11975/j.issn.1002-6819.2016.02.003
    [30] 廖宜涛, 李成良, 廖庆喜, 等. 播种机导种技术与装置研究进展分析[J]. 农业机械学报, 2020, 51(12): 1-14. doi: 10.6041/j.issn.1000-1298.2020.12.001
    [31] 郭慧, 王刚, 赵佳乐, 等. 种子纵向分布均匀性指标及空间分布均匀性评价方法[J]. 吉林大学学报(工学版), 2020, 50(3): 1120-1130.
    [32] 杨航. 2BQ-27型三七精密播种机关键部件设计与试验研究[D]. 昆明: 云南农业大学, 2015.
    [33] 辛尚龙, 赵武云, 戴飞, 等. 旱区全膜双垄沟播履带式玉米联合收获机的设计[J]. 农业工程学报, 2019, 35(14): 1-11. doi: 10.11975/j.issn.1002-6819.2019.14.001
    [34] 沈明霞, 李嘉位, 陆明洲, 等. 基于动态多特征变量的黄羽肉鸡跛行状态定量评价方法[J]. 农业机械学报, 2018, 49(9): 35-44. doi: 10.6041/j.issn.1000-1298.2018.09.004
    [35] 屈晶晶, 辛云宏. 连续帧间差分与背景差分相融合的运动目标检测方法[J]. 光子学报, 2014, 43(7): 219-226.
    [36] 张萌, 钟南, 刘莹莹. 基于生猪外形特征图像的瘦肉率估测方法[J]. 农业工程学报, 2017, 33(12): 308-314. doi: 10.11975/j.issn.1002-6819.2017.12.040
    [37] PETROU M, PETROU C. 图像处理基础: 第2版[M]. 章毓晋, 译. 北京: 清华大学出版社, 2013.
    [38] 李超群. 2BQ-28型三七精密播种机关键部件的研究与设计[D]. 昆明: 云南农业大学, 2016.
    [39] 于庆旭, 刘燕, 陈小兵, 等. 基于离散元的三七种子仿真参数标定与试验[J]. 农业机械报, 2020, 51(2): 123-132.
    [40] 严荣俊. 精密播种机导种管结构设计与试验研究[D]. 北京: 中国农业大学, 2012.
    [41] 杨文彩, 徐路路, 杜一帆, 等. 三七育苗播种压轮仿形开沟装置的设计与试验[J]. 农业工程学报, 2020, 36(7): 53-62. doi: 10.11975/j.issn.1002-6819.2020.07.006
图(13)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-01-09

目录

    /

    返回文章
    返回