Effects of reduced pesticide application on rice planthopper control by M45 multi-rotor plant protection UAV
-
摘要:目的
研究多旋翼植保无人机减量施药对雾滴沉积效果以及稻飞虱防治效果的影响,促进水稻减量施药技术发展。
方法采用M45多旋翼植保无人机开展水稻施药田间试验,选取15.0和22.5 L/hm2的施药液量,以及人工施药推荐剂量100%、90%、80%的3种减量农药剂量,研究不同施药液量和减量农药剂量对雾滴沉积效果以及稻飞虱防治效果的影响。
结果水稻冠层上部的雾滴沉积量明显优于冠层下部,2种施药液量以及3种减量农药剂量对雾滴沉积量的影响不显著;施药1周后稻飞虱数量显著减少。在相同施药液量条件下,减量农药剂量的变化对稻飞虱防治效果影响不明显。80%的农药剂量能满足稻飞虱防治要求。
结论无人机水稻施药作业中可选择80%的农药剂量进行减量施药。本研究可为水稻减量施药、减少水稻植保作业成本提供有益参考。
Abstract:ObjectiveIn order to explore the effect of reduced pesticide application on the control effect of rice planthopper by multi-rotor plant protection UAV and promote the development of reduced pesticide application technique for rice.
MethodField experiment was carried out using an M45 multi-rotor plant protection UAV for rice pesticides application. We used two spray volumes of 15.0 and 22.5 L/hm2, and three pesticide dosages of 100%, 90%, and 80% of the conventional artificial control dosage. The effect of different spray volume and reduced dosage on the droplet deposition and the control of rice planthopper were analyzed.
ResultThe droplet deposition in the upper part of the rice canopy was significantly higher than that in the lower part of the canopy. The differences of two spray volumes and three dosages on the droplet deposition were not significant. At the same time, the number of rice planthopper decreased significantly after one week of treatment. Under the condition of the same spray volume, the effect of reduced dosage on the control effect of rice planthopper was not significant. Rice spray dosage of 80% of manual application met the requirement of rice planthopper control.
ConclusionThe spray dosage of 80% can be considered as feasible dosage in the UAV application for rice. The results provide useful reference for promoting the reductions of pesticide application for rice and the operating cost of rice plant protection.
-
-
表 1 试验田施药测试处理区
Table 1 Treatments for pesticide application test in experimental field
处理区
Processing area施药液量/(L·hm−2)
Spray volume农药剂量/%
Pesticide dosage1 15.0 100 2 90 3 80 4 22.5 100 5 90 6 80 表 2 施药液量为15.0 L/hm2时各采样点的雾滴沉积效果
Table 2 Droplet deposition effect at each sampling point with 15.0 L/hm2 of spraying solution
采样点
Sampling point雾滴沉积量1)/(μL·cm−2) Droplet deposition 雾滴分布均匀性/% Uniformity of droplet distribution 植株上层
Upper level植株下层
Lower level植株上层
Upper level植株下层
Lower level−5 0.31±0.20a 0.06±0.04ab 30.82 65.66 −4 0.13±0.10a 0.04±0.03a 57.54 69.18 −3 0.17±0.15a 0.12±0.13ab 87.82 78.22 −2 0.49±0.28a 0.07±0.09ab 43.41 36.14 −1 0.46±0.73a 0.19±0.16ab 87.87 73.05 0 0.74±0.54a 0.19±0.18ab 74.67 97.02 1 0.50±0.45a 0.12±0.12ab 75.22 43.33 2 0.35±0.20a 0.30±0.39b 94.39 46.38 3 0.70±1.23a 0.10±0.07ab 44.76 46.84 4 0.15±0.10a 0.14±0.17ab 83.47 13.33 5 0.26±0.24a 0.03±0.03a 60.06 40.02 1) 数据为平均值±标准差;同列数据不同小写字母表示差异显著(P<0.05,Duncan’s法)
1) The data are means ± standard deviations; Different lowercase letters in the same column indicate significant differences (P<0.05, Duncan’s method)表 3 施药液量为22.5 L/hm2时各采样点的雾滴沉积效果
Table 3 Droplet deposition effect at each sampling point with 22.5 L/hm2 of spraying solution
采样点
Sampling point雾滴沉积量1)/(μL·cm−2) Droplet deposition 雾滴分布均匀性/% Uniformity of droplet distribution 植株上层
Upper level植株下层
Lower level植株上层
Upper level植株下层
Lower level−5 0.53±0.21a 0.17±0.18ab 54.02 75.62 −4 0.34±0.45a 0.05±0.03ab 51.69 69.67 −3 0.43±0.46a 0.06±0.04ab 57.72 86.29 −2 0.30±0.25a 0.09±0.04a 48.14 76.90 −1 0.24±0.32a 0.06±0.04a 81.31 83.63 0 0.34±0.32a 0.08±0.09a 75.92 83.24 1 0.34±0.52a 0.26±0.25b 58.08 86.42 2 0.29±0.25a 0.11±0.10ab 80.20 90.95 3 0.22±0.22a 0.14±0.09ab 94.30 68.42 4 0.34±0.34a 0.23±0.20ab 86.62 95.23 5 0.12±0.08a 0.08±0.05a 89.43 78.26 1) 数据为平均值±标准差;同列数据不同小写字母表示差异显著(P<0.05,Duncan’s法)
1) The data are means ± standard deviations; Different lowercase letters in the same column indicate significant differences (P<0.05, Duncan’s method)表 4 施药液量为15.0 L/hm2时不同农药剂量雾滴沉积量效果试验结果
Table 4 The effect of different pesticide dosages on droplet deposition with 15.0 L/hm2 of spraying solution
农药剂量/%
Pesticide dosage雾滴沉积量1)/(μL·cm−2) Droplet deposition 雾滴分布均匀性/% Uniformity of droplet distribution 植株上层
Upper level植株下层
Lower level植株上层
Upper level植株下层
Lower level100 0.377±0.425a 0.122±0.299a 54.02 75.62 90 0.396±0.420a 0.131±0.131a 51.69 69.67 80 0.300±0.345a 0.107±0.112a 57.72 86.29 1) 数据为平均值±标准差;同列数据不同小写字母表示差异显著(P<0.05,Duncan’s法)
1) The data are means ± standard deviations; Different lowercase letters in the same column indicate significant differences (P<0.05, Duncan’s method)表 5 施药液量为22.5 L/hm2时不同农药剂量雾滴沉积量效果试验结果
Table 5 The effect of different pesticide dosages on droplet deposition with 22.5 L/hm2 of spraying solution
农药剂量/%
Pesticide dosage雾滴沉积量1)/(μL·cm−2) Droplet deposition 雾滴分布均匀性/% Uniformity of droplet distribution 植株上层
Upper level植株下层
Lower level植株上层
Upper level植株下层
Lower level100 0.552±0.547b 0.188±0.181b 54.02 75.62 90 0.188±0.129a 0.097±0.918a 51.69 69.67 80 0.384±0.369ab 0.104±0.070a 57.72 86.29 1) 数据为平均值±标准差;同列数据不同小写字母表示差异显著(P<0.05,Duncan’s法)
1) The data are means ± standard deviations; Different lowercase letters in the same column indicate significant differences (P<0.05, Duncan’s method)表 6 施药液量为15.0 L/hm2时不同农药剂量对稻飞虱的防治效果
Table 6 Different pesticide dosages on the control effect of rice planthopper with 15.0 L/hm2 of spraying solution
农药剂量/%
Pesticide dosage施药后第1次调查
The first investigation after application施药后第2次调查
The second investigation after application虫口减退率/%
Decline rate of
insect population校正防效/%
Corrected control
effect虫口减退率/%
Decline rate of
insect population校正防效/%
Corrected control
effect100 16 5 24 35 90 19 8 28 39 80 17 6 27 37 表 7 施药液量为22.5 L/hm2时不同农药剂量对稻飞虱的防治效果
Table 7 Different pesticide dosages on the control effect of rice planthopper with 22.5 L/hm2 of spraying solution
农药剂量/%
Pesticide dosage施药后第1次调查
The first investigation after application施药后第2次调查
The second investigation after application虫口减退率/%
Decline rate of
insect population校正防效/%
Corrected control
effect虫口减退率/%
Decline rate of
insect population校正防效/%
Corrected control
effect100 38 30 45 53 90 13 2 30 40 80 20 37 43 52 -
[1] 中商产业研究院. 2019年中国粮食种植面积和产量数据分析及2020年预测[EB/OL]. (2019-12-06)[2020-12-31]. https://www.askci.com/news/chanye/20191206/1642301155340_2.shtml. [2] 广东省农业农村厅. 2019年广东省粮食产销形势分析[EB/OL]. (2020-02-13)[2020-12-31]. http://dara.gd.gov.cn/cxxsfx/content/post_2894942.html. [3] 叶延琼, 章家恩, 李逸勉, 等. 1992-2010年广东省水稻主要病虫害发生动态及防控措施[J]. 湖北农业科学, 2013, 52(15): 3544-3549. doi: 10.3969/j.issn.0439-8114.2013.15.020 [4] 陈波, 范兵, 陈科海, 等. 基于水稻主要病虫害的发生趋势论种质资源在水稻抗性育种中的应用[J]. 现代农业科技, 2012(3): 234-236. doi: 10.3969/j.issn.1007-5739.2012.03.151 [5] WANG L, LAN Y, ZHANG Y, et al. Applications and prospects of agricultural unmanned aerial vehicle obstacle avoidance technology in China[J]. Sensors, 2019, 19: 642. doi: 10.3390/s19030642
[6] ADITYA S N, PROF S C K. Adoption and utilization ofdrones for advanced precision farming: A review[J]. International Journal on Recent and Innovation Trends in Computing and Communication, 2016, 4(5): 563-565.
[7] 李飞, 韩冲冲, 李保同. 阿维菌素无人机喷施的沉积特征及防效研究[J]. 江西农业大学学报, 2019, 41(5): 914-923. [8] 缪建锟, 齐枫, 杨皓, 等. 植保无人机喷施30%肟菌·戊唑醇悬浮剂防治稻瘟病、稻曲病效果评价[J]. 农药, 2020, 59(9): 680-683. [9] 姚伟祥, 兰玉彬, 郭爽, 等. 赣南山地柑桔园有人驾驶直升机喷雾作业雾滴沉积效果[J]. 中国南方果树, 2020, 49(2): 13-18. [10] 薛新宇, 秦维彩, 孙竹, 等. N-3型无人直升机施药方式对稻飞虱和稻纵卷叶螟防治效果的影响[J]. 植物保护学报, 2013, 40(3): 273-278. [11] QIN W C, QIU B J, XUE X Y, et al. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers[J]. Crop Protection, 2016, 85: 79-88. doi: 10.1016/j.cropro.2016.03.018.
[12] 陈盛德, 兰玉彬, 李继宇, 等. 小型无人直升机喷雾参数对杂交水稻冠层雾滴沉积分布的影响[J]. 农业工程学报, 2016, 32(9): 40-46. doi: 10.11975/j.issn.1002-6819.2016.09.006 [13] 漆海霞, 陈鹏超, 兰玉彬, 等. 不同电动植保无人机稻田雾滴沉积分布试验研究[J]. 农机化研究, 2019, 41(9): 147-151. doi: 10.3969/j.issn.1003-188X.2019.09.027 [14] 张海艳, 兰玉彬, 文晟, 等. 植保无人机水稻田间农药喷施的作业效果[J]. 华南农业大学学报, 2019, 40(1): 116-124. doi: 10.7671/j.issn.1001-411X.201802028 [15] CHEN P C, LAN Y B, HUANG X Y, et al. Droplet deposition and control of planthoppers of different nozzles in two-stage rice with a quadrotor unmanned aerial vehicle[J]. Agronomy, 2020, 10(2). doi: 10.3390/agronomy10020303.
[16] 中国农药工业协会. 植保无人飞机防治水稻病虫害施药指南: T/CCPIA020—2019[S]. 北京: 中国农药工业协会, 2019. [17] 彭国雄, 张淑玲, 夏玉先. 金龟子绿僵菌CQMa421农药及应用情况[J]. 中国生物防治学报, 2020, 36(6): 850-857. [18] 农业部全国农业技术推广服务中心. 稻飞虱测报调查规范: GB/T15794.4—2009[S]. 北京: 中国标准出版社, 2009. [19] 农业农村部农药检定所. 农药田间药效试验准则: GB/T17980.4—2000[S]. 北京: 中国标准出版社, 2000. -
期刊类型引用(9)
1. 金新梅,方云峰,姚张良. 植保无人机在槜李病虫害防控中应用的可行性分析. 上海农业科技. 2024(01): 140-142 . 百度学术
2. 张永强,李思洁,刘桔,葛百一,唐子晴,蒲小明,林壁润,杨祁云,沈会芳,张景欣. 提升水稻上植保无人机喷施药液沉积效果的关键因素. 农学学报. 2024(05): 16-23 . 百度学术
3. 白志坤,陈兵,高山,刘太杰,陈子杰. 农用无人机施药技术应用研究现状. 中国农机化学报. 2024(09): 54-61 . 百度学术
4. 臧禹,谷秀艳,林树青,资乐,李长龙,陈其龙,臧英. 植保无人机作业方式对玉米螟防治的雾滴沉积和防治效果影响. 华中农业大学学报. 2024(06): 325-332 . 百度学术
5. 金灿,杨林仙,罗茜艳,陆静,崔凯,赵亚梅,尹定云,李向永,刘莹,赵雪晴,谌爱东,尹艳琼. 常用杀虫剂对滇西南稻区白背飞虱种群的室内和田间药效评价. 西南农业学报. 2024(10): 2217-2223 . 百度学术
6. 安小康,李富根,闫晓静,徐军,罗媛媛,黄修柱,董丰收. 植保无人飞机施用农药应用研究进展及管理现状. 农药学学报. 2023(02): 282-294 . 百度学术
7. 郑凯仁,宋瑜清,饶卫航,林叙彬. 可拆卸式IPX5-6级防水检测系统的研制. 现代农业装备. 2023(03): 52-56 . 百度学术
8. 夏汉炎,张夕林. 不同药剂对水稻大螟和二化螟的防治效果评价. 现代农业科技. 2022(13): 51-54 . 百度学术
9. 王伟民,张琳,李秋红,胡永,王渝浏. 植保无人机减量用药防治水稻纹枯病效果评价. 上海农业科技. 2022(06): 120-122 . 百度学术
其他类型引用(3)