分子标记技术及其在种猪选育中的应用

    杨明, 李娅兰, 王青来, 刘敬顺, 刘珍云, 罗旭芳, 吴珍芳, 蔡更元

    杨明, 李娅兰, 王青来, 刘敬顺, 刘珍云, 罗旭芳, 吴珍芳, 蔡更元. 分子标记技术及其在种猪选育中的应用[J]. 华南农业大学学报, 2019, 40(S1): 127-131.
    引用本文: 杨明, 李娅兰, 王青来, 刘敬顺, 刘珍云, 罗旭芳, 吴珍芳, 蔡更元. 分子标记技术及其在种猪选育中的应用[J]. 华南农业大学学报, 2019, 40(S1): 127-131.
    YANG Ming, LI Yalan, WANG Qinglai, LIU Jingshun, LIU Zhenyun, LUO Xufang, WU Zhenfang, CAI Gengyuan. Molecular marker technology and application in pig breeding[J]. Journal of South China Agricultural University, 2019, 40(S1): 127-131.
    Citation: YANG Ming, LI Yalan, WANG Qinglai, LIU Jingshun, LIU Zhenyun, LUO Xufang, WU Zhenfang, CAI Gengyuan. Molecular marker technology and application in pig breeding[J]. Journal of South China Agricultural University, 2019, 40(S1): 127-131.

    分子标记技术及其在种猪选育中的应用

    基金项目: 

    广东省"扬帆计划"引进创新创业团队项目 2016YT03H062

    广州国家现代农业产业科技创新中心创建项目 2018kczx01

    详细信息
      作者简介:

      杨明(1985-), 女, 博士, E-mail:359311126@qq.com

      通讯作者:

      蔡更元(1970-), 男, 研究员, 博士, E-mail:cgy0415@163.com

    Molecular marker technology and application in pig breeding

    • 摘要:

      本文旨在探索分子标记在种猪育种中的应用方法。本文对影响猪重要经济性状的主效基因及因果突变位点研究的进展进行综述,并对可应用分子标记进行分类,追踪了部分分子标记辅助育种在温氏集团的应用效果,归纳了分子标记在种猪选育中的应用方法。为同行在猪育种中应用分子标记辅助选择技术提供参考。

      Abstract:

      To explore the application methods of molecular markers in pig breeding, we reviewed the research progress of major effect genes and causal mutation sites for important economic traits, classified the available molecular markers and tracked the application effect of some molecular markers assisted breeding in Wens Group. The application methods of molecular markers in pig breeding were summarized. Molecular marker assisted selection would be widely used in pig breeding.

    • 表  1   影响猪重要经济性状的主效基因

      基因性状适用猪种
      兰定尼受体(RYR1)恶性高温综合症所有品种
      酸肉基因(PRKAG3)pH/肉色汉普夏
      GP基因(PHKG1)糖原酵解潜能杜洛克
      类胰岛素生长样因子2(IGF2)肌肉生长和脂肪沉积杜洛克、大白等
      黑皮质激素受体4(MC4R)背膘厚/日增重所有品种
      核受体亚家族6, 组A, 成员1(NR6A1)决定猪的脊椎数,影响猪体长合成系
      vertnin蛋白(VRTN)决定猪的脊椎数,影响猪体长所有品种
      岩藻糖基转移酶(FUT1)大肠杆菌F18侵染的抗性所有品种
      黏蛋白13(MUC13)大肠杆菌F4ac侵染的抗性所有品种
      精子鞭毛2(KPL2)精子短尾不育症所有品种
      下载: 导出CSV
    • [1]

      LANDE R, THOMPSON R. Efficiency of marker-assisted selection in the improvement of quantitative traits[J]. Genetics, 1990, 124:743-756. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YCZZ200104020.htm

      [2]

      MEUWISSEN T H E. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing[J]. J Dairy Sci, 1992, 75:1651-1659. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1206390

      [3] 鲁绍雄, 吴常信.动物遗传标记辅助选择研究及其应用[J].遗传, 2002, 24(3):359-362. doi: 10.3321/j.issn:0253-9772.2002.03.035
      [4] 刘鹏渊, 朱军.标记辅助选择改良数量性状的研究进展[J].遗传, 2001, 23(4):375-380. doi: 10.3321/j.issn:0253-9772.2001.04.022
      [5]

      VAN LAERE A S, NGUYEN M, BRAUNSCHWEIG M, et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig[J]. Nature, 2003, 425:832-836. doi: 10.1038-nature02064/

      [6]

      KIM KS, LARSEN N, SHORT T, et al. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits[J]. Mamm Genome, 2000, 11(2):131-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=89e83b3515ea197a1c4ad635da7023f9

      [7]

      MIKAWA S, MOROZUMI T, SHIMANUKI S-L, et al. Fine mapping of a swine quantitative trait locus for number of vertebrae and analysis of an orphan nuclear receptor, germ cell nuclear factor (NR6A1)[J]. Genome Res, 2007, 17(5):586-593. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1855175

      [8]

      FAN Y, XING Y, ZHANG Z, et al. A further look at porcine chromosome 7 reveals VRTN variants associated with vertebral number in Chinese and Western pigs[J]. PLoS One, 2013, 8(4):e62534.

      [9]

      YANG J, HUANG L, YANG M, et al. Possible introgression of the VRTN mutation increasing vertebral number, carcass length and teat number from Chinese pigs into European pigs[J]. Sci Rep, 2016, 19(6):19240. http://www.ncbi.nlm.nih.gov/pubmed/26781738

      [10]

      SIRONEN A, THOMSEN B, ANDERSSON M, et al. An intronic insertion in KPL2 results in aberrant splicing and causes the immotile short-tail sperm defect in the pig[J]. Proc Natl Acad Sci U S A, 2006, 103(13):5006-5011. doi: 10.1073/pnas.0506318103

      [11]

      ROTHSCHILD M F. The estrogen receptor locus is associated with a major gene influencing litter size in pigs[J]. Proc Natl Acad Sci USA, 1996, 93:201-205. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_40206

      [12] 赵要风, 李宁, 肖璐, 等.猪FSHβ亚基基因结构区逆转座子插入突变及其与猪产仔数关系的研究[J].中国科学(C辑), 1999, 29(1):81-86. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cc199901012
      [13] 施启顺.分子育种成果之猪经济性状主效基因研究进展[J].动物科学与动物医学, 2005(9):24-25. doi: 10.3969/j.issn.1673-5358.2005.09.010
      [14]

      FUJⅡ J, OTSU K, ZORZATO F, et al. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia[J]. Science, 1991, 253(5018):448-451. doi: 10.1126/science.1862346

      [15]

      MILAN D, JEON JT, LOOFT C, et al. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle[J]. Science, 2000, 288(5469):1248-1251. doi: 10.1126-science.288.5469.1248/

      [16]

      MA J, YANG J, ZHOU L, et al. A splice mutation in the PHKG1 gene causes high glycogen content and low meat quality in pig skeletal muscle[J]. PLoS Genet, 2014, 10(10):e1004710. doi: 10.1371/journal.pgen.1004710

      [17] 王重龙, 陶立.猪育种中DNA标记辅助选择方法的研究进展[J].中国畜牧兽医, 2008, 35(2): 42-46. http://d.old.wanfangdata.com.cn/Periodical/zgxmsy200802012
      [18]

      VOGELI P, MEIJERINK E, FRIES R, et al. A molecular test for the detection of E.coli F18 receptors: A breakthrough in the struggle against oedema and post-weaning diarrhoea in swine[J]. Schweiz Arch Tierheilk, 1997, 139(11):479-484. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM9480539

      [19]

      KLUKOWSKA J, URBANIAK B, SWITONSKI M, et al. High frequency of M307A mutation at FUT1 locus, causing resistance to oedema disease, in an autochthonous polish pig breed[J]. J Anim Breed Genet, 1999, 116(6):519-524. doi: 10.1046/j.1439-0388.1999.00225.x

      [20]

      REN J, YAN X, AI H, et al. Susceptibility towards enterotoxigenic Escherichia coli F4ac diarrhea is governed by the MUC13 gene in pigs[J]. PLoS One, 2012, 7(9):e44573. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3440394

      [21]

      MEUWISSEN T H E, Goddard ME: The use of marker haplotypes in animal breeding schemes[J]. Genet Sel Evol, 1996, 28:161-176. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2708299

      [22]

      MEIJERINK E, FRIES R, V?GELI P, et al. Two a (1, 2) fucosyltransferase genes on porcine chromo-some 6q11 are closely linked to the blood group inhibitor (S) and Escherichia coli F18 receptor (ECF18R) loci[J]. Mammalian Genome, 1997, 8:736-741. doi: 10.1007/s003359900556

      [23]

      CODDENS A, VERDONCK F, MULINGE M, et al. The possibility of positive selection for both F18(+)Escherichia coli and stress resistant pigs opens new perspectives for pig breeding[J]. Vet Microbiol, 2008, 126(1/2/3):210-215. http://www.sciencedirect.com/science/article/pii/S0378113507003215

      [24]

      RUAN G R, XING Y Y, FAN Y, et al. Genetic variation at RYR1, IGF2, FUT1, MUC13 and KPL2 mutations affecting production traits in Chinese commercial pig breeds[J]. Cezh J Anim Sci, 2013, 58(2):65-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2a9f9f0dec4aaa38ed19274176a10967

      [25]

      MEUWISSEN T H, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157:1819-1829. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1461589

    • 期刊类型引用(0)

      其他类型引用(1)

    表(1)
    计量
    • 文章访问数: 
    • HTML全文浏览量:  0
    • PDF下载量: 
    • 被引次数: 1
    出版历程
    • 收稿日期:  2019-08-17
    • 网络出版日期:  2023-05-17
    • 刊出日期:  2019-12-09

    目录

      /

      返回文章
      返回