Effects of genealogical errors on the reliability of ssGBLUP to estimate breeding values
-
摘要:
本研究旨在探讨系谱错误对ssGBLUP估计育种值(EBV)可靠性的影响程度,研究不同遗传力、参考群、系谱错误下ssGBLUP、GBLUP和BLUP对EBV可靠性的影响。使用QMSim软件进行数据模拟,BLUPf90软件进行数据分析。结果表明,遗传力的高低与系谱错误率对ssGBLUP预测EBV可靠性的趋势无关。当参考群逐渐增大时,ssGBLUP对系谱错误的容忍程度逐渐降低;随着系谱错误率增大,ssGBLUP估计育种值的可靠性呈线性下降趋势。
Abstract:This study was aimed to study the influence of genealogical errors on the reliability of estimated breeding values (EBV) obtained by ssGBLUP. Under the condition of different heritabilities, reference groups and genealogical errors, effects of ssGBLUP, GBLUP and BLUP on the reliability of EBV were evaluated. Data were simulated using QMSim software and analyzed by BLUPf90 software. The results showed that the heritability degree and genealogical error rate had nothing to do with reliability of EBV. The tolerance of ssGBLUP to genealogical errors decreased gradually with the gradual increase of reference group. The reliability of EBV obtained by ssGBLUP decreased linearly with the increase of genealogical error rate.
-
Keywords:
- heritability /
- reference group /
- genealogical error /
- estimated breeding value
-
-
表 1 历史群体的模拟
参数 设定值 初始有效群体含量 100 世代数 1 000 公母比例 1 :1 第1 000世代群体数 2 000 表 2 基础群体的模拟
参数 设定值 初始群体公母数 200 (200) 世代数 16 各世代公母比例 1:1 选配方式 随机交配 选种方式 随机选种 群体增长率 0.2~0.8(逐渐增长) 模拟重复次数 10 表 3 基因组参数的模拟
参数 设定值 染色体条数 19 染色体长度/cM 2 603 标记密度/cM 23.05 QTLs密度/cM 0.26 标记位置 随机分布 QTLs位置 随机分布 标记等位基因数 2 QTLs等位基因数 2 标记突变率 2.5×10-3 QTLs突变率 2.5×10-5 干涉1) 25 1)干涉现象:在减数分裂时,非姐妹染色单体的交叉互换会影响到相邻等位基因之间的关联水平和LD程度,一个单次交换会影响临近位点发生交换的概率 -
[1] MEUWISSEN T H, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157(4):1819-1829. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1461589
[2] ROTHSCHILD M F, PLASTOW G S. Applications of genomics to improve livestock in the developing world[J]. Livest Sci, 2014, 166:76-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2d408d9ab00fc1014b9669982718cb0d
[3] HEFFNER E L, SORRELLS M E, JANNINK J L. Genomic selection for crop improvement[J]. Crop Sci, 2017, 49(1):1-12. http://d.old.wanfangdata.com.cn/Periodical/zwxb-e201804002
[4] TORO M A, SAURA J M, FERNANDEZ B, et al. Accuracy of genomic within-family selection in aquaculture breeding programmes[J]. J Anim Breed Genet, 2017, 134(3):256-263. http://cn.bing.com/academic/profile?id=c28636be57ed6d1186d7f3eee0976a05&encoded=0&v=paper_preview&mkt=zh-cn
[5] OLSON K M, VANRADEN P M, TOOKER M E, et al. Differences among methods to validate genomic evaluations for dairy cattle[J]. J Dairy Sci, 2011, 94(5):2613-2620. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c4d8d2546f7775850cfb5bbb1b549541
[6] PSZCZOLA M, CALUS M P L. Updating the reference population to achieve constant genomic prediction reliability across generations[J]. Animal, 2015, 10(6):7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=85006c9de4792e48a649e532646b4851
[7] FRAGOMENI B O, LOURENCO D A L, TSURUTA S, et al. Use of genomic recursions and algorithm for proven and young animals for single-step genomic BLUP analyses:a simulation study[J]. J Anim Breed Genet, 2015, 132(5):340-345. http://cn.bing.com/academic/profile?id=d499268c38a1a038c82edc4cf81ad670&encoded=0&v=paper_preview&mkt=zh-cn
[8] CHRISTENSEN O F, MADSEN P, NIELSEN B, et al. Single-step methods for genomic evaluation in pigs[J]. Animal, 2012, 10(6):1565-1571. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=248101041d1010767e06ed15712ae9c7
[9] LEGARRA A, AGUILAR I, MISZTAL I. A relationship matrix including full pedigree and genomic information[J]. J Dairy Sci, 2009, 92(9):4656-4663. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=188ec59a39ab78abc395679143ec3148
[10] SARGOLZAEI M, SCHENKEL F S. QMSim:A large-scale genome simulator for livestock[J]. Bioinformatics, 2009, 25(5):680-681. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211144284/
[11] MISZTAL I, TSURUTA S, STRABEL T, et al. BLUPF90 and related programs (BGF90)[C]//Proceedings of the 7th world congress on genetics applied to livestock production. 2002, 33: 743-744.
[12] YAMAGUCHI N, MACDONALD D W. The burden of Co-Occupancy:Intraspecific resource competition and spacing patterns in American mink, mustela vison[J]. J Mammal, 2003, 84(4):1341-1355. http://cn.bing.com/academic/profile?id=6714632191559c6817bec52e60c00b21&encoded=0&v=paper_preview&mkt=zh-cn
[13] 赵静.猪脸识别技术帮助金融机构获得牲畜"身份证"[J].农业知识, 2018(2):37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyzs-kxyz201802026