• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

茉莉酸甲酯和乙烯对番茄果实中类胡萝卜素积累的影响

李结, 黄思源, 符秀梅, 刘平武, 陈银华, 于晓惠

李结, 黄思源, 符秀梅, 等. 茉莉酸甲酯和乙烯对番茄果实中类胡萝卜素积累的影响[J]. 华南农业大学学报, 2025, 46(5): 740-748. DOI: 10.7671/j.issn.1001-411X.202502017
引用本文: 李结, 黄思源, 符秀梅, 等. 茉莉酸甲酯和乙烯对番茄果实中类胡萝卜素积累的影响[J]. 华南农业大学学报, 2025, 46(5): 740-748. DOI: 10.7671/j.issn.1001-411X.202502017
LI Jie, HUANG Siyuan, FU Xiumei, et al. Effects of methyl jasmonate and ethylene on carotenoid accumulation in tomato fruits[J]. Journal of South China Agricultural University, 2025, 46(5): 740-748. DOI: 10.7671/j.issn.1001-411X.202502017
Citation: LI Jie, HUANG Siyuan, FU Xiumei, et al. Effects of methyl jasmonate and ethylene on carotenoid accumulation in tomato fruits[J]. Journal of South China Agricultural University, 2025, 46(5): 740-748. DOI: 10.7671/j.issn.1001-411X.202502017

茉莉酸甲酯和乙烯对番茄果实中类胡萝卜素积累的影响

基金项目: 

海南省自然科学基金面上项目(324MS011);海南省自然科学基金青年基金项目(322QN330);国家自然科学基金地区基金(31960526)

详细信息
    作者简介:

    李 结,E-mail: 3221314402@qq.com

    通讯作者:

    陈银华,主要从事热带作物与微生物互作基础及调控研究,E-mail: yhchen@hainanu.edu.cn

    于晓惠,主要从事番茄基因功能研究,E-mail: xiaohuiyu@hainanu.edu.cn

  • 中图分类号: S641.2

Effects of methyl jasmonate and ethylene on carotenoid accumulation in tomato fruits

  • 摘要:
    目的 

    类胡萝卜素含量是影响番茄Solanum lycopersicum果实色泽和口感的重要因素。本研究旨在解析在番茄成熟过程中茉莉酸对类胡萝卜素积累的影响。

    方法 

    采摘授粉后38 d的番茄果实,施加外源激素及抑制剂,培养5 d后检测果实中类胡萝卜素的含量,并利用 qRT-PCR 技术系统分析番茄成熟过程中类胡萝卜素合成基因的表达变化,研究茉莉酸、乙烯及抑制剂对这些基因表达的影响。

    结果 

    乙烯和茉莉酸甲酯处理组番茄类胡萝卜素的质量浓度是对照组的1.73和1.65倍,且类胡萝卜素合成相关基因 SlCRTISOSlPSY1 的表达量上调。此外,乙烯生物合成通路基因 SlACS1SlACS2 、SlACS3、SlACO1、SlACO2、SlACO3SlACO5SlACO6 及乙烯信号转导通路基因 SlERF.B3SlEIL2 的表达量上调,茉莉酸信号转导通路核心基因 SlMYC2 的表达量也上调。

    结论 

    茉莉酸甲酯对番茄果实中类胡萝卜素积累具有上调作用,并影响主导果实成熟的关键激素−乙烯的合成及信号转导。本研究结果为发现茉莉酸调控番茄果实中类胡萝卜素合成的机制提供了较为重要的线索,对实现番茄果实的成熟调控有指导意义。

    Abstract:
    Objective 

    Carotenoid content is an important factor affecting the color and taste of tomato (Solanum lycopersicum) fruit. This study aims to investigate the effect of jasmonic acid on carotenoid accumulation during tomato ripening,

    Method 

    Tomato fruits at 38 days after pollination were harvested, treated with exogenous hormones and their inhibitors and cultivated for five days. The carotenoid content was measured, and the expression changes of carotenoid synthesis genes during tomato ripening were systematically analyzed using qRT-PCR technology. The effects of jasmonic acid, ethylene and their inhibitors on the expression of these genes were studied.

    Result 

    The results showed that methyl jasmonate and ethylene treatments increased the carotenoid mass concentrations to 1.65-fold and 1.73-fold of the control, respectively, and upregulated the expression levels of carotenoid synthesis-related genes SlCRTISO and SlPSY1. In addition, the expression levels of ethylene biosynthesis pathway genes SlACS1, SlACS2, SlACS3, SlACO1, SlACO2, SlACO3, SlACO5 and SlACO6, and ethylene signal transduction pathway genes SlERF.B3 and SlEIL2 were up-regulated. The expression of the core gene SlMYC2 of the jasmonic acid signal transduction pathway was also up-regulated.

    Conclusion 

    Methyl jasmonate positively regulates carotenoid accumulation in tomato fruits, and affects the synthesis and signal transduction of ethylene, the key hormone controlling fruit ripening. This study provides important clues for understanding jasmonic acid-mediated regulation of carotenoid synthesis, with implications for controlling tomato fruit ripening.

  • 图  1   不同激素处理后番茄果实的表型

    ET:乙烯,MeJA:茉莉酸甲酯,MCP:乙烯抑制剂,MeJA+MCP :茉莉酸甲酯+乙烯抑制剂;标尺=2 cm。

    Figure  1.   Phenotypes of tomato fruits after different hormone treatments

    ET: Ethylene, MeJA: Methyl jasmonate, MCP: Ethylene inhibitor, MeJA+MCP: Methyl jasmonate+ethylene inhibitor; Bar=2 cm.

    图  2   乙烯和茉莉酸甲酯诱导野生型番茄类胡萝卜素的积累

    ET:乙烯,MeJA:茉莉酸甲酯,MCP:乙烯抑制剂,MeJA+MCP :茉莉酸甲酯+乙烯抑制剂;柱子上方的不同小写字母表示显著差异(P<0.05,单因素方差分析)。

    Figure  2.   Carotenoid accumulation in wild-type tomato induced by ethylene and methyl jasmonate

    ET: Ethylene, MeJA: Methyl jasmonate, MCP: Ethylene inhibitor, MeJA+MCP: Methyl jasmonate+ethylene inhibitor; Different lowercase letters above the bars indicate significant differences (P<0.05, One-way ANOVA).

    图  3   促成熟激素及抑制剂对类胡萝卜素合成相关基因表达的影响

    ET:乙烯,MeJA:茉莉酸甲酯,MCP:乙烯抑制剂,MeJA+MCP :茉莉酸甲酯+乙烯抑制剂;各图中,柱子上方的不同小写字母表示显著差异(P<0.05,单因素方差分析)。

    Figure  3.   Effects of maturation hormones and inhibitor on the expressions of genes related to carotenoid synthesis

    ET: Ethylene, MeJA: Methyl jasmonate, MCP: Ethylene inhibitor, MeJA+MCP: Methyl jasmonate+ethylene inhibitor; In each figure, different lowercase letters above the bars indicate significant differences (P<0.05, One-way ANOVA).

    图  4   茉莉酸甲酯对乙烯生物合成关键基因表达的影响

    MeJA:茉莉酸甲酯;各图中,***表示与 CK 差异显著(P<0.001,t 检验)。

    Figure  4.   Effects of methyl jasmonate on the expressions of key genes in ethylene biosynthesis

    MeJA: Methyl jasmonate; In each figure, *** indicates significant difference from CK (P<0.001, t test).

    图  5   茉莉酸甲酯对激素信号转导途径基因表达的影响

    ET:乙烯,MeJA:茉莉酸甲酯,MCP:乙烯抑制剂,MeJA+MCP :茉莉酸甲酯+乙烯抑制剂;各图中,柱子上方的不同小写字母表示显著差异(P<0.05,单因素方差分析)。

    Figure  5.   Effects of methyl jasmonate on expressions of hormone signaling pathway genes

    ET: Ethylene, MeJA: Methyl jasmonate, MCP: Ethylene inhibitor, MeJA+MCP: Methyl jasmonate+ethylene inhibitor; In each figure, different lowercase letters above the bars indicate significant differences (P<0.05, One-way ANOVA).

    表  1   引物信息

    Table  1   Primer information

    基因名称
    Gene name
    基因编号
    Gene number
    正向引物序列(5'→3')
    Forward primer sequence
    反向引物序列(5'→3')
    Reverse primer sequence
    SlPSY1 Solyc03g031860.3 AGAGGTGGTGGAAAGCAA TCTCGGGAGTCATTAGCAT
    SlPDS Solyc03g123760.3 AAGGCGCTGTCTTATCAGGAAA TAAACTACGCTTGCTTCCGACA
    SlZDS Solyc01g097810.3 ACCGTACAACTACGCTACAATGG CATCTGGCGTATAGAGGAGATTG
    SlCRTISO Solyc10g081650.2 GCTTTGTGGCTTGAGTTGGG CTACCAGCATTCTGGGGCAA
    SlLCYB Solyc04g040200.3 TTGACTTAGAACCTCGTTATTGG AACAGTTCCCTTTGTCATTATCTC
    SlLCYE Solyc12g008980.2 GCCACAGGTTATTCAGTCGTCA CCAGTCCAAATAGGAAAAACGAT
    SlACS1 Solyc08g008087.1 TGTGCTTCAAACAAAGGGACT AATCCATCCAATCTTCGAAACG
    SlACS2 Solyc01g095080.3 TGGATGGAAAAGAAGCAACA TGAGGGAGGAATAGGTGACG
    SlACS3 Solyc02g091990.3 TTTTGTCGAGTCCACTGCTC AGTCGAAAAACCCACTTGGA
    SlACS4 Solyc05g050010.3 CAAGCACAATGGAAGAGGAA CTACGAGCGAGGAATTGGAG
    SlACS5 Solyc04g077410.3 ACAATTGCGAATTGGGTTGT TTAATATATCTTCAATTTCCCTTTCAA
    SlACS6 Solyc08g008087.1 AGAACAAGGAGCAAACTTGAAA TTCCTTGCTTGGACCATAGG
    SlACO1 Solyc07g049530.3 TGCAAGTGCTTAGATCCCAAT ACCATACATAAGAAGAGCAAATAATG
    SlACO2 Solyc12g005940.2 GTGCATAGAGTGATCGCACA CAACTAGAGCTGGTGCTGGA
    SlACO3 Solyc09g089580 TTGATGATTACATGAAGTTATATGCTG CAATTTGATCAACTAATTCCACATT
    SlACO4 Solyc02g081190 GGCTAAGGAGCCTAGGTTTGA AACAAATTCCCCCTTGAAAAA
    SlACO5 Solyc07g026650.3 CACCTCGGCTTTCAGGATT GAAAAAGGGGAAAATATATCACTG
    SlACO6 Solyc02g036350 AAGAGCCAAGGTTTGAAGCA TCTTTTCTTCCCATTCCCATT
    SlMYC2 Solyc08g076930.1 TGGTGCTAGAGAGACGTGGA CACATTGGCACTGGAAGCAC
    SlERF.B3 Solyc05g052030.1 TCCGATGACATCTCCCCTGT ATGGCCTTCTCCTTACCCCT
    SlEIL1 Solyc06g073720.2 CTACCCCTCACACCTTGCAG TGCACTTTCCTTGGCTGTCA
    SlEIL2 Solyc01g009170.3 CTGAAGGAGGCGGAAACAG AGCAGGTCCATTGCGATCAA
    SlEIL3 Solyc01g096810.3 TTGATCGAAATGGCCCTGCT GGGTGGAGATACCCCCTTCT
    SlEIL4 Solyc06g073730.2 GGGGTTCTGTGGGGATCTTG CGCTGTTAGGACACCAACCT
    SlASR1 Solyc04g071610.3 CCTGTTCCACCACAAGGACAA GTGCCAAGTTTACCGATTTGC
    下载: 导出CSV
  • [1]

    ALEXANDER L, GRIERSON D. Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening[J]. Journal of Experimental Botany, 2002, 53(377): 2039-2055. doi: 10.1093/jxb/erf072

    [2]

    YAZDANI M, SUN Z, YUAN H, et al. Ectopic expression of ORANGE promotes carotenoid accumulation and fruit development in tomato[J]. Plant Biotechnology Journal, 2019, 17(1): 33-49. doi: 10.1111/pbi.12945

    [3]

    ZHAO X, YUAN X, CHEN S, et al. Role of the tomato TAGL1 gene in regulating fruit metabolites elucidated using RNA sequence and metabolomics analyses[J]. PLoS One, 2018, 13(6): e0199083. doi: 10.1371/journal.pone.0199083

    [4]

    LI L, YUAN H. Chromoplast biogenesis and carotenoid accumulation[J]. Archives of Biochemistry and Biophysics, 2013, 539(2): 102-109. doi: 10.1016/j.abb.2013.07.002

    [5]

    QUIAN-ULLOA R, STANGE C. Carotenoid biosynthesis and plastid development in plants: The role of light[J]. International Journal of Molecular Sciences, 2021, 22(3): 1184. doi: 10.3390/ijms22031184

    [6] 胡路艳. 套袋影响枇杷果实品质及转录因子EjHY5调控类胡萝卜素积累的研究[D]. 重庆: 西南大学, 2024.
    [7]

    ALQUEZAR B, ZACARIAS L, RODRIGO M J. Molecular and functional characterization of a novel chromoplast-specific lycopene β-cyclase from Citrus and its relation to lycopene accumulation[J]. Journal of Experimental Botany, 2009, 60(6): 1783-1797. doi: 10.1093/jxb/erp048

    [8]

    AHRAZEM O, RUBIO-MORAGA A, LOPEZ R C, et al. The expression of a chromoplast-specific lycopene beta cyclase gene is involved in the high production of saffron’ s apocarotenoid precursors[J]. Journal of Experimental Botany, 2010, 61(1): 105-119. doi: 10.1093/jxb/erp283

    [9]

    HU J, WANG J, MUHAMMAD T, et al. Functional analysis of fasciclin-like arabinogalactan in carotenoid synthesis during tomato fruit ripening[J]. Plant Physiology and Biochemistry, 2024, 210: 108589. doi: 10.1016/j.plaphy.2024.108589

    [10]

    LIU L, SHAO Z, ZHANG M, et al. Regulation of carotenoid metabolism in tomato[J]. Molecular Plant, 2015, 8(1): 28-39. doi: 10.1016/j.molp.2014.11.006

    [11]

    PIRRELLO J, PRASAD B C N, ZHANG W, et al. Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene[J]. BMC Plant Biology, 2012, 12: 190. doi: 10.1186/1471-2229-12-190

    [12]

    LIU J, CHEN N, CHEN F, et al. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera)[J]. BMC Genomics, 2014, 15: 281. doi: 10.1186/1471-2164-15-281

    [13]

    LIU M, DIRETTO G, PIRRELLO J, et al. The chimeric repressor version of an Ethylene Response Factor (ERF) family member, Sl-ERF.B3, shows contrasting effects on tomato fruit ripening[J]. New Phytologist, 2014, 203(1): 206-218. doi: 10.1111/nph.12771

    [14]

    LEE J M, JOUNG J G, MCQUINN R, et al. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation[J]. The Plant Journal, 2012, 70(2): 191-204. doi: 10.1111/j.1365-313X.2011.04863.x

    [15]

    SOLANO R, STEPANOVA A, CHAO Q, et al. Nuclear events in ethylene signaling: A transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1[J]. Genes & Development, 1998, 12(23): 3703-3714.

    [16]

    YOKOTANI N, TAMURA S, NAKANO R, et al. Characterization of a novel tomato EIN3-like gene (LeEIL4)[J]. Journal of Experimental Botany, 2003, 54(393): 2775-2776. doi: 10.1093/jxb/erg308

    [17]

    CHEN C, ZHANG M, ZHANG M, et al. ETHYLENE-INSENSITIVE 3-LIKE 2 regulates β-carotene and ascorbic acid accumulation in tomatoes during ripening[J]. Plant Physiology, 2023, 192(3): 2067-2080. doi: 10.1093/plphys/kiad151

    [18]

    PEREZ A G, SANZ C, RICHARDSON D G, et al. Methyl jasmonate vapor promotes β-carotene synthesis and chlorophyll degradation in Golden Delicious apple peel[J]. Journal of Plant Growth Regulation, 1993, 12: 163-167. doi: 10.1007/BF00189648

    [19]

    SOTO A, RUIZ K B, ZIOSI V, et al. Ethylene and auxin biosynthesis and signaling are impaired by methyl jasmonate leading to a transient slowing down of ripening in peach fruit[J]. Journal of Plant Physiology, 2012, 169(18): 1858-1865. doi: 10.1016/j.jplph.2012.07.007

    [20]

    ZIOSI V, BONGHI C, BREGOLI A M, et al. Jasmonate-induced transcriptional changes suggest a negative interference with the ripening syndrome in peach fruit[J]. Journal of Experimental Botany, 2008, 59(3): 563-573. doi: 10.1093/jxb/erm331

    [21]

    LI T, XU Y, ZHANG L, et al. The jasmonate-activated transcription factor MdMYC2 regulates ETHYLENE RESPONSE FACTOR and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening[J]. The Plant Cell, 2017, 29(6): 1316-1334. doi: 10.1105/tpc.17.00349

    [22]

    ZHANG Y, XING H Y, WANG H, et al. SlMYC2 interacted with the SlTOR promoter and mediated JA signaling to regulate growth and fruit quality in tomato[J]. Frontiers in Plant Science, 2022, 13: 1013445. doi: 10.3389/fpls.2022.1013445

    [23]

    ZHAO X, LI F, LI X, et al. Integrated transcriptomic and metabolomic analyses revealed the role of SlMYC2 in tomato (Solanum lycopersicum L. ) fruit development and ripening[J]. Scientia Horticulturae, 2024, 325: 112691. doi: 10.1016/j.scienta.2023.112691

    [24]

    WU Y, LIU X, FU B, et al. Methyl jasmonate enhances ethylene synthesis in kiwifruit by inducing NAC genes that activate ACS1[J]. Journal of Agricultural and Food Chemistry, 2020, 68(10): 3267-3276. doi: 10.1021/acs.jafc.9b07379

    [25]

    LIU L, WEI J, ZHANG M, et al. Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates[J]. Journal of Experimental Botany, 2012, 63(16): 5751-5761. doi: 10.1093/jxb/ers224

    [26]

    LIU H, MENG F, MIAO H, et al. Effects of postharvest methyl jasmonate treatment on main health-promoting components and volatile organic compounds in cherry tomato fruits[J]. Food Chemistry, 2018, 263: 194-200. doi: 10.1016/j.foodchem.2018.04.124

    [27] 曾文静, 杨军, 陈世美杰, 等. 番茄成熟过程中细胞壁代谢相关基因的表达及外源乙烯和ABA处理对其表达的影响[J]. 农业生物技术学报, 2021, 29(6): 1040-1049.
    [28]

    SUN Q, HE Z, FENG D, et al. The abscisic acid-responsive transcriptional regulatory module CsERF110–CsERF53 orchestrates Citrus fruit coloration[J]. Plant Communications, 2024, 5(11): 101065. doi: 10.1016/j.xplc.2024.101065

    [29] 郭俊娥. 番茄组蛋白去乙酰化酶家族基因SlHDA1Sl-HDT3的功能研究[D]. 重庆: 重庆大学, 2017.
    [30]

    HORIE Y, ITO H, KUSABA M, et al. Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis[J]. Journal of Biological Chemistry, 2009, 284(26): 17449-17456. doi: 10.1074/jbc.M109.008912

    [31]

    ALBA R, PAYTON P, FEI Z, et al. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development[J]. The Plant Cell, 2005, 17(11): 2954-2965. doi: 10.1105/tpc.105.036053

    [32]

    NAKATSUKA A, MURACHI S, OKUNISHI H, et al. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening[J]. Plant Physiology, 1998, 118(4): 1295-1305. doi: 10.1104/pp.118.4.1295

    [33]

    TAO X, WU Q, LI J, et al. Ethylene biosynthesis and signal transduction are enhanced during accelerated ripening of postharvest tomato treated with exogenous methyl jasmonate[J]. Scientia Horticulturae, 2021, 281: 109965. doi: 10.1016/j.scienta.2021.109965

    [34]

    FRASER P D, TRUESDALE M R, BIRD C R, et al. Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression)[J]. Plant Physiology, 1994, 105(1): 405-413. doi: 10.1104/pp.105.1.405

    [35]

    PERVEEN R, SULERIA H A R, ANJUM F M, et al. Tomato (Solanum lycopersicum) carotenoids and lycopenes chemistry; Metabolism, absorption, nutrition, and allied health claims: A comprehensive review[J]. Critical Reviews in Food Science and Nutrition, 2015, 55(7): 919-929. doi: 10.1080/10408398.2012.657809

    [36]

    RONEN G, CARMEL-GOREN L, ZAMIR D, et al. An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(20): 11102-11107.

    [37]

    KONDO S. Usage and action mechanism of oxylipins including jasmonic acid on physiological aspects of fruit production[J]. Scientia Horticulturae, 2022, 295: 110893. doi: 10.1016/j.scienta.2022.110893

    [38]

    REHMAN M, SINGH Z, KHURSHID T, et al. Preharvest spray application of methyl jasmonate promotes fruit colour and regulates quality in M7 Navel orange grown in a Mediterranean climate[J]. Australian Journal of Crop Science, 2021, 15(3): 387-393.

    [39]

    WHALE S K, SINGH Z. Endogenous ethylene and color development in the skin of ‘Pink Lady’apple[J]. Journal of the American Society for Horticultural Science, 2007, 132(1): 20-28. doi: 10.21273/JASHS.132.1.20

    [40]

    KONDO S, YAMADA H, SETHA S. Effect of jasmonates differed at fruit ripening stages on 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase gene expression in pears[J]. Journal of the American Society for Horticultural Science, 2007, 132(1): 120-125. doi: 10.21273/JASHS.132.1.120

    [41]

    BARRY C S, LLOP-TOUS M I, GRIERSON D. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato[J]. Plant Physiology, 2000, 123(3): 979-986. doi: 10.1104/pp.123.3.979

    [42] 宋敏. 番茄SlEIL对乙烯合成的转录调控[D]. 杭州: 浙江大学, 2014.
图(5)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-19
  • 修回日期:  2025-04-16
  • 录用日期:  2025-04-22
  • 网络出版日期:  2025-07-09
  • 发布日期:  2025-07-13
  • 刊出日期:  2025-09-09

目录

    Corresponding author: YU Xiaohui, xiaohuiyu@hainanu.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回