Physiological study on the flower color formation of five varieties of Lagerstroemia indica
-
摘要:目的
旨在探讨不同花色紫薇开花过程中的颜色变化及其影响因素。
方法通过测定5个花色(红色、白色、淡粉色、粉色和紫色)紫薇在开花过程中4个时期的花瓣色度值,总叶绿素、类胡萝卜素、花色苷、总黄酮、可溶性糖和可溶性蛋白含量以及pH等理化指标,探讨影响紫薇呈色的生理因素。
结果不同花色紫薇在开花过程中L*(亮度)持续下降,a*(红绿值)和c*(饱和度)先上升后下降,b*(黄蓝值)和h(色调)变化趋势各异;白色紫薇的L*和h最高,最大值分别为61.61和1.45,而红色紫薇的a*、b*和c*最高,最大值分别为44.83、7.39和45.44;盛花期时,红色花中花色苷含量最高,为1.55 mg·g−1,而在白色花和淡粉色花中含量较低,仅为0.04和0.05 mg·g−1,粉花的总黄酮含量最高,在开花过程中平均含量为4.17 mg·g−1。各色紫薇均在花芽期和初花期pH较高,而在盛花期和末花期pH显著下降(P<0.05)。色度值受色素含量调控,其中L*与总叶绿素、类胡萝卜素和花色苷含量呈极显著负相关(P<0.01);a*和c*与三者呈极显著正相关(P<0.01);b*与总黄酮含量呈极显著正相关(P<0.01),与总叶绿素和类胡萝卜素含量呈显著正相关(P<0.05)。
结论色素含量影响花瓣的色度,pH通过影响花色苷稳定性进而影响花色,可溶性糖间接影响花色表现。本研究为揭示影响紫薇花色形成的生理因素提供了科学依据。
Abstract:ObjectiveThis study aims to explore the color changes and influencing factors of Lagerstroemia indica flowers with different flower colors during the blooming process.
MethodThe color values, contents of total chlorophyll, carotenoids, anthocyanins, total flavonoids soluble sugar, and soluble protein were measured at four stages for five flower colors (red, white, light pink, pink and purple). The physiological factors influencing the flower color expression of L. indica were investigated.
ResultThe L* (brightness) of L. indica flowers with different colors continuously decreased during the blooming process. The a* (red-green value) and c* (saturation value) first increased and then decreased. The b* (yellow-blue value) and h (hue) exhibited varying trends. The white-flowered L. indica had the highest L* and h, with maxima of 61.61 and 1.45, respectively, while the red-flowered ones had the highest a*, b*, and c*, reaching maxima of 44.83, 7.39, and 45.44 respectively. At the full blooming stage, the anthocyanin content in red flowers was the highest at 1.55 mg·g−1, whereas it remained relatively low in white and light pink flowers at 0.04 and 0.05 mg·g−1, respectively. Pink flowers displayed the highest total flavonoid content, with an average of 4.17 mg·g−1 during the blooming process. The pH of L. indica flowers of all colors were relatively high at the bud and early blooming stages, but significantly decreased at the full and late blooming stages (P < 0.05). The color values of L. indica flowers were regulated by pigment contents. Specifically, the L* exhibited a highly significant negative correlation with total chlorophyll, carotenoids, and anthocyanin contents (P < 0.01). The a* and c* showed highly significant positive correlations with these three pigments (P < 0.01). The b* showed a highly significant negative correlation with total flavonoid content (P < 0.01) and a significant positive correlation with total chlorophyll and carotenoid contents (P < 0.05).
ConclusionPigment content influences petal color, pH affects flower color by influencing anthocyanin stability, and soluble sugars indirectly affect color expression. This study provides scientific evidence for understanding the physiological factors that influence the color formation of L. indica flowers.
-
Keywords:
- Lagerstroemia indica /
- Flower color /
- Pigments /
- Coloration
-
-
图 2 不同花色紫薇总叶绿素和类胡萝卜素含量变化
各图中,柱子上方的不同大写和小写字母分别代表不同花色和不同时期间差异显著(P<0.05,Duncan’s法)。
Figure 2. Changes in total chlorophyll and carotenoid contents in Lagerstroemia indica varieties with different flower colors
In each figure, different uppercase and lowercase letters on bars represent significant differences among different flower colors and different periods, respectively (P<0.05, Duncan’s method).
图 3 不同花色紫薇花色苷和总黄酮含量变化
各图中,柱子上方的不同大写和小写字母分别代表不同花色和不同时期间差异显著(P<0.05,Duncan’s法)。
Figure 3. Changes in anthocyanin and total flavonoid contents in Lagerstroemia indica varieties with different flower colors
In each figure, different uppercase and lowercase letters on bars represent significant differences among different flower colors and different periods, respectively (P<0.05, Duncan’s method).
图 4 不同花色紫薇pH变化
柱子上方的不同大写和小写字母分别代表不同花色和不同时期间差异显著(P<0.05,Duncan’s法)。
Figure 4. pH Changes in Lagerstroemia indica varieties with different flower colors
Different uppercase and lowercase letters on bars represent significant differences among different flower colors and different periods, respectively (P < 0.05, Duncan’s method).
图 5 不同花色紫薇可溶性糖和可溶性蛋白含量变化
不同大写字母和小写字母分别代表不同花色和不同时期间差异显著(P<0.05,Duncan’s法)。
Figure 5. Changes in soluble sugar and soluble protein contents in Lagerstroemia indica varieties with different flower colors
In each figure, different uppercase and lowercase letters represent significant differences among different flower colors and different periods, respectively (P<0.05, Duncan’s method).
图 6 紫薇开花过程中各指标的相关性
Chl:总叶绿素含量;Car:类胡萝卜素含量;TA:花色苷含量;TF:总黄酮含量;SS:可溶性糖含量;SP:可溶性蛋白含量;*和**分别代表在P<0.05和P<0.01水平显著相关(Pearson法)。
Figure 6. Correlation of various indicators during flowering process of Lagerstroemia indica
Chl: Total chlorophyll content; Car: Carotenoid content; TA: Anthocyanin content; TF: Total flavonoid content; SS: Soluble sugar content; SP: Soluble protein content; * and ** indicate significant correlations at P<0.05 and P<0.01 levels respectively (Pearson method).
表 1 不同花色紫薇花色表型变化1)
Table 1 Phenotypic changes in Lagerstroemia indica varieties with different flower colors
品种 Cultivar
(颜色 Color)时期
PeriodRHSCC 亮度
L*红绿值
a*黄蓝值
b*饱和度
c*色调
h丹红紫叶
Ebony Embers
(红色 Red)S1 67B 37.04±2.24 Ca 11.57±0.44 Bd 1.24±0.19 Bc 11.63±0.46 Bd 0.11±0.01 Cc S2 67C 26.21±3.84 Db 22.46±1.58 Ac 4.69±0.85 Bb 22.96±1.42 Ac 0.21±0.05 Ca S3 60A 20.58±1.41 Cc 44.83±1.15 Aa 7.39±0.94 Aa 45.44±1.20 Aa 0.16±0.02 Bab S4 60B 19.49±0.99 Dc 41.42±1.82 Ab 5.32±0.51 Ab 41.75±1.88 Ab 0.13±0.01 Cbc 飞雪紫叶
Ebony and Ivory
(白色 White)S1 NN155B 61.61±1.31 Aa 0.59±0.09 Db 4.99±0.52 Aa 5.03±0.51 Da 1.45±0.03 Aa S2 NN155B 60.79±1.06 Aa 0.58±0.08 Db 4.10±0.69 Bb 4.14±0.69 Db 1.43±0.02 Aab S3 NN155C 54.58±0.97 Ab 0.89±0.13 Ea 3.82±0.23 Bb 3.92±0.25 Db 1.34±0.02 Ad S4 NN155C 54.67±0.95 Ab 0.37±0.07 Ec 1.82±0.20 Cc 1.86±0.18 Ec 1.37±0.06 Acd Near East
(淡粉 Light pink)S1 62D 51.14±3.56 Ba 5.60±0.54 Cb −4.36±0.93 Ca 7.15±0.19 Cb −0.66±0.15 Db S2 62B 46.99±4.79 Ba 10.52±1.29 Ca −3.30±0.08 Ca 11.03±1.24 Ca −0.31±0.03 Da S3 62C 49.97±8.74 Aa 9.34±1.62 Da −4.22±1.93 Ca 10.33±2.02 Ca −0.41±0.15 Ca S4 62D 48.76±4.82 Ba 8.72±1.30 Da −3.13±0.67 Da 9.27±1.44 Dab −0.34±0.03 Da Tuscarora
(粉色 Pink)S1 54C 29.67±3.86 Dab 24.41±2.12 Aa 4.17±0.58 Ab 24.77±2.10 Aa 0.17±0.03 Cb S2 54D 37.04±3.65 Ca 14.15±1.38 Bc 6.04±0.24 Aa 15.40±1.25 Bc 0.41±0.04 Ba S3 54C 34.26±1.27 Bab 24.64±1.45 Ba 4.07±0.63 Bb 24.98±1.44 Ba 0.16±0.03 Bb S4 54B 29.36±3.97 Cb 20.01±0.77 Bb 4.35±0.53 Bb 20.48±0.86 Bb 0.21±0.02 Bb 紫悦 Ziyue
(紫色 Pupple)S1 N155B 50.32±2.60 Ba 2.10±0.35 Dd 1.00±0.20 Ba 2.34±0.27 Ed 0.45±0.13 Ba S2 N80B 33.66±2.99 Cb 10.75±1.00 Cc −3.61±0.52 Cb 11.34±1.11 Cc −0.32±0.02 Db S3 N80A 23.86±2.54 Cc 21.44±1.72 Ca −9.07±0.66 Dc 23.30±1.41 Ba −0.40±0.05 Cbc S4 N80B 24.70±2.00 CDc 15.66±0.47 Cb −9.18±0.15 Ec 18.15±0.40 Cb −0.53±0.02 Dc 1) 表中数据为3次组间重复的平均值±标准误差;RHSCC:皇家园艺学会比色卡;同列数据后的不同大写和小写字母分别代表不同花色和不同时期间差异显著(P<0.05,Duncan’s法)。
1) Data in the table represent the means ± standard errors of three inter-group replicates. RHSCC: Royal Horticultural Society color card; Different uppercase and lowercase letters of the same column represent significant differences among different flower colors and different periods, respectively (P<0.05, Duncan’s method). -
[1] 张林娟, 李向茂, 奉树成. 紫薇种质资源与应用研究进展[J]. 广东农业科学, 2024, 51(2): 81-91. [2] 顾帆, 郑绍宇, 沈鸿明, 等. 基于灰色关联度分析评价紫薇品种花部观赏性状[J]. 江苏农业科学, 2019, 47(24): 93-100. [3] 乔中全, 王晓明, 李永欣, 等. 38个紫薇品种亲缘关系的ISSR分析[J]. 浙江农业学报, 2019, 31(4): 565-571. doi: 10.3969/j.issn.1004-1524.2019.04.08 [4] YU C M, LIAN B L, FANG W, et al. Transcriptome-based analysis reveals that the biosynthesis of anthocyanins is more active than that of flavonols and proanthocyanins in the colorful flowers of Lagerstroemia indica[J]. Biologia Futura, 2021, 72(4): 473-488. doi: 10.1007/s42977-021-00094-0
[5] 乔中全, 王晓明, 蔡能, 等. 紫薇新品种‘丹霞’[J]. 园艺学报, 2019, 46(10): 2069-2070. [6] 王梦瑶, 顾翠花. 紫薇品种间杂交亲和性分析[J]. 分子植物育种, 2022, 20(7): 2366-2371. [7] XU W, CAI M, PAN H T, et al. Novel hybrids with floral scent between Lagerstroemia caudata and three L. indica cultivars[J]. Scientia Horticulturae, 2023, 316: 112017. doi: 10.1016/j.scienta.2023.112017
[8] WANG Y X, GU C H, BAI S B, et al. Cadmium accumulation and tolerance of Lagerstroemia indica and Lagerstroemia fauriei (Lythraceae) seedlings for phytoremediation applications[J]. International Journal of Phytoremediation, 2016, 18(11): 1104-1112. doi: 10.1080/15226514.2016.1183581
[9] 王湘莹, 魏溧姣, 王晓明, 等. 淹水胁迫对紫薇苗生长及生理特性的影响[J]. 北方园艺, 2024(15): 60-66. [10] 胡卫霞, 邱国金, 王红梅. 3个彩叶紫薇品种的扦插繁殖对比试验[J]. 安徽农业科学, 2024, 52(7): 99-103. doi: 10.3969/j.issn.0517-6611.2024.07.025 [11] WU Y J, LU Q Y, GONG Y, et al. Optimizing nitrogen, phosphorus, and potassium fertilization levels for container plants of Lagerstroemia indica ‘whit III’ based on the comprehensive quality evaluation[J]. HortScience, 2023, 58(2): 222-230. doi: 10.21273/HORTSCI16980-22
[12] ZHOU W, WANG X M, CHEN J H, et al. Abortion categories and characteristics of acarpous crape myrtle floral organs[J]. Journal of the American Society for Horticultural Science, 2019, 144(6): 387-393. doi: 10.21273/JASHS04757-19
[13] 周围, 陈建华, 王晓明, 等. 结实与不结实紫薇花芽发育形态及生理特性[J]. 中南林业科技大学学报, 2023, 43(10): 148-157. [14] 马晓华, 陈春青, 叶胜忠, 等. 不同花色紫薇花瓣的花色苷化合物组分及含量比较[J]. 亚热带农业研究, 2023, 19(1): 56-63. [15] 林启芳, 刘婷婷, 刘洁茹, 等. 紫薇属与黄薇属植物花瓣类黄酮组成及含量分析[J]. 园艺学报, 2021, 48(10): 1956-1968. [16] ZHANG J, WANG L S, GAO J M, et al. Determination of anthocyanins and exploration of relationship between their composition and petal coloration in crape myrtle (Lagerstroemia hybrid)[J]. Journal of Integrative Plant Biology, 2008, 50(5): 581-588. doi: 10.1111/j.1744-7909.2008.00649.x
[17] 谢燕, 贺英, 周宁智, 等. 蜡梅‘美人醉’花色变化过程中生理生化特性研究[J]. 西北植物学报, 2023, 43(4): 611-617. doi: 10.7606/j.issn.1000-4025.2023.04.0611 [18] 董胜君, 范雯萱, 张云程, 等. 粉花西伯利亚杏花色变化的生理特性研究[J]. 沈阳农业大学学报, 2023, 54(2): 140-148. doi: 10.3969/j.issn.1000-1700.2023.02.002 [19] 何娜, 杨祎凡, 江皓, 等. 观赏海棠花色与花瓣pH、表皮细胞形态特征的关系[J]. 福建农业学报, 2021, 36(9): 1025-1032. doi: 10.3969/j.issn.1008-0384.2021.9.fjnyxb202109005 [20] JIANG T, MAO Y, SUI L S, et al. Degradation of anthocyanins and polymeric color formation during heat treatment of purple sweet potato extract at different pH[J]. Food Chemistry, 2019, 274: 460-470. doi: 10.1016/j.foodchem.2018.07.141
[21] SIGURDSON G T, ROBBINS R J, COLLINS T M, et al. Spectral and colorimetric characteristics of metal chelates of acylated cyanidin derivatives[J]. Food Chemistry, 2017, 221: 1088-1095. doi: 10.1016/j.foodchem.2016.11.052
[22] MENG L S, XU M K, WAN W, et al. Sucrose signaling regulates anthocyanin biosynthesis through a MAPK cascade in Arabidopsis thaliana[J]. Genetics, 2018, 210(2): 607-619. doi: 10.1534/genetics.118.301470
[23] JIN Z Q, WANG Y D, SI C C, et al. Effects of shading intensities on the yield and contents of anthocyanin and soluble sugar in tubers of purple sweet potato[J]. Crop Science, 2023, 63(5): 3013-3024. doi: 10.1002/csc2.21076
[24] ZHANG D L, XIE A Q, YANG X, et al. Analysis of physiological and biochemical factors affecting flower color of herbaceous peony in different flowering periods[J]. Horticulturae, 2023, 9(4): 502. doi: 10.3390/horticulturae9040502
[25] 周琦, 赵峰, 张慧会, 等. 香水莲花开花过程中花色变化规律研究[J]. 热带作物学报, 2024, 45(1): 122-133. doi: 10.3969/j.issn.1000-2561.2024.01.013 [26] 袁美静, 马誉, 巫瑞, 等. 影响月季花瓣呈色的理化因子及花色苷组分分析[J]. 西北植物学报, 2024, 44(2): 255-269. [27] 周兵, 闫小红, 雷艺涵, 等. 紫茉莉开花过程中花色和花色素的变化规律[J]. 植物研究, 2022, 42(3): 475-482. doi: 10.7525/j.issn.1673-5102.2022.03.017 [28] 蒋朵朵, 李林. 2种茄科植物花色变化的生理生化机制[J]. 河南农业科学, 2021, 50(8): 133-145. [29] 勾昕, 胡薇薇, 范亚飞, 等. 文心兰切花不同开放阶段花被的生理生化变化[J]. 热带生物学报, 2016, 7(1): 70-75. [30] ONDER S, TONGUC M, ONDER D, et al. Flower color and carbohydrate metabolism changes during the floral development of Rosa damascena[J]. South African Journal of Botany, 2023, 156: 234-243. doi: 10.1016/j.sajb.2023.03.026
[31] ZHOU Y W, YIN M, ABBAS F, et al. Classification and association analysis of Gerbera (Gerbera hybrida) flower color traits[J]. Frontiers in Plant Science, 2022, 12: 779288. doi: 10.3389/fpls.2021.779288
[32] 李浙浙, 张一丹, 王波, 等. 木槿开花过程中花色素的变化规律及其影响因素[J]. 植物研究, 2023, 43(4): 550-561. doi: 10.7525/j.issn.1673-5102.2023.04.008 [33] 关超, 潘占冬, 孙阳, 等. 3种鸡蛋花开花过程中花色与花色素的变化规律[J/OL]. 分子植物育种, 2023: 1-23. (2023-05-18)[2024-12-08]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20230517. 1427. 026. html. [34] 刘智媛, 叶康, 杜习武, 等. 藤本月季花瓣形态结构和色素含量相关性分析[J]. 北京农学院学报, 2022, 37(1): 1-10. [35] LUNA-VITAL D, LI Q, WEST L, et al. Anthocyanin condensed forms do not affect color or chemical stability of purple corn pericarp extracts stored under different pHs[J]. Food Chemistry, 2017, 232: 639-647. doi: 10.1016/j.foodchem.2017.03.169
[36] ZHOU X Y, XIE W, JING H, et al. Analysis of anthocyanins and total flavonoids content in functional rice and its recombination inbred lines[J]. Frontiers in Plant Science, 2023, 14: 1113618. doi: 10.3389/fpls.2023.1113618
[37] HONG S D, WANG J, WANG Q, et al. Decoding the formation of diverse petal colors of Lagerstroemia indica by integrating the data from transcriptome and metabolome[J]. Frontiers in Plant Science, 2022, 13: 970023. doi: 10.3389/fpls.2022.970023
[38] GU C H, HONG S D, WANG J, et al. Identification and expression analysis of the bZIP and WRKY gene families during anthocyanins biosynthesis in Lagerstroemia indica L[J]. Horticulture, Environment, and Biotechnology, 2024, 65: 169-180. doi: 10.1007/s13580-023-00551-w
[39] 许芳祺, 柯玲俊, 余惠文, 等. 不同龙船花的花色与色素含量分析[J]. 福建热作科技, 2024, 49(3): 30-33. doi: 10.3969/j.issn.1006-2327.2024.03.009 [40] 韩美玲, 赵宇珩, 李厚华, 等. 开花过程中不同海棠花瓣酚类物质动态变化与花色淡化原因分析[J]. 北方园艺, 2023(16): 64-70. doi: 10.11937/bfyy.20224807 [41] ZHANG C, FU J X, WANG Y J, et al. Glucose supply improves petal coloration and anthocyanin biosynthesis in Paeonia suffruticosa ‘Luoyang Hong’ cut flowers[J]. Postharvest Biology and Technology, 2015, 101: 73-81. doi: 10.1016/j.postharvbio.2014.11.009
[42] GUO Y Z, QIU Y J, HU H, et al. Petal morphology is correlated with floral longevity in Paeonia suffruticosa[J]. Agronomy, 2023, 13(5): 1372. doi: 10.3390/agronomy13051372
[43] WANG X Y, WU Z H, ZHOU Q, et al. Physiological response of soybean plants to water deficit[J]. Frontiers in Plant Science, 2022, 12: 809692. doi: 10.3389/fpls.2021.809692