• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

接种复合菌群对间作系统中玉米、大豆生长及氮磷吸收的影响

黄活志, 刘洋, 陈康, 王秀荣

黄活志, 刘洋, 陈康, 等. 接种复合菌群对间作系统中玉米、大豆生长及氮磷吸收的影响[J]. 华南农业大学学报, 2025, 46(5): 1-12. DOI: 10.7671/j.issn.1001-411X.202412008
引用本文: 黄活志, 刘洋, 陈康, 等. 接种复合菌群对间作系统中玉米、大豆生长及氮磷吸收的影响[J]. 华南农业大学学报, 2025, 46(5): 1-12. DOI: 10.7671/j.issn.1001-411X.202412008
HUANG Huozhi, LIU Yang, CHEN Kang, et al. Effect of complex microbial inoculation on growth, and nitrogen and phosphorus uptake of maize and soybean in intercropping system[J]. Journal of South China Agricultural University, 2025, 46(5): 1-12. DOI: 10.7671/j.issn.1001-411X.202412008
Citation: HUANG Huozhi, LIU Yang, CHEN Kang, et al. Effect of complex microbial inoculation on growth, and nitrogen and phosphorus uptake of maize and soybean in intercropping system[J]. Journal of South China Agricultural University, 2025, 46(5): 1-12. DOI: 10.7671/j.issn.1001-411X.202412008

接种复合菌群对间作系统中玉米、大豆生长及氮磷吸收的影响

基金项目: 

国家重点研发计划(2021YFF1000500)

详细信息
    作者简介:

    黄活志,E-mail: 18319763079@139.com

    刘 洋,E-mail: LY2804180212@163.com;†表示同等贡献

    通讯作者:

    王秀荣,主要从事植物营养生理与分子生物学基础研究,E-mail: xrwang@scau.edu.cn

  • 中图分类号: S144.1

Effect of complex microbial inoculation on growth, and nitrogen and phosphorus uptake of maize and soybean in intercropping system

  • 摘要:
    目的 

    探究接种复合菌群对单、间作玉米和大豆生长及氮磷吸收的影响,为高效利用微生物菌剂提高作物产量提供理论依据。

    方法 

    在玉米和大豆单、间作系统中,利用未灭菌的土壤,进行不接种对照(CK),单接种丛枝菌根(Arbuscular mycorrhizal,AM)真菌(A)、接种根瘤菌(R)、接种芽孢杆菌(B),双接种AM真菌和根瘤菌(A+R)、AM真菌和芽孢杆菌(A+B),根瘤菌和芽孢杆菌(R+B),以及接种AM真菌、根瘤菌和芽孢杆菌的复合菌群(A+R+B)共8个处理的盆栽试验,测定植株干质量、氮磷含量、根系性状、菌根侵染率、根瘤性状、根际pH和酸性磷酸酶活性。

    结果 

    不同组合的双接种处理表现出较好的接种效果,与CK相比,A+B和R+B的单作玉米植株干质量分别增加了14.11%和13.31%,植株氮含量分别增加了30.02%和20.56%,植株磷含量分别增加了 17.77%和16.84%;R+B的单作大豆植株干质量以及氮、磷含量分别增加了28.53%、33.55%和17.29%。与A+B相比,A+R+B的单作和间作玉米植株干质量显著降低;与R+B相比,A+R+B的单作大豆植株干质量和氮磷含量也显著降低。间作显著增加了玉米的植株干质量和氮磷含量(A+R+B处理除外);R+B促进了间作大豆的氮磷吸收和植株生长,部分缓解了间作对大豆生长的抑制作用。与CK相比,R+B促进了间作玉米的菌根侵染以及单、间作大豆的结瘤;A+B、R+B以及间作促进了玉米的根系生长、改变了玉米和大豆的根际过程,从而提高了作物对氮磷养分的获取能力。

    结论 

    在复杂的土壤环境中,单接种较难发挥作用,双接种复合菌群和间作对提高氮磷吸收和促进玉米生长具有重要作用。

    Abstract:
    Objective 

    To investigate the effects of inoculation with synthetic microbial communities on growth, and nitrogen (N) and phosphorus (P) uptake of monocultured or intercropped maize and soybean, and provide a theoretical basis for utilizing efficiently microbial inoculants to enhance crop yield.

    Method 

    Using unsterilized soil in monoculture and intercropping systems of maize and soybean, a pot experiment, including eight treatments of non-inoculated control (CK), single inoculation with arbuscular mycorrhizal (AM) fungi (A), rhizobia (R) or Bacillus (B), dual inoculation with AM fungi and rhizobia (A+R), AM fungi and Bacillus (A+B), or rhizobia and Bacillus (R+B), and triple inoculation with AM fungi, rhizobia and Bacillus (A+R+B), was conducted to determine plant dry weight, N and P contents, root traits, mycorrhizal colonization rate, nodule traits, pH and acid phosphatase activity in the rhizosphere.

    Result 

    The different combinations of dual inoculation exhibited better inoculation effects. Compared with CK, dual inoculations of A+B and R+B increased plant dry weight by 14.11% and 13.31%, N content by 30.02% and 20.56%, and P content by 17.77% and 16.84% in the monocultured maize, respectively. Dual inoculation of R+B increased plant dry weight, N and P contents by 28.53%, 33.55% and 17.29% in the monocultured soybean, respectively. Compared with dual inoculation of A+B, plant dry weight of the monocultured or intercropped maize with triple inoculation of A+R+B significantly reduced. Compared with dual inoculation of R+B, plant dry weight and N and P contents of the monocultured soybean with triple inoculation of A+R+B also significantly reduced. Intercropping significantly increased plant dry weight and N and P contents of maize (except for the A+R+B treatment); Dual inoculation of R+B promoted N and P uptake and plant growth of the intercropped soybean, and partially alleviated the inhibitory effect of intercropping on soybean growth. Compared with CK, Dual inoculation of R+B promoted mycorrhizal colonization rate of the intercropped maize and nodulation of monocultured or intercropped soybean plant. Additionally, dual inoculation of A+B and R+B, as well as intercropping promoted maize root growth, and altered rhizosphere processes of both maize and soybean, thereby enhanced crop acquisition of N and P.

    Conclusion 

    In the complex environment of soil, single inoculation has limited effectiveness, while dual inoculations with complex microbial communities and intercropping play a significant role in improving N and P acquisition and promoting maize growth.

  • 图  1   不同接种处理与栽培方式对玉米和大豆生长的影响

    图中数据为4次重复的平均值及标准误;柱子上不同大、小写字母分别表示单作或间作中不同接种处理间存在显著差异(LSD法,P<0.05);*、**、***分别表示在相同接种处理下单作与间作之间在0.05、0.01和0.001水平差异显著(t检验)。

    Figure  1.   Effects of different inoculation treatments and cultivation methods on the growth of maize and soybean

    Data in the figure represented the mean and standard error of four replicates. Different uppercase or lowercase letters indicated the significant differences among different inoculation treatments in intercropping or monoculture, respectively (LSD method, P<0.05). *, ** and *** indicated the significant differences between monoculture and intercropping under the same inoculation treatment at the levels of 0.05, 0.01 and 0.001, respectively (t-test).

    图  2   不同接种处理和栽培方式对玉米和大豆单株氮或磷含量的影响

    图中数据为4次重复的平均值及标准误;柱子上不同大、小写字母分别表示单作或间作中不同接种处理间存在显著差异(LSD法,P<0.05);*、**、***分别表示在相同接种处理下单作与间作之间在0.05、0.01和0.001水平差异显著(t检验)。

    Figure  2.   Effects of different inoculation treatments and cultivation methods on N or P content per plant of maize and soybean

    Data in the figure represented the mean and standard error of four replicates. Different uppercase and lowercase letters indicated the significant differences among different inoculation treatments in intercropping or monoculture, respectively (LSD method, P<0.05). *, ** and *** indicated the significant differences between monoculture and intercropping under the same inoculation treatment at the levels of 0.05, 0.01 and 0.001, respectively (t-test).

    图  3   不同接种处理和栽培方式对玉米和大豆根系性状的影响

    图中数据为4次重复的平均值及标准误;柱子上不同大、小写字母分别表示单作或间作中不同接种处理间存在显著差异(LSD法,P<0.05);*、**、***分别表示在相同接种处理下单作与间作之间在0.05、0.01和0.001水平差异显著(t检验)。

    Figure  3.   Effects of different inoculation treatments and cultivation methods on root traits of maize and soybean

    Data in the figure represented the mean and standard error of four replicates. Different uppercase and lowercase letters indicated the significant differences among different inoculation treatments in intercropping or monoculture, respectively (LSD method, P<0.05). *, ** and *** indicated the significant differences between monoculture and intercropping under the same inoculation treatment at the levels of 0.05, 0.01 and 0.001, respectively (t-test).

    图  4   不同接种处理和栽培方式对菌根侵染率和结瘤性状的影响

    图中数据为4次重复的平均值及标准误;柱子上不同大、小写字母分别表示单作或间作中不同接种处理间存在显著差异(LSD法,P<0.05);*、**、***分别表示在相同接种处理下单作与间作之间在0.05、0.01和0.001水平差异显著(t检验)。

    Figure  4.   Effects of different inoculation treatments and cultivation methods on mycorrhizal colonization rate and nodule trait

    Data in the figure represented the mean and standard error of four replicates. Different uppercase and lowercase letters indicated the significant differences among different inoculation treatments in intercropping or monoculture, respectively (LSD method, P<0.05). *, ** and *** indicated the significant differences between monoculture and intercropping under the same inoculation treatment at the levels of 0.05, 0.01 and 0.001, respectively (t-test).

    图  5   不同接种处理和栽培方式对玉米和大豆根际pH值和酸性磷酸酶活性的影响

    图中数据为4次重复的平均值及标准误;柱子上不同大、小写字母分别表示单作或间作中不同接种处理间存在显著差异(LSD法,P<0.05);*、**、***分别表示在相同接种处理下单作与间作之间在0.05、0.01和0.001水平差异显著(t检验)。

    Figure  5.   Effects of different inoculation treatments and cultivation methods on pH and acid phosphatase activities in the rhizosphere of maize and soybean

    Data in the figure represented the mean and standard error of four replicates. Different uppercase and lowercase letters indicated the significant differences among different inoculation treatments in intercropping or monoculture, respectively (LSD method, P<0.05). *, ** and *** indicated the significant differences between monoculture and intercropping under the same inoculation treatment at the levels of 0.05, 0.01 and 0.001, respectively (t-test).

    图  6   功能变量的主成分分析(PCA)

    PDW:植株干质量;N、P:植株氮、磷含量;L:总根长;S:根表面积;MCR:菌根侵染率;NN:根瘤数目;NDW:根瘤干质量;pH:根际pH;APA:根际酸性磷酸酶活性;置信椭圆:95%的置信区间。

    Figure  6.   Principal component analysis (PCA) of functional variables

    PDW: Plant dry weight; N, P: N or P content per plant; L: Total root length; S: Root surface area; MCR: Mycorrhizal colonization rate; NN: Nodule number; NDW: Nodule dry weight; pH: The pH value in rhizosphere; APA: Acid phosphatase activity in rhizosphere; Confidence ellipse: 95% confidence interval.

    表  1   接种处理(I)、栽培方式(C)及交互作用(I×C)对玉米和大豆植株生长、菌根侵染率、结瘤性状和根际性状影响的方差分析1)

    Table  1   Variance analysis of the effects of inoculation treatment (I), cultivation method (C), and their interactions (I×C) on plant growth, mycorrhizal colonization rate, nodule trait, and rhizosphere trait of maize and soybean

    变异来源Variance source I C I×C
    玉米植株干质量 Plant dry weight of maize 4.43*** 189.6*** 3.02*
    大豆植株干质量 Plant dry weight of soybean 5.68*** 0.07 1.66
    玉米植株氮含量 Plant N content of maize 1.39 81.23*** 0.57
    大豆植株氮含量 Plant N content of soybean 5.58*** 11.62** 2.31*
    玉米植株磷含量 Plant P content of maize 4.07** 85.18*** 4.65***
    大豆植株磷含量 Plant P content of soybean 2.94* 43.55*** 0.86
    玉米总根长 Total root length of maize 1.84 63.57*** 1.1
    大豆总根长 Total root length of soybean 3.32** 4.28* 0.75
    玉米根表面积 Root surface area of maize 1.17 35.8*** 1.56
    大豆根表面积 Root surface area of soybean 2.15 20.24*** 0.61
    玉米菌根侵染率 Mycorrhizal colonization rate of maize 1.95 17.07*** 4.2**
    大豆菌根侵染率 Mycorrhizal colonization rate of soybean 0.86 60.96*** 0.67
    根瘤个数 Nodule number 5.75*** 15.97*** 0.69
    根瘤干质量 Nodule dry weight 2.97* 31.21*** 0.18
    玉米根际pH pH in maize rhizosphere 1.8 12.44*** 4.38***
    大豆根际pH pH in soybean rhizosphere 2.8* 31.83*** 2.25*
    玉米根际酸性磷酸酶活性 ACP activity in maize rhizosphere 3.98** 21.72*** 2.36*
    大豆根际酸性磷酸酶活性 ACP activity in soybean rhizosphere 3.03* 0.65 5.07***
     1) * P<0.05, ** P<0.01, *** P<0.001; No significance.
    下载: 导出CSV
  • [1]

    HEGAZI A M, EL-SHRAIY A M, GHONAME A A. Mitigation of salt stress negative effects on sweet pepper using arbuscular mycorrhizal fungi (AMF), Bacillus megaterium and brassinosteroids (BRs)[J]. Gesunde Pflanzen, 2017, 69(2): 91-102. doi: 10.1007/s10343-017-0393-9

    [2]

    BERG G, RYBAKOVA D, GRUBE M, et al. The plant microbiome explored: Implications for experimental botany[J]. Journal of Experimental Botany, 2016, 67(4): 995-1002. doi: 10.1093/jxb/erv466

    [3] 杨国玲, 邓璐璐, 陈康, 等. 低磷条件下接种丛枝菌根真菌对大豆生长和磷吸收的影响[J]. 华南农业大学学报, 2021, 42(4): 42-50.
    [4]

    UDVARDI M, POOLE P S. Transport and metabolism in legume-rhizobia symbioses[J]. Annual Review of Plant Biology, 2013, 64: 781-805. doi: 10.1146/annurev-arplant-050312-120235

    [5]

    KASCHUK G, AULER A C, VIEIRA C E, et al. Coinoculation impact on plant growth promotion: A review and meta-analysis on coinoculation of rhizobia and plant growth-promoting bacilli in grain legumes[J]. Brazilian Journal of Microbiology, 2022, 53(4): 2027-2037. doi: 10.1007/s42770-022-00800-7

    [6] 刘忆, 袁玲. 根瘤菌和AM真菌对紫花苜蓿结瘤和产质量的影响[J]. 土壤学报, 2020, 57(5): 1292-1298.
    [7]

    KIDDEE S, WONGDEE J, PIROMYOU P, et al. Unveiling the tripartite synergistic interaction of plant-arbuscular mycorrhizal fungus symbiosis by endophytic Bacillus velezensis S141 in Lotus japonicus[J]. Symbiosis, 2024, 92(3): 355-367. doi: 10.1007/s13199-024-00975-7

    [8] 刘丽, 马鸣超, 姜昕, 等. 根瘤菌与促生菌双接种对大豆生长和土壤酶活的影响[J]. 植物营养与肥料学报, 2015, 21(3): 644-654.
    [9]

    XING P F, ZHAO Y B, GUAN D W, et al. Effects of Bradyrhizobium co-inoculated with Bacillus and Paenibacillus on the structure and functional genes of soybean rhizobacteria community[J]. Genes, 2022, 13(11): 1922. doi: 10.3390/genes13111922

    [10]

    ZHANG W P, LI Z X, GAO S N, et al. Resistance vs. surrender: Different responses of functional traits of soybean and peanut to intercropping with maize[J]. Field Crops Research, 2023, 291: 108779.

    [11]

    ZHENG B C, ZHOU Y, CHEN P, et al. Maize–legume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability[J]. Journal of Integrative Agriculture, 2022, 21(6): 1755-1771.

    [12]

    BEGAM A, PRAMANICK M, DUTTA S, et al. Inter-cropping patterns and nutrient management effects on maize growth, yield and quality[J]. Field Crops Research, 2024, 310: 109363. doi: 10.1016/j.fcr.2024.109363

    [13]

    KOSKEY G, AVIO L, TURRINI A, et al. Durum wheat-lentil relay intercropping enhances soil mycorrhizal activity but does not alter structure of arbuscular mycorrhizal fungal community within roots[J]. Agriculture, Ecosystems & Environment, 2023, 357: 108696.

    [14]

    QIN Y H, YAN Y X, CHENG L, et al. Arbuscular mycorrhizal fungi and Rhizobium facilitate nitrogen and phosphate availability in soybean/maize intercropping systems[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(2): 2723-2731. doi: 10.1007/s42729-023-01229-z

    [15]

    LI X F, WANG P, TIAN X L, et al. Complementarity for nitrogen use in maize/faba bean intercropping with inoculation[J]. Plant and Soil, 2025, 506(1): 343-357.

    [16]

    MAO J, WANG P, XIAO C L, et al. Rhizobium inoculation improves yield advantages and soil Olsen phosphorus by enhancing interspecific facilitation in intercropping[J]. Plant and Soil, 2025, 506(1): 359-373.

    [17] 程凤娴, 涂攀峰, 严小龙, 等. 酸性红壤中磷高效大豆新种质的磷营养特性[J]. 植物营养与肥料学报, 2010, 16(1): 71-81.
    [18]

    QIN L, ZHAO J, TIAN J, et al. The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean[J]. Plant Physiology, 2012, 159(4): 1634-1643. doi: 10.1104/pp.112.199786

    [19] 程凤娴, 曹桂芹, 王秀荣, 等. 华南酸性低磷土壤中大豆根瘤菌高效株系的发现及应用[J]. 科学通报, 2008, 53(23): 2903-2910.
    [20] 罗莎莉. 复合微生物菌群的构建及其对花生促生效果的研究[D]. 广州: 华南农业大学, 2023.
    [21] 郑林生, 刘志强, 陈康, 等. 基因型影响磷镁互作下大豆生长及根瘤和菌根性状[J]. 植物营养与肥料学报, 2022, 28(9): 1685-1698.
    [22] 李宝齐, 邓英杰, 杨静文. 苯酚−次氯酸盐法测定空白脂质体透析液中铵离子浓度[J]. 中国药剂学杂志(网络版), 2006, 4(4): 184-188.
    [23] 崔广娟, 曹华元, 陈康, 等. 镉胁迫对4种基因型大豆生长和体内元素分布的影响[J]. 华南农业大学学报, 2020, 41(5): 49-57.
    [24] 逯路文, 杨飞, 王倩倩, 等. 不同类型土壤上玉米生长对低磷和施磷肥的响应[J]. 华南农业大学学报, 2024, 45(4): 516-524.
    [25]

    LI H G, SHEN J B, ZHANG F S, et al. Phosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soil[J]. Biology and Fertility of Soils, 2010, 46(2): 79-91. doi: 10.1007/s00374-009-0411-x

    [26]

    YU L, ZHANG H, ZHANG W T, et al. Arbuscular mycorrhizal fungi alter the interaction effects between Bacillus and Rhizobium on root morphological traits of Medicago ruthenica L.[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(2): 2868-2877. doi: 10.1007/s42729-023-01242-2

    [27] 汪芳芳, 孙秀娟, 徐伟慧, 等. 大豆根瘤内生菌合成菌群对根系微生物群落的影响[J]. 中国油料作物学报, 2025, 47(1): 192-203.
    [28]

    WANG C H, LI Y J, LI M J, et al. Functional assembly of root-associated microbial consortia improves nutrient efficiency and yield in soybean[J]. Journal of Integrative Plant Biology, 2021, 63(6): 1021-1035. doi: 10.1111/jipb.13073

    [29] 马鸣超, 刘丽, 姜昕, 等. 胶质类芽孢杆菌与慢生大豆根瘤菌复合接种效果评价[J]. 中国农业科学, 2015, 48(18): 3600-3611.
    [30]

    PATACZEK L, ARMAS J C B, PETSCH T, et al. Single-strain inoculation of Bacillus subtilis and Rhizobium phaseoli affects nitrogen acquisition of an improved mungbean cultivar[J]. Journal of Soil Science and Plant Nutrition, 2024, 24(4): 6746-6759. doi: 10.1007/s42729-024-02001-7

    [31]

    LARIMER A L, BEVER J D, CLAY K. The interactive effects of plant microbial symbionts: A review and meta-analysis[J]. Symbiosis, 2010, 51(2): 139-148. doi: 10.1007/s13199-010-0083-1

    [32]

    MA H M, YU X Q, YU Q, et al. Maize/alfalfa intercropping enhances yield and phosphorus acquisition[J]. Field Crops Research, 2023, 303: 109136. doi: 10.1016/j.fcr.2023.109136

    [33]

    ZHANG L Q, FENG Y D, ZHAO Z H, et al. Maize/soybean intercropping with nitrogen supply levels increases maize yield and nitrogen uptake by influencing the rhizosphere bacterial diversity of soil[J]. Frontiers in Plant Science, 2024, 15: 1437631. doi: 10.3389/fpls.2024.1437631

    [34] 覃潇敏, 潘浩男, 肖靖秀, 等. 施磷水平对玉米大豆间作系统氮素吸收与分配的影响[J]. 植物营养与肥料学报, 2021, 27(7): 1173-1184.
    [35] 李雪, 张霞, 陈国鹏, 等. 西南地区玉米−大豆带状套作成本及综合效益分析[J]. 中国油料作物学报, 2023, 45(2): 427-436.
    [36]

    HOMULLE Z, GEORGE T S, KARLEY A J. Root traits with team benefits: Understanding belowground interactions in intercropping systems[J]. Plant and Soil, 2022, 471(1): 1-26.

    [37]

    BEN-LAOUANE R, AIT-EL-MOKHTAR M, ANLI M, et al. Green compost combined with mycorrhizae and rhizobia: A strategy for improving alfalfa growth and yield under field conditions[J]. Gesunde Pflanzen, 2021, 73(2): 193-207. doi: 10.1007/s10343-020-00537-z

    [38] 张淑彬, 王幼珊, 殷晓芳, 等. 不同施磷水平下AM真菌发育及其对玉米氮磷吸收的影响[J]. 植物营养与肥料学报, 2017, 23(3): 649-657.
    [39]

    YONAS M W, ZAWAR S. Optimizing chickpea growth: Unveiling the interplay of arbuscular mycorrhizal fungi and Rhizobium for sustainable agriculture[J]. Soil Use and Management, 2024, 40(2): e13057. doi: 10.1111/sum.13057

    [40] 段海霞, 师茜, 康生萍, 等. 丛枝菌根真菌和根瘤菌与植物共生研究进展[J]. 草业学报, 2024, 33(5): 166-182. doi: 10.11686/cyxb2023225
    [41]

    HU F L, ZHAO C, FENG F X, et al. Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea[J]. Plant and Soil, 2017, 412(1): 235-251.

    [42]

    QIN X M, PAN H N, XIAO J X, et al. Increased nodular P level induced by intercropping stimulated nodulation in soybean under phosphorus deficiency[J]. Scientific Reports, 2022, 12(1): 1991. doi: 10.1038/s41598-022-05668-z

    [43]

    HINSINGER P, PLASSARD C, TANG C X, et al. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review[J]. Plant and Soil, 2003, 248(1): 43-59.

    [44] 崔宸阳, 李静, 杨子, 等. 土壤闭蓄态磷的形成、转化与利用途径[J]. 植物营养与肥料学报, 2024, 30(7): 1413-1421.
    [45] 何群辉, 孙亚丽, 管仁水, 等. 不同蓼草根际土壤酸性磷酸酶活性及其影响因素[J]. 湖南师范大学自然科学学报, 2023, 46(5): 116-123.
    [46]

    KONG Y B, LI X H, MA J, et al. GmPAP4, a novel purple acid phosphatase gene isolated from soybean (Glycine max), enhanced extracellular phytate utilization in Arabidopsis thaliana[J]. Plant Cell Reports, 2014, 33(4): 655-667. doi: 10.1007/s00299-014-1588-5

    [47]

    BETENCOURT E, DUPUTEL M, COLOMB B, et al. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil[J]. Soil Biology and Biochemistry, 2012, 46: 181-190. doi: 10.1016/j.soilbio.2011.11.015

    [48]

    HINSINGER P, BETENCOURT E, BERNARD L, et al. P for two, sharing a scarce resource: Soil phosphorus acquisition in the rhizosphere of intercropped species[J]. Plant Physiology, 2011, 156(3): 1078-1086. doi: 10.1104/pp.111.175331

图(6)  /  表(1)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0

目录

    /

    返回文章
    返回