• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

林分胸径和树高关系评价全国针叶树种立地质量的适用性

吴恒, 田相林, 罗春林

吴恒, 田相林, 罗春林. 林分胸径和树高关系评价全国针叶树种立地质量的适用性[J]. 华南农业大学学报, 2025, 46(3): 370-378. DOI: 10.7671/j.issn.1001-411X.202409025
引用本文: 吴恒, 田相林, 罗春林. 林分胸径和树高关系评价全国针叶树种立地质量的适用性[J]. 华南农业大学学报, 2025, 46(3): 370-378. DOI: 10.7671/j.issn.1001-411X.202409025
WU Heng, TIAN Xianglin, LUO Chunlin. Applicability of the relationship between stand DBH and height to evaluate the site quality of major coniferous stands in China[J]. Journal of South China Agricultural University, 2025, 46(3): 370-378. DOI: 10.7671/j.issn.1001-411X.202409025
Citation: WU Heng, TIAN Xianglin, LUO Chunlin. Applicability of the relationship between stand DBH and height to evaluate the site quality of major coniferous stands in China[J]. Journal of South China Agricultural University, 2025, 46(3): 370-378. DOI: 10.7671/j.issn.1001-411X.202409025

林分胸径和树高关系评价全国针叶树种立地质量的适用性

基金项目: 

国家财政专项(2130207);国家林业和草原局西南调查规划院科技项目(2023-09)

详细信息
    作者简介:

    吴 恒,主要从事林草资源调查监测研究,E-mail: heng.wu@helsinki.fi

    通讯作者:

    田相林,主要从事森林碳汇经营研究,E-mail: xianglin.tian@helsinki.fi

  • 中图分类号: S757.2

Applicability of the relationship between stand DBH and height to evaluate the site quality of major coniferous stands in China

  • 摘要:
    目的 

    建立科学的立地质量评价体系,指导林业生产实践。

    方法 

    根据全国主要针叶林分样地数量情况,划分16个针叶树种组,采用Richards、Logistic和Korf模型拟合导线曲线,构建立地形指数模型,并进行落点检验,运用1999—2018年连续4期清查数据进行立地形等级动态变化分析。

    结果 

    Richards、Logistic和Korf模型拟合导向曲线决定系数均值均大于0.95,建立的立地形指数模型落点检验值均大于90.00%,落点检验均值达96.59%,适用于实际生产。20年间,针叶林分Ⅰ级和Ⅱ级均值合计增长了7.60个百分点,Ⅲ级均值合计减少了3.50个百分点,Ⅳ级和Ⅴ级均值合计减少了4.10个百分点,立地质量表现为较好的改善趋势。

    结论 

    基于胸径−树高关系建立全国统一的立地质量评价模型具有可行性和合理性,通过减少气候差异导致基于树龄的生长速率对立地质量评价的影响偏差,使不同地区间相同林分的评价结果具有可比性,在大尺度水平具有较好的适用性,但仍然需要警惕经营措施和小样本数据导致的评价结果不确定。

    Abstract:
    Objective 

    To establish a scientific site quality evaluation system, guide forestry production practice.

    Method 

    Based on the number of major coniferous forest stand plots across the country, 16 coniferous tree groups were classified. The Richards, Logistic, and Korf models were applied to fit the guiding curves and establish a site form index model, which was then validated through a scatter plot test. Data from four consecutive forest inventory periods from 1999 to 2018 were used to analyze dynamic changes in site form levels.

    Result 

    The mean coefficients of determination for guiding curves fitted with the Richards, Logistic, and Korf models were all above 0.95. The scatter plot validation of the established site form index model showed test values exceeding 90.00%, with an average value of 96.59%, indicating its feasibility for practical use. Over 20 years, site quality for coniferous stands improved, with a combined proportion increase of 7.60 percent in grades I and II, a 3.50 percent decrease in grade III, and a combined reduction of 4.10 percent in grades IV and V.

    Conclusion 

    Developing a national unified site quality assessment model based on DBH-height relationships is feasible and reasonable. This approach reduces the impact deviations of climate-induced and age-based growth rate on site quality assessment, allowing for comparable site quality evaluations across regions. The model demonstrates good applicability on a large scale, though it is essential to consider potential uncertainties due to management practices and limited sample data.

  • 图  1   主要针叶林分胸径和树高拟合曲线图

    Figure  1.   Fitted curve plots of DBH and height for major coniferous stands

    图  2   主要针叶林分立地形指数模型曲线簇

    Figure  2.   Curve families of site form index model for major coniferous stands

    图  3   2003、2008、2013和2018年主要针叶林分立地形等级占比动态直方图

    Figure  3.   Proportion dynamic histogram of site form class for major coniferous stands in 2003, 2008, 2013 and 2018

    表  1   立地形指数模型研建数据描述性统计

    Table  1   Descriptive statistics of model establishment data for site form index

    林分类型 Stand types 样地数量
    Number of plots
    林分胸径/cm Stand DBH 林分树高/m Stand height
    区间 Range 均值 Mean 标准差 SD 区间 Range 均值 Mean 标准差 SD
    冷杉 Abies fabri 4363 6.5~77.1 32.8 11.05 2.8~43.7 19.8 5.95
    云杉 Picea asperata 11869 5.0~60.0 27.2 10.61 1.7~41.5 17.0 6.11
    铁杉 Tsuga chinensis 182 6.9~58.0 29.9 9.61 4.0~29.0 16.6 4.42
    油杉 Keteleeria fortunei 217 6.9~27.1 13.0 4.18 2.8~18.3 7.2 2.97
    落叶松 Larix gmelinii 9105 5.0~69.7 16.4 9.19 2.0~36.2 13.5 5.00
    红松 Pinus koraiensis 290 5.0~58.9 17.5 10.52 1.5~29.2 12.1 5.83
    樟子松 Pinus sylvestris 563 5.4~43.2 16.9 7.13 2.8~26.7 11.6 4.78
    赤松 Pinus densiflora 296 5.3~23.1 10.6 3.55 1.8~16.7 6.1 3.06
    黑松 Pinus thunbergii 346 5.3~20.0 10.8 3.13 2.2~16.0 6.3 2.46
    油松 Pinus tabuliformis 4525 5.0~35.0 13.2 5.16 1.5~23.0 7.7 3.27
    华山松 Pinus armandii 1029 5.0~34.3 13.9 5.60 1.5~25.0 9.3 3.83
    马尾松 Pinus massoniana 15430 5.0~39.9 12.9 4.90 1.5~28.5 9.2 3.58
    云南松 Pinus yunnanensis 3510 5.0~43.0 14.6 6.58 2.2~30.0 9.6 4.48
    思茅松 Pinus kesiya var. langbianensis 478 5.7~33.4 16.5 5.14 2.9~27.2 12.4 4.13
    高山松 Pinus densata 5125 5.3~40.0 27.9 6.53 2.0~28.0 17.8 4.41
    其他松类1) Other pines 1350 5~27.4 12.8 4.44 2.5~18.7 8.1 3.06
     1) 其他松类指样地数量较少的针叶林分类型。
     1) Other pines indicate stand types with less sample plots.
    下载: 导出CSV

    表  2   主要针叶林分胸径和树高模型参数

    Table  2   Model parameters of DBH and height for major coniferous stands

    林分
    Stand types
    Richards Logistic Korf
    a b c R2 SEE a b c R2 SEE a b c R2 SEE
    冷杉 34.9304 0.0278 1.2032 0.94 2.08 29.7918 6.2168 0.0711 0.92 2.25 71.0181 8.2024 0.5228 0.94 2.07
    云杉 35.0515 0.0292 1.2862 0.99 0.83 27.6166 7.9591 0.0872 0.98 1.12 104.1793 7.7122 0.4304 0.99 0.82
    铁杉 42.7731 0.0100 0.7756 0.84 2.36 25.0287 4.3132 0.0612 0.81 2.52 228.4099 6.1365 0.2395 0.84 2.35
    油杉 49.4001 0.0217 1.5328 0.96 0.94 17.6832 15.4880 0.1514 0.95 0.96 356.5069 9.6653 0.3327 0.96 0.94
    落叶松 21.7763 0.0825 1.6565 0.92 1.54 21.4231 5.7592 0.1286 0.91 1.63 24.4672 16.0920 1.1943 0.91 1.63
    红松 23.7699 0.0706 1.9944 0.95 1.54 22.4409 9.9858 0.1324 0.95 1.64 31.3234 15.3821 0.9800 0.95 1.60
    樟子松 23.1622 0.0573 1.6375 0.97 1.07 19.8216 9.2197 0.1350 0.96 1.27 69.4325 7.1841 0.4718 0.97 1.06
    赤松 11.2997 0.1945 5.7997 0.89 1.32 10.6562 48.3629 0.3444 0.92 1.14 15.2157 32.2581 1.4462 0.88 1.43
    黑松 32.0888 0.0315 1.4875 0.97 0.60 13.1164 14.9074 0.2020 0.98 0.49 646.3492 8.9301 0.2569 0.97 0.62
    油松 34.1642 0.0217 1.2051 0.99 0.28 17.6943 9.4751 0.1219 0.99 0.49 474.2441 8.0463 0.2431 0.99 0.26
    华山松 23.2458 0.0527 1.5916 0.99 0.59 17.9922 10.4218 0.1496 0.98 0.68 69.1080 7.7007 0.4897 0.99 0.59
    马尾松 20.7730 0.0585 1.4939 0.99 0.28 17.5935 8.1581 0.1427 0.99 0.55 41.5400 7.4772 0.5971 0.99 0.24
    云南松 32.6336 0.0345 1.4617 0.99 0.38 22.9034 10.6239 0.1183 0.99 0.67 182.4129 7.9799 0.3567 0.99 0.38
    思茅松 23.3830 0.0688 1.8721 0.97 0.87 19.5171 10.3107 0.1589 0.96 1.01 42.3634 10.2905 0.7343 0.98 0.84
    高山松 47.8737 0.0196 1.2483 0.99 0.71 25.0354 10.2222 0.1076 0.98 0.89 378.0811 8.2583 0.2902 0.99 0.71
    其他松类1) 15.6588 0.0804 1.7907 0.99 0.35 13.0084 10.8083 0.1960 0.99 0.28 36.7931 7.3685 0.5885 0.99 0.40
     1) 其他松类指样地数量较少的针叶林分类型。
     1) Other pines indicate stand types with less sample plots.
    下载: 导出CSV
  • [1]

    WEISKITTEL A R, HANN D W, KERSHAW J A, et al. Forest growth and yield modeling[M]. New York: John Wiley & Sons, 2011.

    [2]

    AGUIRRE A, MORENO-FERN´ANDEZ D, ALBERDI I, et al. Mapping forest site quality at national level[J]. Forest Ecology and Management, 2022, 508: 120043. doi: 10.1016/jforece.2022.120043.

    [3] 夏洪涛, 郭晓斌, 张珍, 等. 基于不同立地质量评价指标的杉木大径材林分树高−胸径模型[J]. 中南林业科技大学学报, 2023, 43(10): 80-88.
    [4] 李贤伟, 李守剑, 张健, 等. 四川盆周西缘水杉人工林林地立地质量评价研究[J]. 四川农业大学学报, 2002, 20(2): 106-109. doi: 10.3969/j.issn.1000-2650.2002.02.010
    [5] 刘智军, 朱丽艳, 吴恒, 等. 基于清查数据的立地质量评价方法准确性分析[J]. 西南林业大学学报(自然科学), 2019, 39(5): 127-135.
    [6]

    VANCLAY J K, HENRY N B. Assessing site productivity of indigenous cypress pine forest in southern Queensland[J]. The Commonwealth Forestry Review, 1988, 67(1): 53-64.

    [7] 吴恒, 党坤良, 田相林, 等. 秦岭林区天然次生林与人工林立地质量评价[J]. 林业科学, 2015, 51(4): 78-88.
    [8] 沈剑波, 雷相东, 雷渊才, 等. 长白落叶松人工林地位指数及立地形的比较研究[J]. 北京林业大学学报, 2018, 40(6): 1-8.
    [9]

    PADILLA-MARTÍNEZ J R, PAUL C, CORRAL-RIVAS J J, et al. Evaluation of the site form as a site productive indicator in temperate uneven-aged multispecies forests in Durango, Mexico[J]. Plants, 2022, 11(20): 2764. doi: 10.3990/plants11202764.

    [10] 张会儒, 雷相东, 张春雨, 等. 森林质量评价及精准提升理论与技术研究[J]. 北京林业大学学报, 2019, 41(5): 1-18.
    [11] 胡庭兴, 李贤伟, 杨祯禄. 立地质量综合评价及其应用的研究[J]. 四川农业大学学报, 1993,11(3): 397-403.
    [12]

    PERIN J, HÉBERT J, BROSTAUX Y, et al. Modeling the top-height growth and site index of Norway spruce in Southern Belgium[J]. Forest Ecology and Management, 2013, 298: 62-70.

    [13] 付晓, 曹霖, 王雪军, 等. 吉林省林地立地质量评价及生产潜力研究[J]. 中南林业科技大学学报, 2019, 39(5): 1-9.
    [14] 黄国胜, 马炜, 王雪军, 等. 基于一类清查数据的福建省立地质量评价技术[J]. 北京林业大学学报, 2014, 36(3): 1-8.
    [15]

    MACFARLANE D W, GREEN E J, BURKHART H E. Population density influences assessment and application of site index[J]. Canadian Journal of Forest Research, 2000, 30(9): 1472-1475.

    [16] 雷相东, 符利勇, 李海奎, 等. 基于林分潜在生长量的立地质量评价方法与应用[J]. 林业科学, 2018, 54(12): 116-126. doi: 10.11707/j.1001-7488.20181213
    [17]

    SHARMA M, PARTON J. Height–diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach[J]. Forest Ecology and Management, 2007, 249(3): 187-198.

    [18]

    KROON J, ANDERSSON B, MULLIN T J. Genetic variation in the diameter-height relationship in Scots pine (Pinus sylvestris)[J]. Canadian Journal of Forest Research, 2008, 38(6): 1493-1503.

    [19] 王彬. 祁连山青海云杉树木生长及其对气候变化的响应[D]. 北京: 中国林业科学研究院, 2020.
    [20]

    MOTALLEBI A, KANGUR A. Are allometric relationships between tree height and diameter dependent on environmental conditions and management[J]. Trees, 2016, 30(4): 1429-1443.

    [21] 郭小阳, 吴恒, 田相林, 等. 基于优势高模型分析多源数据对立地质量评价的影响[J]. 西北林学院学报, 2017, 32(6): 184-189. doi: 10.3969/j.issn.1001-7461.2017.06.28
    [22]

    MOLINA-VALERO J A, DIÉGUEZ-ARANDA1 U, ÁLVAREZ-GONZÁLEZ1 J G, et al. Assessing site form as an indicator of site quality in even-aged Pinus radiata D. Don stands in north-western Spain[J]. Annals of Forest Science, 2019, 76(4): 113. doi: 10.1007/s13595-019-0904-1

    [23] 刘俊, 孟雪, 高媛赟, 等. 基于不同立地质量的松树林分生物量遥感估测[J]. 中南林业科技大学学报, 2016, 36(5): 41-46.
    [24]

    GARCIA O. Comparing and combining stem analysis and permanent sample plot data in site index models[J]. Forest Science, 2005, 51(4): 277-283. doi: 10.1093/forestscience/51.4.277

图(3)  /  表(2)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  17
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-24
  • 网络出版日期:  2025-03-05
  • 发布日期:  2025-02-25
  • 刊出日期:  2025-05-09

目录

    LUO Chunlin

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回