• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

岩藻多糖生物保水剂的合成及应用研究

熊国美, 林俊健, 王思瑶, 许志敏, 顾红艳, 常可鑫, 彭红波

熊国美, 林俊健, 王思瑶, 等. 岩藻多糖生物保水剂的合成及应用研究[J]. 华南农业大学学报, 2025, 46(4): 509-519. DOI: 10.7671/j.issn.1001-411X.202409020
引用本文: 熊国美, 林俊健, 王思瑶, 等. 岩藻多糖生物保水剂的合成及应用研究[J]. 华南农业大学学报, 2025, 46(4): 509-519. DOI: 10.7671/j.issn.1001-411X.202409020
XIONG Guomei, LIN Junjian, WANG Siyao, et al. Synthesis and application of fucoidan biological superabsorbent polymer[J]. Journal of South China Agricultural University, 2025, 46(4): 509-519. DOI: 10.7671/j.issn.1001-411X.202409020
Citation: XIONG Guomei, LIN Junjian, WANG Siyao, et al. Synthesis and application of fucoidan biological superabsorbent polymer[J]. Journal of South China Agricultural University, 2025, 46(4): 509-519. DOI: 10.7671/j.issn.1001-411X.202409020

岩藻多糖生物保水剂的合成及应用研究

基金项目: 

云南省“兴滇英才支持计划”青年人才项目(KKXX202423042);云南省基础研究计划项目(202101BE070001-063);昆明理工大学高层次人才引进项目(KKKP201823026)

详细信息
    作者简介:

    熊国美,E-mail: xionggm1223@163.com

    通讯作者:

    彭红波,主要从事环境土壤化学、农业资源与环境相关研究, E-mail: mzxb817@163.com

  • 中图分类号: S131

Synthesis and application of fucoidan biological superabsorbent polymer

  • 摘要:
    目的 

    以富含L−岩藻糖和硫酸基等亲水结构的天然岩藻多糖为原料合成保水剂,以期提高保水剂的降解和可再生能力。

    方法 

    以过硫酸铵(Ammonium persulfate, APS)为引发剂,N,N′−亚甲基双丙烯酰胺(N,N'-Methylenebis acrylamide, MBA)为交联剂,采用水溶液聚合技术将天然岩藻多糖接枝在丙烯酸(Arylic acid, AA) 上进行共聚反应合成岩藻多糖生物保水剂。通过单因素试验优化产品制备工艺。采用傅里叶变换红外光谱仪(Fourier-transform infrared spectroscopy, FT-IR)和扫描电子显微镜(Scanning electron microscope, SEM)表征产物;通过盆栽试验检测保水剂对白菜生长的影响。

    结果 

    岩藻多糖和AA的最佳质量比为1.0∶7.5,中和度为70%,APS和MBA用量分别为AA质量的3.0%和0.2%。SEM结果表明,产物具有多孔疏松的网状结构;FT-IR分析表明,产物为岩藻多糖与AA的接枝共聚物。保水剂在去离子水、9 g∙L−1NaCl溶液中吸水倍率分别为420.9和63.8 g∙g−1;且在重复吸水、干燥6次后,吸水倍率仍为初始的70.8%。此外,每千克土壤中添加 6 g保水剂的白菜生长状况最佳,植株总生物量显著增加105.5%,土壤含水量提高8.98% (P < 0.05)。

    结论 

    岩藻多糖生物保水剂吸水和重复使用性能良好,在土壤中添加该保水剂能够显著促进植物生长。该研究为藻类保水剂的研发及其在农业中的推广应用提供了基础数据。

    Abstract:
    Objective 

    Using natural fucoidan rich in hydrophilic structures such as L-fucose and sulfated groups as raw material, a superabsorbent polymer (SAP) was synthesized to improve its degradability and renewable capacity.

    Method 

    A fucoidan biological SAP was synthesized via aqueous solution polymerization by grafting natural fucoidan onto acrylic acid (AA) monomers using ammonium persulfate (APS) as the initiator and N, N'-methylenebis acrylamide (MBA) as the crosslinker. The preparation process was optimized through single-factor experiments. The product was characterized using Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). A pot experiment was conducted to evaluate the effect of the SAP on cabbage growth.

    Result 

    The optimal mass ratio of fucoidan to AA was 1.0∶7.5, with a neutralization degree of 70%, and the dosages of APS and MBA were 3.0% and 0.2% of the mass of AA, respectively. The SEM analysis revealed a porous and loose network structure, while FT-IR confirmed the formation of a graft copolymer of fucoidan and AA. The water absorption ratios of the SAP in deionized water and 9 g∙L−1 NaCl solution were 420.9 and 63.8 g∙g−1, respectively. After six cycles of absorption and drying, the water absorption ratio remained 70.8% of its initial value. Additionally, Chinese cabbage grew best when adding 6 g SAP per kilogram of soil, with the total plant biomass significantly increased by 105.5% and soil water content improved by 8.98%.

    Conclusion 

    The fucoidan biological SAP exhibits excellent water absorption and reusability, significantly promoting plant growth when applied to soil. This study provides foundational data for the development and agricultural application of algal-derived SAP.

  • 图  1   单因素优化试验

    Figure  1.   Single factor optimization test

    图  2   岩藻多糖和岩藻多糖生物保水剂的傅里叶变换红外光谱图

    Figure  2.   FT-IR spectra of fucoidan and fucoidan biological superabsorbent polymer

    图  3   岩藻多糖生物保水剂颗粒扫描电镜(SEM)图

    Figure  3.   Scanning electron microscopy (SEM) images of fucoidan biological superabsorbent polymer particle

    图  4   岩藻多糖生物保水剂在吸水进程中形态的时序变化

    Figure  4.   Temporal variation of the morphology of fucoiden biological superabsorbent polymer during the water absorption process

    图  5   岩藻多糖生物保水剂在ddH2O 和9 g∙L−1NaCl溶液 中的吸水动力学曲线

    Figure  5.   Kinetic curves of water absorption for fucoidan biological superabsorbent polymer in deionized water and 9 g∙L−1 NaCl solution

    图  6   岩藻多糖生物保水剂的重复吸水性能测试

    图柱上的不同小写字母表示差异显著(P<0.05,Duncan’s 法)。

    Figure  6.   Repeated water swelling performance tests of fucoidan biological superabsorbent polymer

    Different lowercase letters on the columns indicate significant differences (P<0.05, Duncan’s method).

    图  7   施用保水剂35 d后白菜的生长情况

    CK为土壤对照,T1、T2、T3处理的保水剂与土壤质量比分别为2、4和6 g·kg−1

    Figure  7.   Growth of Chinese cabbage after application of superabsorbent polymer for 35 days

    CK is the soil control, the mass ratios of superabsorbent polymer to soil in T1, T2 and T3 are 2, 4 and 6 g·kg−1 respectively.

    图  8   保水剂对白菜生长的影响

    CK为土壤对照,T1、T2、T3处理的保水剂与土壤质量比分别为2、4和6 g·kg−1;各小图中,同一指标图柱上的不同小写字母表示差异显著(P < 0.05,Duncan’s 法)。

    Figure  8.   Effect of superabsorbent polymer on the growth of Chinese cabbage

    CK is the soil control, the mass ratios of superabsorbent polymer to soil in T1, T2 and T3 are 2, 4 and 6 g·kg−1 respectively. In each figure,different lowercase letters on the columns of the same indicator indicate significant differences (P < 0.05, Duncan’s method ).

    表  1   单因素逐步优化合成梯度表1)

    Table  1   Single-factor stepwise optimization for synthesizing gradient

    梯度序号
    Gradient No.
    S1
    中和度 (S2)
    Neutralization
    引发剂(S3)
    Initiator
    交联剂(S4)
    Crosslinker
    1 1.0∶6.0 60 0.020 0.05×10−2
    2 1.0∶6.5 65 0.025 0.10×10−2
    3 1.0∶7.0 70 0.030 0.15×10−2
    4 1.0∶7.5 75 0.035 0.20×10−2
    5 1.0∶8.0 80 0.040 0.25×10−2
     1) S1、S3和S4分别表示m(岩藻多糖)∶m (AA)、m (APS)∶m (AA)和m (MBA)∶m (AA)。
     1) S1, S3 and S4 represent m (fucoidan) ∶ m (AA), m (APS) ∶ m (AA) and m (MBA) ∶ m (AA), respectively.
    下载: 导出CSV
  • [1]

    GALLARDO A K R, SILOS A P, RELLEVE L S, et al. Retrogradation in radiation-synthesized cassava starch/acrylic acid super water absorbent and its effect on gel stability[J]. Radiation Physics and Chemistry, 2022, 199: 110313. doi: 10.1016/j.radphyschem.2022.110313

    [2]

    GAO J, ZHUO L, DUAN X M, et al. Agricultural water-saving potentials with water footprint benchmarking under different tillage practices for crop production in an irrigation district[J]. Agricultural Water Management, 2023, 282: 108274. doi: 10.1016/j.agwat.2023.108274

    [3] 肖琴, 李建平. 整区域推进高标准农田建设的基本逻辑、实践困境与实现路径[J]. 中国农业资源与区划, 2023, 44(12): 59-66.
    [4]

    ZHOU X Y, ZHANG Y Q, SHENG Z P, et al. Did water-saving irrigation protect water resources over the past 40 years? A global analysis based on water accounting framework[J]. Agricultural Water Management, 2021, 249: 106793. doi: 10.1016/j.agwat.2021.106793

    [5]

    WU H, LI Z, SONG W M, et al. Effects of superabsorbent polymers on moisture migration and accumulation behaviors in soil[J]. Journal of Cleaner Production, 2021, 279: 123841. doi: 10.1016/j.jclepro.2020.123841

    [6]

    BANA R S, GROVER M, SINGH D, et al. Enhanced pearl millet yield stability, water use efficiency and soil microbial activity using superabsorbent polymers and crop residue recycling across diverse ecologies[J]. European Journal of Agronomy, 2023, 148: 126876. doi: 10.1016/j.eja.2023.126876

    [7]

    GHOBASHY M M, AMIN M A, ISMAIL M, et al. Radiation cross-linked ultra-absorbent hydrogel to rationalize irrigation water and fertilizer for maize planting in drought conditions[J]. International Journal of Biological Macromolecules, 2023, 252: 126467. doi: 10.1016/j.ijbiomac.2023.126467

    [8]

    TUBERT E, VITALI V A, ALVAREZ M S, et al. Synthesis and evaluation of a superabsorbent-fertilizer composite for maximizing the nutrient and water use efficiency in forestry plantations[J]. Journal of Environmental Management, 2018, 210: 239-254.

    [9]

    HOU X Q, LI R, HE W S, et al. Superabsorbent polymers influence soil physical properties and increase potato tuber yield in a dry-farming region[J]. Journal of Soils and Sediments, 2018, 18(3): 816-826. doi: 10.1007/s11368-017-1818-x

    [10]

    HONG T T, OKABE H, HIDAKA Y, et al. Radiation synthesis and characterization of super-absorbing hydrogel from natural polymers and vinyl monomer[J]. Environmental Pollution, 2018, 242: 1458-1466. doi: 10.1016/j.envpol.2018.07.129

    [11]

    AI F J, YIN X Z, HU R C, et al. Research into the super-absorbent polymers on agricultural water[J]. Agricultural Water Management, 2021, 245: 106513. doi: 10.1016/j.agwat.2020.106513

    [12]

    CHANG L Y, XU L J, LIU Y H, et al. Superabsorbent polymers used for agricultural water retention[J]. Polymer Testing, 2021, 94: 107021. doi: 10.1016/j.polymertesting.2020.107021

    [13]

    YANG Y Y, LIANG Z Y, ZHANG R, et al. Research advances in superabsorbent polymers[J]. Polymers, 2024, 16(4): 501. doi: 10.3390/polym16040501

    [14]

    QIAO D L, TU W Y, WANG Z, et al. Influence of crosslinker amount on the microstructure and properties of starch-based superabsorbent polymers by one-step preparation at high starch concentration[J]. International Journal of Biological Macromolecules, 2019, 129: 679-685. doi: 10.1016/j.ijbiomac.2019.02.019

    [15]

    NARAYANAN A, KARTIK R, SANGEETHA E, et al. Super water absorbing polymeric gel from chitosan, citric acid and urea: Synthesis and mechanism of water absorption[J]. Carbohydrate Polymers, 2018, 191: 152-160. doi: 10.1016/j.carbpol.2018.03.028

    [16]

    GHOBASHY M M, AMIN M A, NADY N, et al. Improving impact of poly(starch/acrylic acid) superabsorbent hydrogel on growth and biochemical traits of sunflower under drought stress[J]. Journal of Polymers and the Environment, 2022, 30(5): 1973-1983. doi: 10.1007/s10924-021-02322-z

    [17]

    BATTACHARYYA D, BABGOHARI M Z, RATHOR P, et al. Seaweed extracts as biostimulants in horticulture[J]. Scientia Horticulturae, 2015, 196: 39-48. doi: 10.1016/j.scienta.2015.09.012

    [18]

    OSCAR G, PATRICK Q, SHANE O C. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants[J]. Plant Physiology and Biochemistry, 2018, 126: 63-73. doi: 10.1016/j.plaphy.2018.02.024

    [19]

    JOSHI P P, ASHLEIGH V C, HELD D W, et al. Preparation of slow release encapsulated insecticide and fertilizer based on superabsorbent polysaccharide microbeads[J]. Journal of Applied Polymer Science, 2020, 137(39): 49177. doi: 10.1002/app.49177

    [20]

    SU X X, CHANG R Q, ZHANG J, et al. Preparation and performance study of AEEA/SA porous salt-resistant superabsorbent polymer[J]. Materials Today Communications, 2022, 33: 104805. doi: 10.1016/j.mtcomm.2022.104805

    [21] 牛红艳, 李凯凯, 严国富, 等. 海藻生物保水剂的制备及性能研究[J]. 化工新型材料, 2022, 50(1): 157-160.
    [22]

    NANNA R K, DIEGO R W, HORN S J. Extraction of high purity fucoidans from brown seaweeds using cellulases and alginate lyases[J]. International Journal of Biological Macromolecules, 2023, 229: 199-209. doi: 10.1016/j.ijbiomac.2022.12.261

    [23]

    RATHER R A, BHAT M A, SHALLA A H. An insight into synthetic and physiological aspects of superabsorbent hydrogels based on carbohydrate type polymers for various applications: A review[J]. Carbohydrate Polymer Technologies and Applications, 2022, 3: 100202. doi: 10.1016/j.carpta.2022.100202

    [24]

    MAZLAN S N A, ABD RAHIM S, GHAZALI S, et al. Optimization of N, N'-methylenebis(acrylamide), and ammonium persulfate content in carbonaceous/acrylic acid-co-acrylamide superabsorbent polymer[J]. Materials Today: Proceedings, 2022, 57: 1088-1094. doi: 10.1016/j.matpr.2021.09.393

    [25]

    QIAO D L, LIU H S, YU L, et al. Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer[J]. Carbohydrate Polymers, 2016, 147: 146-154. doi: 10.1016/j.carbpol.2016.04.010

    [26]

    ZHAO C H, ZHANG M, LIU Z G, et al. Salt-tolerant superabsorbent polymer with high capacity of water-nutrient retention derived from sulfamic acid-modified starch[J]. ACS Omega, 2019, 4(3): 5923-5930. doi: 10.1021/acsomega.9b00486

    [27]

    ZHANG W, LIU Q, GUO L, et al. White cabbage (Brassica oleracea L. ) waste, as biowaste for the preparation of novel superabsorbent polymer gel[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106689. doi: 10.1016/j.jece.2021.106689

    [28]

    CHEN Y, LIU Y F, TANG H L, et al. Study of carboxymethyl chitosan based polyampholyte superabsorbent polymer I: Optimization of synthesis conditions and pH sensitive property study of carboxymethyl chitosan-g-poly(acrylic acid-co-dimethyldiallylammonium chloride) superabsorbent polymer[J]. Carbohydrate Polymers, 2010, 81(2): 365-371. doi: 10.1016/j.carbpol.2010.02.007

    [29] 张雪倩. 不同肠道菌群结构对海带岩藻多糖的响应差异研究 [D]. 西安: 西北大学, 2022.
    [30]

    CHEN Y, TAN H M. Crosslinked carboxymethylchitosan-g-poly(acrylic acid) copolymer as a novel superabsorbent polymer[J]. Carbohydrate Research, 2006, 341(7): 887-896. doi: 10.1016/j.carres.2006.01.027

    [31] 程志强, 马琦, 康立娟, 等. 一种新型保水剂的制备及对肥料吸附性能研究[J]. 灌溉排水学报, 2012, 31(4): 136-138.
    [32]

    LIU Y, ZHU Y F, WANG Y S, et al. Synthesis and application of eco-friendly superabsorbent composites based on xanthan gum and semi-coke[J]. International Journal of Biological Macromolecules, 2021, 179: 230-238. doi: 10.1016/j.ijbiomac.2021.03.007

    [33]

    ZHANG C, GARCÍA MEZA J V, ZHOU K Q, et al. Superabsorbent polymer used for saline-alkali soil water retention[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 145: 104830. doi: 10.1016/j.jtice.2023.104830

图(8)  /  表(1)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  25
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-18
  • 网络出版日期:  2025-03-12
  • 发布日期:  2025-03-06
  • 刊出日期:  2025-07-09

目录

    Corresponding author: PENG Hongbo, mzxb817@163.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回