Effects of rice-fish coculture on growth and yield of ratoon rice with different stubble heights
-
摘要:目的
探究华南双季稻区稻鱼共作对不同留茬高度再生稻生长及产量的影响,为再生稻−鱼共作系统的水稻栽培及茬口管理提供科学依据。
方法以‘野香优油丝’为供试再生稻品种,通过设置稻作模式(水稻单作和稻鱼共作)与再生稻的头季稻留茬高度(留茬高10和30 cm)双因素田间试验,探究稻鱼共作对头季稻不同留茬高度的再生季水稻的生长特性及产量构成因素的影响。
结果高留茬处理下稻鱼共作的再生季水稻产量显著高于水稻单作,稻作模式和头季稻留茬高度对再生季水稻产量具有显著的交互作用影响。稻鱼共作条件下再生季水稻有效穗数和结实率较水稻单作分别显著提高了18.2%和53.2%,但穗粒数显著降低了17.9%,表明稻鱼共作通过提高再生季水稻群体有效穗数和结实率来弥补其穗粒数的不足,从而提高再生季水稻的产量。头季稻收获的留茬高度显著影响再生季水稻齐穗期的叶片氮含量。头季稻成熟期根的玉米素核苷含量与成熟期叶片氮含量存在显著的正相关性,表明提高头季稻成熟期叶片氮含量可能有利于增加其根部玉米素核苷含量,从而间接促进再生季水稻腋芽的萌发。
结论在本试验条件下,华南双季稻区若发展再生稻单作生产,头季稻收割时宜采取低留茬(10 cm)处理,若采取再生稻−鱼共作生产,头季稻收割时宜采取高留茬(30 cm)处理,这样有利于促进后续再生季水稻的生长和产量提高。
Abstract:ObjectiveTo investigate the effects of rice-fish coculture on growth and yield of ratoon rice with different stubble heights in the double rice cropping area of South China, and provide a scientific reference for rice cultivation and stubble management of the ratoon rice-fish coculture system.
MethodUsing‘YeXiangYouYouSi’ as the ratoon rice variety for testing, a two-factor field experiment was conducted by setting rice cropping patterns (rice monoculture and rice-fish coculture) and stubble heights of the main season rice for ratoon rice (10 and 30 cm stubble heights), to explore the effects of rice-fish coculture on the growth characteristics and yield components of ratooning season rice with different stubble heights in the main season.
ResultUnder the treatment of high stubble, the rice yield of the ratooning season was significantly higher in the rice-fish coculture than that in the rice monoculture, and the rice yield was significantly affected by the interaction of the rice cropping pattern and stubble height of the main season rice. Compared with those in the rice monoculture, the effective number of spikes and seed setting rate of the ratooning season rice in the rice-fish coculture significantly increased by 18.2% and 53.2% respectively, while the number of grains per spike significantly decreased by 17.9%, which indicated that the rice-fish coculture compensated for the insufficient number of grains per spike by improving the effective number of spikes and seed setting rate of ratooning season rice population, thus enhancing the yields. In addition, stubble height significantly affected the leaf nitrogen content at the heading stage of the ratooning season rice. During the maturity stage of the main season rice, there was a significant positive correlation between the zeatin riboside content of roots and the nitrogen content of leaves, suggesting that increasing the nitrogen content of leaves at maturity might be beneficial to increase the zeatin riboside content of roots and thus indirectly promote axillary bud germination.
ConclusionUnder the conditions of this experiment, the low stubble (10 cm) treatment was more appropriate for the ratoon rice monoculture system, while the high stubble (30 cm) treatment was suitable for the ratoon rice-fish coculture in the double rice cropping area of South China, which might be favorable to the subsequent growth and yield improvement of the ratooning season rice .
-
Keywords:
- Rice-fish coculture /
- Ratoon rice /
- Stubble height /
- Zeatin riboside /
- Yield /
- Growth characteristic
-
-
图 1 不同处理下头季和再生季水稻齐穗期及成熟期茎叶的氮含量
A和B为头季,C和D为再生季;RM:水稻单作,RF:稻鱼共作,RCP:稻作模式,SH:留茬高度;图中头季稻茎鞘和叶片氮含量数据为6次重复的平均值±标准误,其余数据为3次重复的平均值±标准误;同一时期柱子上方凡是有一个相同小写字母者,表示差异不显著(P>0.05,LSD法);ns表示不显著(P>0.05),**表示F值达极显著(P<0.01)水平。
Figure 1. Nitrogen contents of rice stem sheath and leaves at heading and maturity stages of different treatments
A and B are in the main season, C and D are in the ratooning season; RM: Rice monoculture, RF: Rice-fish coculture, RCP: Rice cropping pattern, SH: Stubble height; The data in the figure for stem and leaf nitrogen contents of the main season rice are the means ± standard errors of six replicates, and the rest are the means ± standard errors of three replicates; Where there is one same lowercase letter above bars in the same stage, it indicates that the difference is not significant (P>0.05, LSD method); ns indicates no significance(P>0.05), and ** indicates that the F-value reaches highly significant (P<0.01) level.
图 2 稻鱼共作对头季稻齐穗期和成熟期水稻腋芽及根部玉米素核苷含量的影响
RM:水稻单作,RF:稻鱼共作;图中数据为6次重复的平均值±标准误;同一时期柱子上方凡是有一个相同小写字母者,表示差异不显著(P>0.05,LSD法)。
Figure 2. Effects of rice-fish coculture on zeatin riboside contents in axillary buds and roots of rice at heading and maturity stages of main season rice
RM: Rice monoculture, RF: Rice-fish coculture; The data in the figure are the means ± standard errors of six replicates; Where there is one same lowercase letter above bars in the same stage, it indicates that the difference is not significant (P>0.05, LSD method).
图 3 头季稻收割后再生季水稻茎蘖再生率的动态变化
RM:水稻单作,RF:稻鱼共作;图中第75天的再生率为最终再生率;图中同一时间凡是有一个相同小写字母者,表示差异不显著(P>0.05,LSD法)。
Figure 3. Dynamics of tiller ratooning rate of ratooning season rice after harvest of the main season rice
RM: Rice monoculture, RF: Rice-fish coculture; The ratooning rate at day 75 is the final ratooning rate; Where there is one same lowercase letter at the same time, it indicates that the difference is not significant (P>0.05, LSD method).
表 1 稻鱼共作对头季稻及不同留茬高度的再生季水稻株高(h)的影响1)
Table 1 Effects of rice-fish coculture on plant heights (h) of main season rice and ratooning season rice with different stubble heights
h/cm 稻作模式
Rice cropping
pattern (RCP)留茬高度/cm
Stubble
height (SH)头季 Main season 再生季 Ratooning season 抽穗期
Heading stage成熟期
Maturity stage分蘖期
Tillering stage抽穗期
Heading stage成熟期
Maturity stageRM 10 112.6±1.7a 116.1±1.2a 68.3±1.3b 78.9±2.6a 87.2±2.1a 30 113.1±1.3a 115.9±1.5a 83.6±0.4a 84.8±2.0a 87.8±0.9a RF 10 113.3±0.8a 116.3±1.7a 66.0±2.3b 79.9±0.5a 87.9±1.6a 30 114.9±0.1a 118.5±0.5a 84.7±1.6a 78.6±1.9a 89.9±0.7a 总方差
Total varianceRCP 1.08 1.22 0.16 1.53 0.69 SH 0.80 0.55 133.68** 1.16 0.64 RCP×SH 0.23 0.90 1.42 2.91 0.18 1) RM:水稻单作,RF:稻鱼共作;株高数据为3次重复的平均值±标准误,同列数据后凡是有一个相同小写字母者,表示差异不显著(P>0.05,LSD法);**表示F值达极显著(P<0.01)水平。
1) RM: Rice monoculture, RF: Rice-fish coculture; The data of plant heights are the means ± standard errors of three replicates, and the data in the same column followed by one same lowercase letter indicate that the difference is not significant (P>0.05, LSD method); ** indicates that the F-value reaches highly significant (P<0.01) level.表 2 稻鱼共作对头季稻及不同留茬高度的再生季水稻叶片SPAD值的影响1)
Table 2 Effects of rice-fish coculture on leaf SPAD values of main season rice and ratooning season rice with different stubble heights
稻作模式
Rice cropping
pattern (RCP)留茬高度/cm
Stubble
height (SH)头季 Main season 再生季 Ratooning season 抽穗期
Heading stage成熟期
Maturity stage分蘖期
Tillering stage抽穗期
Heading stage成熟期
Maturity stageRM 10 31.0±0.4a 19.9±1.0a 43.7±0.8a 38.8±0.4c 16.0±0.5b 30 31.6±0.5a 21.1±0.4a 43.3±0.9a 43.9±0.4a 16.5±0.6b RF 10 33.1±0.7a 18.7±1.1a 43.3±0.9a 40.9±0.4b 26.2±1.2a 30 31.6±1.0a 18.3±1.0a 41.9±1.6a 44.0±0.7a 18.9±0.9b 总方差
Total varianceRCP 2.12 6.07* 0.68 4.73 51.35** SH 0.37 0.24 0.68 63.21** 14.87** RCP×SH 1.87 0.97 0.20 4.18 19.54** 1) RM:水稻单作,RF:稻鱼共作;SPAD值数据为3次重复的平均值±标准误,同列数据后凡是有一个相同小写字母者,表示差异不显著(P>0.05,LSD法);*和**分别表示F值达显著(P<0.05)和极显著(P<0.01)水平。
1) RM: Rice monoculture, RF: Rice-fish coculture; The data of SPAD values are the means ± standard errors of three replicates, and the data in the same column followed by one same lowercase letter indicate that the difference is not significant (P>0.05, LSD method); * and ** indicate that the F-values reach significant(P<0.05) and highly significant (P<0.01) levels, respectively.表 3 稻作模式和留茬高度对再生季水稻再生率的影响的方差分析1)
Table 3 Analysis of variance for the effects of rice cropping pattern and stubble height on ratooning rate of ratooning season rice
处理
Treatment头季稻收割后不同时间的再生率
Ratooning rate at different days after harvest of the main season rice10 d 15 d 18 d 25 d 30 d 35 d 75 d 稻作模式(RCP) Rice cropping pattern 20.76** 9.5* 2.56 4.15 0.31 5.47 0.08 留茬高度(SH) Stubble height 14.65** 8.68* 4.33 6.34* 12.71* 8.55* 1.68 RCP×SH 2.40 4.22 3.10 4.15 8.47* 7.94* 9.12* 1) 表格中第75天的再生率为最终再生率;*和**分别表示F值达显著(P <0.05)和极显著(P <0.01)水平。
1) The ratooning rate at day 75 in the table is the final ratooning rate; * and ** indicate that the F-values reach significant (P<0.05) and highly significant (P<0.01) levels, respectively.表 4 稻鱼共作对头季稻及不同留茬高度的再生季水稻产量的影响1)
Table 4 Effects of rice-fish coculture on yield of main season rice and ratooning season rice with different stubble heights
稻作模式
Rice cropping
pattern
(RCP)留茬高度/cm
Stubble
height
(SH)头季 Main season 再生季 Ratooning season 产量/
(kg·hm−2)
Yield有效穗数/
(万穗·hm−2)
Effective spikes穗粒数
Grains number
per spike结实率/%
Seed setting
rate千粒质量/g 1000 -grain
weight产量/
(kg·hm−2)
YieldRM 10 7814.3 a274.3ab 98.4a 28.3b 16.8b 1244.5 ab30 7814.3 a240.6b 58.0c 34.5b 18.2ab 955.5b RF 10 7961.3 a306.5a 75.4b 40.6b 17.8ab 1229.0 ab30 7961.3 a302.0a 53.0c 55.6a 18.9a 1550.0 a总方差
Total varianceRCP 10.326* 8.254* 19.256** 2.602 10.109* SH 1.716 41.574** 7.709* 5.492 0.031 RCP×SH 1.007 3.381 1.337 0.075 11.220* 1) RM:水稻单作,RF:稻鱼共作;表中头季水稻产量数据为6次重复的数据的平均值±标准误,其余数据为3次重复的平均值±标准误;同列数据后凡是有一个相同小写字母者,表示差异不显著(P>0.05,LSD法);*和**分别表示F值达显著(P<0.05)和极显著(P<0.01)水平。
1) RM: Rice monoculture, RF: Rice-fish coculture; The data of main season rice yield are the means ± standard errors of six replicaties, and the rest of the data are the means ± standard errors of three replicates; Data in the same column followed by one same lowercase letter indicates that the difference is not significant (P>0.05, LSD method); * and ** indicate that the F-values reach significant(P<0.05) and highly significant (P<0.01) levels, respectively.表 5 头季稻成熟期腋芽和根部的玉米素核苷含量、头季稻植株氮含量与再生季产量构成因子之间的相关性分析1)
Table 5 Correlation analysis between zeatin riboside contents in axillary buds and roots at maturity stage of main season rice, plant nitrogen content of main season rice, and yield factors of ratooning season rice
指标 Index a b c d e f g h i j a 1.000 b −0.429 1.000 c 0.362 −0.036 1.000 d 0.221 0.621* −0.084 1.000 e −0.207 0.289 −0.208 −0.292 1.000 f 0.394 0.216 −0.104 0.452 0.209 1.000 g −0.077 0.145 −0.141 −0.354 0.028 −0.005 1.000 h −0.369 0.144 −0.092 0.100 −0.010 −0.347 −0.609* 1.000 i 0.351 −0.006 −0.171 0.485 0.191 0.225 −0.690* 0.542 1.000 j 0.497 −0.051 −0.178 0.553 0.416 0.642* −0.177 −0.034 0.697* 1.000 1) a:腋芽玉米素核苷含量,b:根玉米素核苷含量,c:茎鞘氮含量,d:叶片氮含量,e:最终再生率,f:有效穗数,g:穗粒数,h:千粒质量,i:结实率,j:产量;*表示相关性达显著水平(P<0.05,Pearson法)。
1) a: Zeatin riboside content of axillary bud, b: Root zeatin riboside content, c: Stem sheath nitrogen content, d: Leaf nitrogen content, e: Final ratooning rate, f: Effective spikes, g: Grain number per spike, h:1000 -grain weight, i: Seed setting rate, j: Yield; * indicates correlation at significant level(P<0.05, Pearson method). -
[1] CHEN W, XU Z, TANG L. 20 years’ development of super rice in China: The 20th anniversary of the super rice in China[J]. Journal of Integrative Agriculture, 2017, 16(5): 981-983. doi: 10.1016/S2095-3119(16)61612-X
[2] 张强, 张戈丽, 朱道林, 等. 1980—2018年中国水稻生产变化的时空格局[J]. 资源科学, 2022, 44(4): 687-700. [3] 陈风波, 汪峤, 喻雯, 等. 广东省农户水稻生产成本收益及种粮意愿分析[J]. 广东农业科学, 2019, 46(3): 144-153. [4] 李俊杰, 李建平. 水稻生产成本效益国际比较及中国发展前景[J]. 中国稻米, 2021, 27(4): 22-30. [5] 陈欣, 唐建军, 胡亮亮. 生态型种养结合原理与实践[M]. 北京: 中国农业出版社, 2019. [6] CUI J, LIU H, WANG H, et al. Rice-animal co-culture systems benefit global sustainable intensification[J]. Earth’s Future, 2023, 11(2): e2022EF002984. doi: 10.1029/2022EF002984
[7] REN L P, LIU P P, XU F, et al. Rice-fish coculture system enhances paddy soil fertility, bacterial network stability and keystone taxa diversity[J]. Agriculture, Ecosystems & Environment, 2023, 348.
[8] BERG H, LAN T, TAM N T, et al. An ecological economic comparison between integrated rice-fish farming and rice monocultures with low and high dikes in the Mekong Delta, Vietnam[J]. Ambio, 2023, 52(9): 1462-1474. doi: 10.1007/s13280-023-01864-x
[9] YU H, ZHANG X, SHEN W, et al. A meta-analysis of ecological functions and economic benefits of co-culture models in paddy fields[J]. Agriculture, Ecosystems & Environment, 2023, 341: 108195.
[10] WAN N, LI S, LI T, et al. Ecological intensification of rice production through rice-fish co-culture[J]. Journal of Cleaner Production, 2019, 234: 1002-1012.
[11] 全国水产技术推广总站中国水产学会. 中国稻渔综合种养产业发展报告(2024)全文发布[J]. 中国水产, 2024(8): 12-17. [12] 欧茜, 熊瑞, 周文涛, 等. 稻鱼共生养鱼密度对稻田甲烷排放的影响[J]. 农业环境科学学报: 1-12. [13] 徐峰, 刘德普, 彭俊明, 等. 南方双季稻栽植机械化发展的影响因素和关键技术措施[J]. 中国农机化学报, 2023, 44(2): 1-7. [14] 于秀娟, 郝向举, 党子乔, 等. 中国稻渔综合种养产业发展报告(2022)[J]. 中国水产, 2023(1): 39-46. [15] 罗茵. 广东省农业科学院水稻研究所副所长钟旭华 广东应加快发展稻渔综合种养[J]. 海洋与渔业, 2019(8): 27-28. [16] 朱永川, 熊洪, 徐富贤, 等. 再生稻栽培技术的研究进展[J]. 中国农学通报, 2013, 29(36): 1-8. [17] PENG S, ZHENG C, YU X. Progress and challenges of rice ratooning technology in China[J]. Crop and Environment, 2023, 2(1): 5-11. doi: 10.1016/j.crope.2023.02.005
[18] 彭少兵. 对转型时期水稻生产的战略思考[J]. 中国科学: 生命科学, 2014, 44(8): 845-850. [19] 林文雄, 翁佩莹, 林文芳, 等. 中国机收再生稻研究现状与展望[J]. 应用生态学报, 2024, 35(3): 827-836. [20] 黄新杰, 屠乃美, 李艳芳, 等. 杂交稻不同节位再生稻的产量形成及其与头季稻的关系[J]. 湖南农业大学学报(自然科学版), 2012, 38(5): 470-475. [21] 黄振标, 胡香玉, 钟旭华, 等. 粤北地区不同留桩高度下适宜再生稻品种筛选及产量构成分析[J]. 广东农业科学, 2023, 50(12): 160-171. [22] 李阳, 杨晓龙, 汪本福, 等. 头季留茬高度对水稻再生季产量和稻米品质的影响[J]. 作物杂志, 2021(6): 164-170. [23] 余贵龙, 刘祥臣, 丰大清, 等. 不同留茬高度对豫南再生稻生育期及产量的影响[J]. 中国稻米, 2018, 24(5): 112-115. [24] YANG D, PENG S, ZHENG C, et al. Effects of nitrogen fertilization for bud initiation and tiller growth on yield and quality of rice ratoon crop in central China[J]. Field Crops Research, 2021, 272: 108286.
[25] CHEN Y, ZHENG H, WANG W, et al. Early harvesting and increasing stubble-cutting height enhance ratoon rice yield[J]. Experimental Agriculture, 2023, 59: e20. doi: 10.1017/S0014479723000157
[26] 邓穗生, 洪彩香. 靛酚蓝比色法测定植物全氮含量方法的改进[J]. 热带农业科学, 2013, 33(4): 5-7. [27] BOLLMARK M, KUBÁT B, ELIASSON L. Variation in endogenous cytokinin content during adventitious root formation in pea cuttings[J]. Journal of Plant Physiology, 1988, 132(3): 262-265. doi: 10.1016/S0176-1617(88)80102-0
[28] 李亚贞, 郑伟, 肖小军, 等. 赣中北红壤稻田三熟制下机收留桩高度对再生稻产量的影响研究[J]. 杂交水稻, 2021, 36(1): 87-92. [29] 唐浩, 陈立云, 杨益善, 等. 水稻的再生率及其与产量性状的关系[J]. 杂交水稻, 2003(3): 58-61. [30] ZHANG Q, LIU X, YU G, et al. Reasonable nitrogen regime in the main crop increased grain yields in both main and ratoon rice[J]. 2022, 12(4): 527.
[31] YANG D, PENG S, ZHENG C, et al. Stubble height affects the grain yield of ratoon rice under rainfed conditions[J]. Agricultural Water Management, 2022, 272: 107815. doi: 10.1016/j.agwat.2022.107815
[32] CHEN H, YAO F, YANG Y, et al. Progress and challenges of rice ratooning technology in Fujian Province, China[J]. Crop and Environment, 2023, 2(3): 121-125. doi: 10.1016/j.crope.2023.05.001
[33] 隆斌庆, 陈灿, 黄璜, 等. “稻+鱼+再生稻”模式对稻田土壤氮、磷、钾养分含量的影响[J]. 作物研究, 2019, 33(5): 408-414. [34] 刘杨, 王强盛, 丁艳锋, 等. 氮素和6-BA对水稻分蘖芽发育的影响及其生理机制[J]. 作物学报, 2009, 35(10): 1893-1899. [35] 杨建昌, 彭少兵, 顾世梁, 等. 水稻结实期籽粒和根系中玉米素与玉米素核苷含量的变化及其与籽粒充实的关系[J]. 作物学报, 2001, 27(1): 35-42. [36] 廖健程, 胡德勇, 裴毅, 等. 控制灌溉条件下增氧对超级稻根系生长及水分利用效率的影响[J]. 排灌机械工程学报, 2018, 36(9): 920-924. [37] 秦华东, 江立庚, 肖巧珍, 等. 水分管理对免耕抛秧水稻根系生长及产量的影响[J]. 中国水稻科学, 2013, 27(2): 209-212. [38] 徐国伟, 陆大克, 刘聪杰, 等. 干湿交替灌溉和施氮量对水稻内源激素及氮素利用的影响[J]. 农业工程学报, 2018, 34(7): 137-146. [39] 万定海. 不同母体营养条件下低节位再生稻生长和产量特性研究[D]. 长沙: 湖南农业大学, 2012. [40] HARRELL D L, BOND J A, BLANCHE S. Evaluation of main-crop stubble height on ratoon rice growth and development[J]. Field Crops Research, 2009, 114(3): 396-403.
[41] 易镇邪, 周文新, 屠乃美. 留桩高度对再生稻源库性状与物质运转的影响[J]. 中国水稻科学, 2009, 23(5): 509-516. doi: 10.3969/j.issn.1001-7216.2009.05.10 [42] 谢磊, 许晖, 曹纯海, 等. 江汉平原再生稻机械化生产的产量构成因素分析和品种适应性研究[J]. 湖北农业科学, 2016, 55(10): 2462-2465. [43] 胡润, 朱勤, 张玲霞, 等. 留茬高度对早籼类型再生稻生育期及产量的影响[J]. 安徽农学通报, 2019, 25(13): 51-52. [44] 刘爱中, 邹冬生, 屠乃美, 等. 留桩高度对再生稻生长发育及产量的影响[J]. 安徽农业科学, 2007, 35(17): 5120-5121. [45] 易镇邪, 屠乃美, 陈平平. 留桩高度对再生稻根系的影响[J]. 杂交水稻, 2005, 20(1): 59-62. [46] 郭海松, 罗衡, 李丰, 等. 不同水稻栽培密度下青田稻−鱼共生系统的土壤肥力[J]. 水产学报, 2020, 44(5): 805-815. [47] 吴敏芳, 张剑, 胡亮亮, 等. 稻鱼系统中再生稻生产关键技术[J]. 中国稻米, 2016, 22(6): 80-82. [48] 张桂莲, 屠乃美, 袁菊红, 等. 播种期对再生稻腋芽萌发和产量的影响[J]. 湖南农业大学学报(自然科学版), 2005, 32(3): 229-232. [49] 夏桂龙, 欧阳建平, 柳开楼, 等. 促芽肥用量和留茬方式对赣东北地区再生稻产量和再生能力的影响[J]. 中国稻米, 2016, 22(2): 27-30. [50] SAOWAKOON S, SAOWAKOON K, JUTAGATE A, et al. Growth and feeding behavior of fishes in organic rice-fish systems with various species combinations[J]. Aquaculture Reports, 2021, 20: 100663. doi: 10.1016/j.aqrep.2021.100663
[51] CAO QUOC N, VROMANT N, TRAN THANH B, et al. Investigation of the predation potential of different fish species on brown planthopper (Nilaparvata lugens (Stål)) in experimental rice-fish aquariums and tanks[J]. Crop Protection, 2012, 38: 95-102. doi: 10.1016/j.cropro.2012.03.003
[52] WANG Q, LI M, ZHANG J, et al. Suitable stocking density of fish in paddy field contributes positively to 2-acetyl-1-pyrroline synthesis in grain and improves rice quality[J]. Journal of the Science of Food and Agriculture, 2023, 103(10): 5126-5137.