Effects of different paddy-upland multiple cropping patterns on soil aggregates, carbon and nitrogen in paddy fields
-
摘要:目的
探寻更适合南方稻田可持续发展的水旱复种模式。
方法在江西农业大学科技园开展紫云英−早稻−晚稻(CK)、紫云英−早稻−晚玉米||晚大豆(CRI)、油菜−早稻−晚玉米||晚大豆(RRI)、油菜−早稻−晚稻(RRR)水旱复种模式的田间对比试验。
结果土壤有机碳、全氮含量均为CK>RRR>CRI>RRI。种植紫云英模式的R0.250(粒径≥0.250 mm的团聚体含量)比种植油菜模式的高,土壤结构的稳定性更强。CRI的早稻产量高于其他处理。
结论在南方地区推行紫云英−早稻−晚玉米||晚大豆种植模式(CRI),有利于农业的可持续发展。
Abstract:ObjectiveTo investigate a paddy-upland multiple cropping model that is more conducive to the sustainable development of paddy fields in the southern region.
MethodA comparative field trial was conducted at the Science and Technology Park of Jiangxi Agricultural University to compare the paddy-upland multiple cropping models, including milk vetch-early rice-late rice (CK), milk vetch-early rice-late corn||late soybean (CRI), rape-early rice-late corn||late soybean (RRI), and rape-early rice-late rice (RRR).
ResultThe levels of soil organic carbon and total nitrogen contents were both in the order of CK>RRR>CRI>RRI. In addition, The R0.250 (content of aggregate with diameter ≥ 0.250 mm) values of planting milk vetch modes were higher than those of planting rape modes, the soil structures of planting milk vetch modes were more stable. Furthermore, the early rice yield of CRI mode was the highest among four treatments.
ConclusionAdopting CRI mode of milk vetch-early rice-late corn||late soybean in the southern region is beneficial for the sustainable development of agriculture.
-
Keywords:
- Paddy-upland multiple cropping /
- Soil aggregate /
- Soil carbon and nitrogen /
- Crop yield /
- Rice field
-
-
图 1 不同水旱复种模式下土壤有机碳、全氮含量
CK:紫云英−早稻−晚稻,CRI:紫云英−早稻−晚玉米||晚大豆,RRI:油菜−早稻−晚玉米||晚大豆,RRR:油菜−早稻−晚稻;各小图中,柱子上方的不同小写字母表示同茬作物不同处理间差异显著(P<0.05,LSD法)。
Figure 1. Soil organic carbon and total nitrogen contents under different paddy-upland multiple cropping patterns
CK: Milk vetch-early rice-late rice, CRI: Milk vetch-early rice-late corn||late soybean, RRI: Rape-early rice-late corn||late soybean, RRR: Rape-early rice-late rice; Different lowercase letters on the columns in each figure indicate significant differences in the same crop among treatments (P<0.05, LSD method).
图 2 不同水旱复种模式下晚稻植株有机碳含量
CK:紫云英−早稻−晚稻,RRR:油菜−早稻−晚稻;柱子上方的不同小写字母表示相同部位不同处理间差异显著(P<0.05,t检验)。
Figure 2. Organic carbon content in plant of late rice under different paddy-upland multiple cropping patterns
CK: Milk vetch-early rice-late rice, RRR: Rape-early rice-late rice; Different lowercase letters on the columns indicate significant differences in the same part between different treatments (P<0.05, t test).
图 3 不同水旱复种模式下早稻植株全氮含量
CK:紫云英−早稻−晚稻,CRI:紫云英−早稻−晚玉米||晚大豆,RRI:油菜−早稻−晚玉米||晚大豆,RRR:油菜−早稻−晚稻;柱子上方的不同小写字母表示相同部位不同处理间差异显著(P<0.05,LSD法)。
Figure 3. Total nitrogen content in plant of early rice under different paddy-upland multiple cropping patterns
CK: Milk vetch-early rice-late rice, CRI: Milk vetch-early rice-late corn||late soybean, RRI: Rape-early rice-late corn||late soybean, RRR: Rape-early rice-late rice; Different lowercase letters on the columns indicate significant differences in the same part among treatments (P<0.05, LSD method).
表 1 田间试验设计
Table 1 Field trial design
处理
Treatment复种模式1)
Multiple cropping pattern备注
NoteCK 紫云英−早稻−晚稻 传统复种模式 CRI 紫云英−早稻−晚玉米||晚大豆 水旱复种模式 RRI 油菜−早稻−晚玉米||晚大豆 水旱复种模式 RRR 油菜−早稻−晚稻 油菜−双季稻复种模式 1) “−”表示接茬,“||”表示间作。
1) “−” represents continuous planting, “||” represents intercropping.表 2 不同水旱复种模式对土壤团聚体的影响1)
Table 2 Effects of different paddy-upland multiple cropping patterns on soil aggregates
处理
Treatment不同粒径(r)团聚体质量占比/%
Mass proportion of each grain size (r) aggregateR0.250/% 平均质量
直径/mm
Mean weight
diameter几何平均
直径/mm
Geometry mean
diameter≥2.000 mm 1.000~<
2.000 mm0.250~<
1.000 mm0.053~<
0.250 mm<0.053 mm CK 78.87±6.17a 4.67±1.47a 11.07±5.92a 4.43±1.67b 0.96±0.65a 94.61±1.07a 1.72±0.07a 1.49±0.09a CRI 72.74±12.12a 8.47±5.77a 12.74±3.64a 4.59±2.10ab 1.46±0.83a 93.95±2.75ab 1.67±0.13a 1.41±0.19a RRI 71.03±3.09a 6.79±2.94a 14.34±1.90a 7.39±1.23ab 0.45±0.34a 92.16±0.90ab 1.62±0.03a 1.35±0.04a RRR 75.75±3.89a 4.44±1.26a 9.77±0.47a 8.76±3.11a 1.27±0.27a 89.97±3.37b 1.66±0.06a 1.33±0.12a 1) CK:紫云英−早稻−晚稻,CRI:紫云英−早稻−晚玉米||晚大豆,RRI:油菜−早稻−晚玉米||晚大豆,RRR:油菜−早稻−晚稻;R0.250:粒径≥0.250 mm团聚体的质量占比;同列数据后的不同小写字母表示处理间差异显著(P<0.05,LSD法)。
1) CK: Milk vetch-early rice-late rice, CRI: Milk vetch-early rice-late corn||late soybean, RRI: Rape-early rice-late corn||late soybean, RRR: Rape-early rice-late rice; R0.250: Mass proportion of aggregates with particle size ≥ 0.250 mm; Different lowercase letters in the same column indicate significant differences among treatments (P<0.05, LSD method).表 3 不同水旱复种模式下作物碳氮比1)
Table 3 Carbon to nitrogen ratio in crops under different paddy-upland multiple cropping patterns
处理
Treatment早稻 Early rice 大豆 Soybean 茎
Stem叶
Leaf穗
Spike茎
Stem荚
PodCK 35.26±3.66b 19.47±0.99a 27.77±2.15a CRI 37.82±4.94ab 20.85±2.79a 27.42±1.98a 19.58±2.71a 10.25±1.47a RRI 44.19±3.82a 24.01±4.53a 29.51±0.75a 13.62±1.35b 9.15±0.71a RRR 44.12±3.15a 24.05±1.82a 29.74±1.9a 1) CK:紫云英−早稻−晚稻,CRI:紫云英−早稻−晚玉米||晚大豆,RRI:油菜−早稻−晚玉米||晚大豆,RRR:油菜−早稻−晚稻;早稻同列数据后的不同小写字母表示处理间差异显著(P<0.05,LSD法);大豆同列数据后的不同小写字母表示处理间差异显著(P<0.05,t检验)。
1) CK: Milk vetch-early rice-late rice, CRI: Milk vetch-early rice-late corn||late soybean, RRI: Rape-early rice-late corn||late soybean, RRR: Rape-early rice-late rice; Different lowercase letters in the same column of early rice indicate significant differences among treatments (P<0.05, LSD method); Different lowercase letters in the same column of soybean indicate significant differences between treatments (P<0.05, t test). -
[1] 周甜, 吴少华, 康建宏, 等. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. [2] 舒业勤, 彭复细, 雷文硕, 等. 稻油复种不同措施下土壤有机碳组分积累及其稳定性特征[J/OL]. 土壤学报 (2024-04-08) [2024-07-12]. https://link.cnki.net/urlid/32.1119.p.20240402.1444.002. [3] 张玮, 周梦瑶, 张乐妍, 等. 多熟复种模式提高南方稻田土壤团聚体稳定性以及有机碳含量[J]. 华北农学报, 2023, 38(S1): 331-338. doi: 10.7668/hbnxb.20194109 [4] HU Q, YANG B, LI N, et al. Effects of mixed sowing of Chinese milk vetch (Astragalus sinicus L. ) and rape on rice yield and soil physical and chemical properties[J]. Research on World Agricultural Economy, 2022, 3(1): 9-15. doi: 10.36956/rwae.v3i1.483
[5] 代雪宾, 田秀平, 赵秋, 等. 长期冬绿肥翻压对土壤有机氮组分的影响研究[J]. 天津农学院学报, 2023, 30(5): 11-15. [6] 刘宁. 长江中游双季稻区稻田三熟制优化复种方式研究[D]. 南昌: 江西农业大学, 2023. [7] 潘晓华, 李木英, 曾勇军, 等. 江西双季稻主要种植方式及其配套栽培对策[J]. 江西农业大学学报, 2013, 35(1): 1-6. doi: 10.3969/j.issn.1000-2286.2013.01.001 [8] 黄国勤. 中国南方稻田耕作制度发展的成就、问题及战略对策[J]. 华中农业大学学报, 2022, 41(1): 1-20. [9] YU X, XIAO S, YAN T, et al. Interspecific competition as affected by nitrogen application in sweet corn-soybean intercropping system[J]. Agronomy, 2023, 13(9): 2268. doi: 10.3390/agronomy13092268
[10] 张曼, 刘全俊, 汤永玉, 等. 玉米大豆间作对玉米产量及节肢动物群落的影响[J]. 应用昆虫学报, 2024, 61(2): 429-441. [11] 胡开明, 陆万山. 大豆—玉米复合种植模式应用分析[J]. 安徽农学通报, 2024, 30(10): 23-26. doi: 10.3969/j.issn.1007-7731.2024.10.006 [12] LIU Y H, ZHONG Y Y, HU C, et al. Distribution of microplastics in soil aggregates after film mulching[J]. Soil Ecology Letters, 2023, 5(3): 230171. doi: 10.1007/s42832-023-0171-9
[13] 王敬宽, 吕鹏超, 张楷悦, 等. 不同土地利用方式对盐碱地土壤团聚体及碳氮含量的影响[J]. 山东农业科学, 2023, 55(10): 86-94. [14] 李鉴霖, 江长胜, 郝庆菊. 土地利用方式对缙云山土壤团聚体稳定性及其有机碳的影响[J]. 环境科学, 2014, 35(12): 4695-4704. [15] 黑杰, 李先德, 刘吉龙, 等. 轮作模式对农田土壤团聚体及碳氮含量的影响[J]. 中国水土保持科学(中英文), 2022, 20(3): 126-134. [16] 阮文亮, 彭松, 祝晓慧, 等. 减量施氮与间作大豆对甜玉米土壤团聚体及有机碳含量的影响[J]. 四川农业大学学报, 2023, 41(5): 811-819. [17] XU L, WANG M, XIE X, et al. Assessment of soil aggregation properties after conversion from rice to greenhouse organic cultivation on SOC controlling mechanism[J]. Journal of Soils and Sediments, 2020, 20(4): 1920-1930. doi: 10.1007/s11368-020-02589-0
[18] 张玉铭, 胡春胜, 陈素英, 等. 耕作与秸秆还田方式对碳氮在土壤团聚体中分布的影响[J]. 中国生态农业学报(中英文), 2021, 29(9): 1558-1570. [19] 杨卫君, 惠超, 邓天池, 等. 生物炭对砂壤土团聚体及其碳、氮分布的影响[J]. 中国土壤与肥料, 2022(12): 1-9. doi: 10.11838/sfsc.1673-6257.21608 [20] TANG H, LI C, SHI L, et al. Functional soil organic matter fraction in response to short-term tillage management under the double-cropping rice paddy field in southern of China[J]. Environmental Science and Pollution Research, 2021, 28(35): 48438-48449. doi: 10.1007/s11356-021-14173-1
[21] TANG H, LI C, SHI L, et al. Tillage with crop residue returning management increases soil microbial biomass turnover in the double-cropping rice fields of Southern China[J]. Agronomy, 2024, 14(2): 265. doi: 10.3390/agronomy14020265
[22] 陈明君, 盛荣, 张文钊, 等. 红壤稻田复种方式对土壤微生物生物量碳、氮的影响[J]. 农业现代化研究, 2023, 44(4): 692-700. [23] 黄国勤. 江南丘陵区农田循环生产技术研究: Ⅰ: 江西绿肥生产的发展[J]. 耕作与栽培, 2008(2): 1-2. doi: 10.3969/j.issn.1008-2239.2008.02.001 [24] 黄国勤. 南方稻田耕作制度可持续发展面临的十大问题[J]. 耕作与栽培, 2009(3): 1-2. doi: 10.3969/j.issn.1008-2239.2009.03.001 [25] EYNARD A, SCHUMACHER T E, LINDSTROM M J, et al. Aggregate sizes and stability in cultivated South Dakota prairie Ustolls and Usterts[J]. Soil Science Society of America Journal, 2004, 68(4): 1360-1365. doi: 10.2136/sssaj2004.1360
[26] 朱贵平, 张惠琴, 吴增琪, 等. 紫云英和油菜不同时期翻压对土壤培肥效果的影响[J]. 南方农业学报, 2012, 43(2): 205-208. doi: 10.3969/j:issn.2095-1191.2012.02.205 [27] 熊瑞, 欧阳宁, 欧茜, 等. 秸秆还田与耕作方式对双季稻土壤团聚体及碳氮含量的影响[J]. 浙江农业学报, 2024, 36(6): 1347-1356. [28] 宋佳, 黄晶, 高菊生, 等. 冬种绿肥和秸秆还田对双季稻区土壤团聚体和有机质官能团的影响[J]. 应用生态学报, 2021, 32(2): 564-570. [29] 李学文. 紫云英和油菜还田对土壤团聚体和有机碳固存的影响[D]. 武汉: 华中农业大学, 2022. [30] 刘陈, 王伟妮, 廖世鹏, 等. 我国油菜绿肥研究进展[J]. 中国土壤与肥料, 2023(11): 248-254. doi: 10.11838/sfsc.1673-6257.22665 [31] 黄雅楠. 绿肥还田下有机碳与矿物的结合特征及团聚体稳定性[D]. 武汉: 华中农业大学, 2023. [32] 杨继芬, 李永梅, 李春培, 等. 大豆玉米间作提高红壤团聚体中真菌群落结构和多样性[J]. 植物营养与肥料学报, 2023, 29(5): 889-899. doi: 10.11674/zwyf.2022522 [33] 陈小强, 范茂攀, 王自林, 等. 不同种植模式对云南省中部坡耕地水土保持的影响[J]. 水土保持学报, 2015, 29(4): 48-52. [34] WU A L, JIAO X Y, WANG J S, et al. Sorghum rhizosphere effects reduced soil bacterial diversity by recruiting specific bacterial species under low nitrogen stress[J]. Science of the Total Environment, 2021, 770: 144742. doi: 10.1016/j.scitotenv.2020.144742
[35] CHEN Y, LI S, LIU N, et al. Effects of different types of microbial inoculants on available nitrogen and phosphorus, soil microbial community, and wheat growth in high-P soil[J]. Environmental Science and Pollution Research, 2021, 28(18): 23036-23047.
[36] 杜光辉, 张琳, 丁丽, 等. 紫云英与水稻秸秆联合还田配合氮肥减施对水稻产量及氮素营养平衡的影响[J]. 江苏农业学报, 2024, 40(6): 1012-1019.