Construction of LMH cell line overexpressing VIM gene and effect on replication efficiency of GAstV
-
摘要:目的
构建稳定过表达波形蛋白(Vimentin,VIM)基因的鸡肝癌(Leghorn male hepatoma,LMH)细胞系以提高鹅星状病毒(Goose astrovirus,GAstV)增殖效率。
方法从鹅源细胞中通过PCR扩增VIM基因,结合同源重组的方法将其连接至慢病毒基因过表达系统载体pLV-sfGFP (2A) Puro,获得重组慢病毒质粒pLV-sfGFP (2A) Puro-VIM-Flag(pLV-VIM);利用293T细胞包装重组慢病毒颗粒,随后感染LMH细胞,并利用嘌呤霉素进行筛选以获得目标细胞;通过Western blot、RT-qPCR、间接免疫荧光试验和TCID50测定等方法评估VIM对GAstV增殖效率的影响;最后通过抗体阻断试验分析细胞表面VIM对GAstV侵入的影响。
结果经测序和酶切鉴定,成功构建了重组慢病毒载体pLV-VIM;经筛选后获得了过表达VIM基因的LMH细胞系(LMH-VIM)及其对照组细胞系(LMH-NC)。Western blot结果显示,LMH-VIM细胞中波形蛋白的表达水平显著高于LMH-NC。接种病毒后发现,过表达VIM显著上调LMH-VIM细胞中GAstV的mRNA和蛋白表达水平,以及细胞上清液中的病毒滴度。抗体阻断试验表明,细胞表面VIM可促进GAstV侵入细胞。
结论本研究为提高GAstV在体外细胞培养的增殖滴度提供了新的见解和思路,对GAstV感染引起的雏鹅痛风疾病的疫苗研发、生产和该疾病的防控具有重要意义。
Abstract:ObjectiveTo improve the proliferation efficiency of goose astrovirus (GAstV) by constructing a leghorn male hepatoma (LMH) cell line stably overexpressing vimentin (VIM) gene.
MethodThe VIM gene was amplified from goose-derived cells by PCR and subsequently ligated into the lentiviral gene overexpression system vector pLV-sfGFP (2A) Puro by homologous recombination to obtain the recombinant lentiviral plasmid pLV-sfGFP (2A) Puro-VIM-Flag(pLV-VIM). The 293T cells were used to package the recombinant lentivirus particles, which subsequently infected LMH cells and were screened with puromycin to obtain target cells. The effect of VIM on GAstV proliferation efficiency was evaluated by Western blot, RT-qPCR, indirect immunofluorescence and TCID50 assays. Finally, the effect of VIM on GAstV invasion was analyzed by antibody blocking test.
ResultThe recombinant lentiviral vector pLV-VIM was successfully constructed as confirmed by sequencing and restriction enzyme digestion. After screening, LMH-VIM cell line overexpressing the VIM gene (LMH-VIM) and its control group cell line (LMH-NC) were obtained. The results of Western blot showed that the expression level of VIM protein in LMH-VIM cells was significantly higher than that in LMH-NC cells. Overexpression of VIM significantly upregulated GAstV mRNA and protein expression levels in LMH-VIM cells, as well as viral titer in the cell supernatant. Antibody blocking test showed that cell surface VIM could actively promote GAstV invasion into cells.
ConclusionThe study provides a new insight and ideas for improving the proliferation titer of GAstV in the in vitro cell culture and is of great significance for the vaccine research and development, as well as prevention and control of gosling gout disease caused by GAstV infection.
-
广藿香Pogostemon cablin (Blanco) Benth.为唇形科Labiatae刺蕊草属 Pogostemon植物,以干燥地上部分入药,性辛、微温,具有芳香化湿,开胃止呕,发表解暑功效[1],是著名中成药藿香正气丸、藿胆丸等以及现代中药制剂抗病毒口服液等多种药品的主要原料[2]。在生产中发现,广藿香存在连作障碍,不仅严重影响产量,而且品质无法保证[3]。
有益微生物菌群(Ecological microorganisms,EM菌)由光合菌群、乳酸菌群、酵母菌群、放线菌群和丝状菌群等5大类10属80余种微生物以适当比例加以混合培养发酵而成[4-5]。连作使土壤由高肥的“细菌型”向低肥的“真菌型”转化,根际病原真菌增多,根部病害加重,根系功能下降,导致产量降低[6-7]。研究表明,EM菌在畜牧业、农业以及生态环境建设等领域取得了很好的效果,施用EM菌能有效克服茄子和黄瓜的连作障碍[8];EM菌可减轻黄瓜重茬病害,降低土壤盐渍化程度[9];在正常的农业生产管理条件下,增施EM菌对玉米、高粱均表现明显的增促效果,如促进作物生长,缩短生育期,提高叶绿素含量,改善光合作用,促进物质转移,增产增收[10]。目前关于EM菌在广藿香连作障碍方面的研究鲜见报道。本研究通过在重茬土壤中施加EM菌肥的方法,研究EM菌肥对广藿香连作条件下,根际土壤微生物数量及土壤酶活性,旨在为缓解广藿香连作障碍提供科学依据。
1. 材料与方法
1.1 供试材料与处理
试验于2015年6—12月在广东药科大学中药学院药圃内进行,取连续单一种植广藿香主根区10 cm范围内土壤作为供试连作土壤(重茬土),以及从未种植广藿香的园土作为供试对照土壤(CK)。土壤取回后置于室内自然风干,除去石块和植物残体等杂质,过筛备用。用于扦插的广藿香母株取自药圃,经李明教授鉴定为唇形科植物广藿香。
在生长健壮的母株上选择粗壮、节密、叶小而厚、长势基本一致、无病虫害的侧枝作为扦插苗,直接扦插于口径22 cm,高24 cm塑料盆中,每盆1株,盆土为栽培广藿香的风干沙壤土,盆土质量约5.0 kg,并在其上覆盖50%遮阳网,定期浇水和喷水,成活后常规管理。
EM菌原液由浙江众益制药股份有限公司生产,施用前制作成EM活性液:将EM原液与等体积红糖水按50倍比例(体积比)用水稀释并搅均匀后(红糖先用热水溶化),置于密封容器内厌氧发酵,环境温度为(35±2)℃。发酵过程中及时放气,待pH降至3.5±0.2,并有醇香发酵酸味,表明发酵成功,得到EM菌活性液,加水分别稀释得EM菌体积分数为1.6%、0.8%和0.1%的活性液备用。
1.2 试验设计
将已经扦插生根的广藿香扦插苗移栽到不同的培育基质中,各培养基质比例情况见表1,共设5个处理组,每组5盆,每盆移植3株,每组处理重复3次。不同处理采用等量培育土。EM菌活性液于移栽苗均匀洒在苗床面表面,2 d后移栽并以根部滴灌的方式浇灌,每周1次,每次100 mL。移栽盆口径170 mm,底径120 mm,高度155 mm移栽初期用塑料薄膜搭棚保温保湿,常规管理。培育的第0、20、40、60天,分别取广藿香主根区10 cm范围内(去除表层2 cm土壤)土壤作为供试连作土壤,检测土壤微生物数量以及土壤酶活性;在培育的第60天,测定广藿香植株的农艺性状指标。
表 1 不同培养基质比例Table 1. Ratios of different culture substrates处理
Treatmentφ (EM菌)/%
EM content培育土
Cultivation soilCK 0 园土 Garden soil 0% EM 0 重茬土 Continuous cropping soil 0.1% EM 0.1 重茬土 Continuous cropping soil 0.8% EM 0.8 重茬土 Continuous cropping soil 1.6% EM 1.6 重茬土 Continuous cropping soil 1.3 测定项目与方法
1.3.1 生长指标测定
按上述方法培育2周后,广藿香植株的株高、根长以及鲜质量按照常规方法测量。根系活力采用TTC法测定[11],TTC还原量表示脱氢酶活性并作为根系活力指标。总叶绿素含量测定采用浸提法[12]。
1.3.2 土壤微生物数量测定
土壤微生物计数采用稀释平板法[13]:细菌分离培养采用牛肉膏蛋白胨琼脂平板表面涂布法;真菌采用马丁氏孟加拉红琼脂平板表面涂布法,在使用前加入体积分数为1%的链霉素;放线菌采用高氏Ⅰ号培养基平板表面涂布法,结果以每克鲜土所含微生物菌落形成单位数量表示。
1.3.3 土壤酶活性测定
参照关松荫的方法[14]:脲酶活性测定采用靛酚蓝比色法,以24 h后1 g土壤中NH3-N的毫克数表示;蔗糖酶活性测定采用硫代硫酸钠滴定法,以24 h后1 g土壤消耗0.1 mol·L–1硫代硫酸钠的毫升数表示;多酚氧化酶活性测定采用邻苯三酚比色法,以24 h后100 g土壤中紫色没食子素的毫克数表示。
1.4 数据分析
应用SPSS 13.0和EXCEL 2003进行数据分析和作图,采用LSD法进行处理间的多重比较分析。
2. 结果与分析
2.1 重茬土添加EM菌对广藿香扦插苗生长特性的影响
如表2所示,EM菌添加到重茬土壤中,扦插苗株高、鲜质量、根长、根系活力和总叶绿素含量较单一重茬土壤基质(0% EM处理)显著升高(P<0.05)。其中0.8% EM处理的效果最显著,相较于0% EM处理,扦插苗的株高、鲜质量、根长、根系活力及总叶绿素含量显著升高,分别升高70.34%、195.32%、101.52%、156.84%和195.33%;然而,相较于对照土,扦插苗的株高、根长、根系活力以及总叶绿素含量均没有明显差异(P>0.05),仅扦插苗的鲜质量显著升高,较对照土升高了59.94%。
表 2 EM菌处理对广藿香扦插苗农艺性状的影响1)Table 2. Effect of EM treatment on agronomic traits of Pogostemon cablin cutting seedlings处理
Treatment株高/cm
Plant height鲜质量/g
Fresh weight根长/cm
Root length根系活力/(mg·g–1·h–1)
Root vitalityw(总叶绿素)/(mg·g–1)
Total chlorophyll contentCK 16.10±3.15a 9.86±0.98c 10.17±2.01a 2.16±0.12a 2.38±0.12a 0% EM 11.80±2.87b 5.34±0.59d 6.60±3.54b 0.95±0.17c 1.07±0.21b 0.1% EM 14.45±2.01a 9.83±0.57c 9.16±3.67a 1.36±0.24b 2.33±0.20a 0.8% EM 20.10±3.90a 15.77±0.97a 13.30±4.11a 2.44±0.14a 3.16±0.12a 1.6% EM 17.00±3.21a 13.06±0.65b 11.80±3.97a 2.37±0.30a 2.76±0.17a 1) 同列数据后的不同小写字母表示差异显著 (P<0.05,LSD 法)
1) Different lowercase letters in the same column indicate significant difference (P<0.05,LSD test)2.2 重茬土添加EM菌对广藿香扦插苗土壤微生物数量的影响
如表3所示,广藿香扦插苗移植在不同培养基质中土壤细菌、真菌、放线菌数量均有所差异。EM菌添加到重茬土中,土壤细菌和放线菌数量均较重茬土显著增多,真菌数量较重茬土显著减少。随着培养时间的延长,细菌、真菌的数量呈现先增后减的趋势,而放线菌的数量呈现平稳增长的趋势。在0.8% EM处理中,在培育第40天,广藿香根际土壤细菌和放线菌数量达到高峰,根际土壤细菌和放线菌数量较对照土分别增加了46.80%和54.88%;在整个培育过程中,0.8%EM处理较0% EM处理均显著增加细菌及放线菌数量,显著降低了广藿香根际土壤真菌数量。
表 3 EM菌处理对广藿香扦插苗根际土壤微生物种群数量的影响1)Table 3. Effect of EM treatment on the microbial population inrhizosphere soil of Pogostemon cablin cutting seedlings微生物
Microorganism处理
Treatmentt处理/d Treatment time 0 20 40 60 细菌(×107 cfu·g–1)
BacteriaCK 2.03±0.08b 2.15±0.05c 2.25±0.04b 2.20±0.07b 0% EM 1.16±0.05e 1.28±0.03e 1.45±0.04e 1.44±0.03e 0.1% EM 1.84±0.07d 1.95±0.04d 2.19±0.03c 2.06±0.05c 0.8% EM 1.93±0.06c 2.69±0.05b 3.30±0.04a 2.93±0.04a 1.6% EM 2.14±0.04a 2.95±0.06a 2.13±0.05d 1.80±0.03d 真菌(×104 cfu·g–1)
FungusCK 5.61±0.50e 6.25±0.43e 6.82±0.70e 6.91±0.44e 0% EM 8.06±0.49b 9.48±0.63a 11.7±0.54a 12.4±0.49b 0.1% EM 7.55±0.32d 9.33±0.49c 9.93±0.43c 13.0±0.32a 0.8% EM 7.93±0.42c 8.37±0.45d 8.66±0.44d 9.07±0.42d 1.6% EM 8.37±0.41a 9.41±0.39b 10.1±0.70b 10.6±0.49c 放线菌(×106 cfu·g–1)
ActinomycetesCK 1.51±0.04b 1.62±0.05c 1.71±0.07c 1.70±0.07b 0% EM 0.83±0.06e 0.86±0.05e 1.10±0.04e 1.07±0.08e 0.1% EM 1.00±0.04d 1.33±0.03d 1.45±0.04d 1.26±0.04c 0.8% EM 1.37±0.04c 1.86±0.05b 2.65±0.06a 2.08±0.04a 1.6% EM 1.53±0.05a 2.12±0.03a 1.83±0.06b 1.23±0.05d 1) 同种微生物同列数据后的不同小写字母表示差异显著 (P<0.05,LSD 法)
1) Different lowercase letters of the same microorganism in the same column indicate significant difference (P<0.05,LSD test)2.3 重茬土添加EM菌对广藿香扦插苗土壤酶活性的影响
广藿香扦插苗根际土壤脲酶、蔗糖酶和多酚氧化酶活性在不同培养基质中均有显著性差异(图1)。EM菌肥添加到重茬土中,在不同培育时间内,3种活性较对照土和重茬土呈显著升高的变化。在0.8% EM处理中,广藿香苗根际土壤脲酶、蔗糖酶和多酚氧化酶活性在培育第40天较对照土和0% EM处理显著升高,达到峰值;较对照土分别升高了28.67%、23.05%和85.76%;较0% EM处理升高了81.46%、54.26%和137.90%。
图 1 EM菌处理对广藿香扦插苗根际土壤酶活性的影响各图中,相同培养时间的不同小写字母表示差异显著(P<0.05, LSD 法)Figure 1. Effect of EM treatment on enzyme activities in rhizosphere soil of Pogostemon cablin cutting seedlingsIn each figure, different lowercase letters of the same cultivation time indicate significant difference (P<0.05, LSD test)3. 讨论与结论
重茬土添加EM菌可显著促进广藿香的生长以及叶绿素含量的增加。研究表明,施用EM菌能够提高根系从土壤中吸收肥水的能力[15];而且施用EM菌能够使植物的株高、叶长、叶宽、总根数增加,植株开展度、根系密集度均较好[16];倪淑君等[17]发现一定浓度EM菌能促进黄瓜的生长发育。施加EM菌后,随着微生物的活动,土壤中的有效氮、磷、钾含量增加,或将土壤中一些作物不能直接利用的物质转换成可被吸收利用的营养物质,或提高作物的生产刺激物质,或抑制植物病原菌的活动,同时土壤中微生物活动产生大量的黏多糖,与植物分泌的黏液及矿物胶体、有机胶体相结合,促进土壤腐殖质的转化,增进土壤蓄肥、保水能力,改良土壤团粒结构,改善土壤理化性质从而提高土壤肥力,改善作物的营养条件,最终对植株的生长起到促进作用。本研究中,重茬土中添加EM菌,能促进广藿香的生长发育,从而缓解连作引起的生长抑制。
添加EM菌亦可显著提高根际细菌和放线菌的数量,降低真菌数量,从而改善具有较高生物活性的“细菌型”环境状况,提高土壤酶活性,促进植物生长[18-19]。EM菌已在西洋参[20]、茄子[8]、黄瓜[9]、大蒜[21]等植物取得了很好的效果。土壤微生物在枯枝落叶分解、腐殖质合成、土壤养分循环、物质和能量代谢的过程中都起着十分重要的作用,土壤微生物的数量分布,不仅是土壤中有机、无机养分以及土壤通气透水性能的反应,而且是土壤中生物活性的具体体现[22]。本研究中,对照、重茬土壤中3大微生物类群的组成比例大体一致,即细菌最多,放线菌次之,真菌最少;随着连作年限的增加,土壤细菌、放线菌数量减少,但真菌数量持续增加;重茬土添加EM菌后,根际土壤中的细菌、放线菌数量明显增加,真菌数量则稍有所下降,与孙红霞等[8]和刘素慧等[21]的研究结果一致,这可能是由于EM菌是通过发酵将多属多种微生物混合培养,各微生物在生长过程中产生的物质及其分泌物,形成相互的基质和原料,通过共生、增殖关系形成的一个有益于植物生长的土壤微生物菌群结构。
土壤酶与土壤微生物一样是构成土壤肥力的重要而积极的因素,土壤酶在物质循环和转化过程中起着积极作用,是构成土壤生物活性的重要组成部分[23]。土壤酶来源于植物根系及其残体、土壤动物及其遗骸和各种微生物的分泌活动,其中微生物的分泌活动是酶的主要来源[24]。广藿香重茬土添加EM菌,增强了根际土壤脲酶、蔗糖酶、多酚氧化酶活性,即增强了土壤供应养分的能力,提高了土壤肥力,对于广藿香生长起了重要的有利作用,能有效缓解广藿香连作障碍问题。
综上所述,通过盆栽重茬土壤中添加EM菌肥的方法,可缓解广藿香连作对其生长、根系活力以及叶绿素含量的抑制,促进广藿香生长,提高其根系活力以及叶绿素含量;改善土壤状况,促进土壤细菌和放线菌的生长,抑制土壤真菌的生长;增强土壤脲酶、蔗糖酶以及多酚氧化酶的活性,改善土壤肥力。因此,在广藿香连作地块添加EM菌能够有效缓解连作障碍问题,EM菌缓解连作障碍的相关机制需要进一步研究。
-
图 2 VIM基因的扩增
M:DNA marker DL2000;1:以引物VIM-F、VIM-R进行扩增(VIM);3:以引物VIM-F2、VIM-R-Flag进行扩增(VIM-Flag);5:以引物VIM-pLV-F、VIM-pLV-R进行扩增(VIM-Flag-pLV);2、4、6:阴性对照。
Figure 2. Amplification of VIM gene
M: DNA marker DL2000; 1: Amplification with primers VIM-F and VIM-R (VIM); 3: Amplification with primers VIM-F2 and VIM-R-Flag (VIM-Flag); 5: Amplification with primers VIM-pLV-F and VIM-pLV-R (VIM-Flag-pLV); 2, 4, 6: Negative control.
表 1 VIM基因扩增的PCR引物
Table 1 PCR primers for VIM gene amplification
引物名称
Primer name引物序列(5′→3′)1)
Primer sequence退火温度/℃
Annealing temperatureVIM-F ATGAGCATCAGCAGCAAGAA 54 VIM-R CTCCAAGTCATCATGGTGC VIM-F2 ATGAGCATCAGCAGCAAGAACTCCTCGTACC 64 VIM-R-Flag ttacttatcgtcgtcatccttgtaatcCTCCAAGTCATCATGG VIM-pLV-F ctcagatctcgaatttctagaATGAGCATCAGCAGCAAGAACTC 66 VIM-pLV-R gggcccgggttcgaactcgagTTACTTATCGTCGTCATCCTTGTAATC 1)小写字母区域为同源臂序列,下划线区域为Flag标签序列。
1) The lowercase letter area represents the homologous arm sequence, and the underlined area represents the Flag tag sequence. -
[1] ZHANG X, REN D, LI T, et al. An emerging novel goose astrovirus associated with gosling gout disease, China[J]. Emerging Microbes & Infections, 2018, 7(1). doi: 10.1038/s41426-018-0153-7.
[2] XU J, GAO L, ZHU P, et al. Isolation, identification, and pathogenicity analysis of newly emerging gosling astrovirus in South China[J]. Frontiers in Microbiology, 2023, 14: 1112245. doi: 10.3389/fmicb.2023.1112245.
[3] LIU C, LI L, DONG J, et al. Global analysis of gene expression profiles and gout symptoms in goslings infected with goose astrovirus[J]. Veterinary Microbiology, 2023, 279: 109677. doi: 10.1016/j.vetmic.2023.109677.
[4] ZHANG X, DENG T, SONG Y, et al. Identification and genomic characterization of emerging goose astrovirus in central China, 2020[J]. Transboundary and Emerging Diseases, 2022, 69(3): 1046-1055. doi: 10.1111/tbed.14060
[5] 王昊锋. 新型鹅星状病毒引起组织损伤特性研究及感染靶细胞的鉴定[D]. 泰安: 山东农业大学, 2022. [6] 黎洁玉. 新型鹅星状病毒的分离鉴定与致病性分析[D]. 长沙: 湖南大学, 2021. [7] CHEN Q, XU X, YU Z, et al. Characterization and genomic analysis of emerging astroviruses causing fatal gout in goslings[J]. Transboundary and Emerging Diseases, 2020, 67(2): 865-876. doi: 10.1111/tbed.13410
[8] ZHANG F, LI H, WEI Q, et al. Isolation and phylogenetic analysis of goose astrovirus type 1 from goslings with gout in Jiangxi province, China[J]. Poultry Science, 2022, 101(7): 101800. doi: 10.1016/j.psj.2022.101800.
[9] PENG Z, GAO D, SONG X, et al. Isolation and genomic characterization of one novel goose astrovirus causing acute gosling gout in China[J]. Scientific Reports, 2023, 13(1): 10565. doi: 10.1038/s41598-023-37784-9.
[10] REN D, LI T, ZHANG X, et al. OASL triggered by novel goose astrovirus via ORF2 restricts its replication[J]. Journal of Virology, 2020, 94(24): e01767-20.
[11] SALDANHA R, THANH M T H, KRISHNAN N, et al. Vimentin supports cell polarization by enhancing centrosome function and microtubule acetylation[J]. Journal of the Royal Society Interface, 2024, 21(215): 20230641. doi: 10.1098/rsif.2023.0641.
[12] MONTEIRO-REIS S, MIRANDA-GONÇALVES V, GUIMARÃES-TEIXEIRA C, et al. Vimentin epigenetic deregulation in Bladder Cancer associates with acquisition of invasive and metastatic phenotype through epithelial-to-mesenchymal transition[J]. International Journal of Biological Sciences, 2023, 19(1): 1-12. doi: 10.7150/ijbs.77181
[13] SUPREWICZ Ł, SWOGER M, GUPTA S, et al. Extracellular vimentin as a target against SARS-CoV-2 host cell invasion[EB/OL]. bioRxiv: 2021.01. 08.425793 (2021-03-18) [2024-07-10]. doi: 10.1002/smll.202105640.
[14] LALIOTI V, GONZÁLEZ-SANZ S, LOIS-BERMEJO I, et al. Cell surface detection of vimentin, ACE2 and SARS-CoV-2 Spike proteins reveals selective colocalization at primary cilia[J]. Scientific Reports, 2022, 12(1): 7063. doi: 10.1038/s41598-022-11248-y.
[15] AMRAEI R, XIA C, OLEJNIK J, et al. Extracellular vimentin is an attachment factor that facilitates SARS-CoV-2 entry into human endothelial cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(6): e2113874119.
[16] ZHENG X, LI R, QIAO S, et al. Vimentin rearrangement by phosphorylation is beneficial for porcine reproductive and respiratory syndrome virus replication in vitro[J]. Veterinary Microbiology, 2021, 259: 109133. doi: 10.1016/j.vetmic.2021.109133.
[17] ZHANG Y, ZHAO S, LI Y, et al. Host cytoskeletal vimentin serves as a structural organizer and an RNA-binding protein regulator to facilitate Zika viral replication[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(8): e2113909119.
[18] ZHU Z, LI W, ZHANG X, et al. Foot-and-mouth disease virus capsid protein VP1 interacts with host ribosomal protein SA to maintain activation of the MAPK signal pathway and promote virus replication[J]. Journal of Virology, 2020, 94(3): e01350-19.
[19] GLADUE D P, O’DONNELL V, BAKER-BRANSTETTER R, et al. Foot-and-mouth disease virus modulates cellular vimentin for virus survival[J]. Journal of Virology, 2013, 87(12): 6794-6803. doi: 10.1128/JVI.00448-13
[20] STEFANOVIC S, WINDSOR M, NAGATA K, et al. Vimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II[J]. Journal of Virology, 2005, 79(18): 11766-11775. doi: 10.1128/JVI.79.18.11766-11775.2005
[21] 向勇, 李林林, 张俊勤, 等. 2型鹅星状病毒VP27蛋白的原核表达及多克隆抗体制备[J]. 中国家禽, 2024, 46(9): 187-193. [22] PARK F, KAY M A. Modified HIV-1 based lentiviral vectors have an effect on viral transduction efficiency and gene expression in vitro and in vivo[J]. Molecular Therapy, 2001, 4(3): 164-173. doi: 10.1006/mthe.2001.0450
[23] 殷娟斌, 张志雄, 王莎莎, 等. 过表达HDAC6基因的Vero细胞系建立及其对狂犬病病毒增殖效率评价[J]. 中国兽医科学, 2023, 53(2): 150-155. [24] 陈玲玲, 张婷, 郝雨, 等. 非洲猪瘟病毒D1133L蛋白增加宿主波形蛋白磷酸化而促进病毒在猪巨噬细胞中的复制[J]. 微生物学报, 2024, 64(3): 720-732. [25] 刘伟, 李梦娇, 郭佩东, 等. 稳定表达人TMPRSS2基因BHK细胞系的建立及其对新城疫弱毒增殖效率评价[J]. 中国兽医科学, 2021, 51(5): 594-600. [26] KLIMPEL M, TERRAO M, CHING N, et al. Development of a perfusion process for continuous lentivirus production using stable suspension producer cell lines[J]. Biotechnology and Bioengineering, 2023, 120(9): 2622-2638. doi: 10.1002/bit.28413
[27] RAMOS I, STAMATAKIS K, OESTE C L, et al. Vimentin as a multifaceted player and potential therapeutic target in viral infections[J]. International Journal of Molecular Sciences, 2020, 21(13): 4675. doi: 10.3390/ijms21134675.
[28] ZHENG X, HONG L, SHI L, et al. Proteomics analysis of host cells infected with infectious bursal disease virus[J]. Molecular & Cellular Proteomics, 2008, 7(3): 612-625.
[29] ZHANG X, BOYCE M, BHATTACHARYA B, et al. Bluetongue virus coat protein VP2 contains sialic acid-binding domains, and VP5 resembles enveloped virus fusion proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(14): 6292-6297.
[30] ZHANG X, SHI H, CHEN J, et al. Identification of the interaction between vimentin and nucleocapsid protein of transmissible gastroenteritis virus[J]. Virus Research, 2015, 200: 56-63. doi: 10.1016/j.virusres.2014.12.013
[31] KIM J K, FAHAD A M, SHANMUKHAPPA K, et al. Defining the cellular target(s) of porcine reproductive and respiratory syndrome virus blocking monoclonal antibody 7G10[J]. Journal of Virology, 2006, 80(2): 689-696. doi: 10.1128/JVI.80.2.689-696.2006
[32] XIANG Y, LI L, HUANG Y, et al. Cellular vimentin interacts with VP70 protein of goose astrovirus genotype 2 and acts as a structural organizer to facilitate viral replication[J]. Poultry Science, 2024, 103(10): 104146. doi: 10.1016/j.psj.2024.104146.
-
期刊类型引用(5)
1. 谷传凯,褚璇,刘洪利,韦鸿钰,牟英辉,马稚昱. 基于高光谱技术的金线莲多糖与黄酮含量的无损检测. 食品工业科技. 2025(07): 227-234 . 百度学术
2. 卜亚平,戴晓婧,张悦,苏玲,王琦. 光谱数据融合技术在食用菌质量评价中的应用. 菌物研究. 2024(02): 196-202 . 百度学术
3. 张冬妍,马苗源,黄莹,毛思雨. 基于高光谱图像特征融合的榛子水分含量测定. 现代食品科技. 2024(05): 274-281 . 百度学术
4. 孙婷,田建平,胡新军,罗惠波,黄丹,黄浩平. 基于高光谱成像技术的酿酒高粱品种分类. 食品与发酵工业. 2021(05): 186-192 . 百度学术
5. 马御棠,杨坤,李谦慧,杨谨铭,潘浩,彭兆裕,颜冰. 基于高光谱成像技术的500 kV运行绝缘子污秽识别及可视化研究. 云南电力技术. 2021(01): 14-19 . 百度学术
其他类型引用(6)