Effects of altitude on gut structure, digestive enzyme activity and gut microbiota of Cyprinus carpio var. Jinbei in rice field
-
摘要:目的
探究在不同海拔下稻田金背鲤Cyprinus carpio var. Jinbei的肠道结构、消化酶活性和肠道菌群特征。
方法以低(580 m)、中(830 m)和高(
1340 m)3个不同海拔的稻田金背鲤为研究对象,采用组织学、酶学以及分子生物学等方法比较分析其肠道的组织结构、消化酶活性和肠道菌群特征。结果低海拔组金背鲤肠道的绒毛高度(521.04 μm)显著高于中海拔组(438.01 μm)和高海拔组(419.39 μm)(P < 0.05);中海拔组金背鲤肠道的胰蛋白酶活性(
4541.65 U/mg)显著高于低海拔组(4023.72 U/mg)和高海拔组(3722.10 U/mg)(P < 0.05);放线菌门、厚壁菌门、变形菌门、绿弯菌门和软壁菌门是稻田金背鲤肠道的主要菌群门类。结论不同海拔对稻田金背鲤的肠道形态组织结构、消化酶活性和肠道菌群产生影响。虽然稻田金背鲤的肠道菌群在不同海拔下出现相应的变化,但是,仍保持以放线菌门为主的相对稳定菌群,说明金背鲤的肠道具有对稻田生态环境的适应性。
Abstract:ObjectiveIn order to explore the gut structure, digestive enzyme activity and gut microbiota characteristics of Cyprinus carpio var. Jinbei at different altitudes.
MethodC. carpio var. Jinbei in rice fields at low (580 m), middle (830 m) and high (
1340 m) altitudes were taken as the research objects. The histology, enzymology and molecular biology methods were used to compare and analyze the gut tissue structure, digestive enzyme activity and gut microbiota characteristics.ResultThe villus height of C. carpio var. Jinbei of the low altitude group (521.04 μm) was significantly higher than those of the middle altitude group (438.01 μm) and high altitude group (419.39 μm) (P< 0.05). The trypsin activity of C. carpio var. Jinbei of the middle altitude group (
4541.65 U/mg) was significantly higher than those of the low altitude group (4023.72 U/mg) and high altitude group (3722.10 U/mg) (P<0.05). Actinobacteria, Firmicutes, Proteobacteria, Chloroflexi and Tenericutes were the main gut microbiota of C. carpio var. Jinbei in rice field.ConclusionDifferent altitudes affect the intestinal morphology, digestive enzyme activity, and gut microbiota structure of C. carpio var. Jinbei in rice field. Although the gut microbiota of C. carpio var. Jinbei in rice field changes at different altitudes, it still maintains a relatively stable gut microbiota dominated by Actinobacteria, indicating that C. carpio var. Jinbei gut has been adapted to the ecological environment in rice field.
-
Keywords:
- Altitude /
- Rice field /
- Cyprinus carpio var. Jinbei /
- Intestine /
- Digestive enzyme /
- Gut microbiota
-
-
表 1 不同海拔稻田金背鲤的生长情况1)
Table 1 Growth status of Cyprinus carpio var. Jinbei in rice fields at different altitudes
海拔
Altitude初始体质量/g
Initial body weight初始体长/cm
Initial body length采样体质量/g
Sample body weight采样体长/cm
Sample body length增质量率/%
Weight gain rate低 Low 131.36±8.06a 16.10±0.31 a 178.87±10.88a 25.89±0.46a 44.21±8.28a 中 Middle 131.36±8.06a 16.10±0.31 a 166.26±7.46b 22.32±0.68a 34.31±5.68b 高 High 131.36±8.06a 16.10±0.31 a 152.51±13.05c 18.27±0.33a 21.42±4.78c 1) 表中数据为3次重复的平均值±标准差,同列数据后的不同小写字母表示差异显著(Duncan’s法,P < 0.05)。
1) The data in the table is the mean ± standard deviation of three replicates, and different lowercase letters after the same column indicate significant differences (Duncan’s method, P < 0.05).表 2 不同海拔稻田金背鲤肠道组织形态性状1)
Table 2 Morphological traits of gut tissue of Cyprinus carpio var. Jinbei in rice fields at different altitudes
海拔
Altitude绒毛高度/μm
Fluff height绒毛宽度/μm
Fluff width隐窝深度/μm
Crypt depth肌层厚度/μm
Muscle thickness杯状细胞数量
Number of goblet cells低 Low 521.04±69.42a 127.39±14.29a 63.10±11.80a 127.26±32.86a 32.47±22.31a 中 Middle 438.01±38.25b 130.03±9.76a 53.48±4.47a 71.68±15.27b 7.33±1.25a 高 High 419.39±20.02b 178.10±51.15a 62.68±8.19a 80.64±29.21b 12.47±2.17a 1) 表中数据为3次重复的平均值±标准差,同列数据后的不同小写字母表示差异显著(Duncan’s法,P < 0.05)。
1) The data in the table is the mean ± standard deviation of three replicates, and different lowercase letters after the same column indicate significant differences (Duncan’s method, P < 0.05).表 3 不同海拔稻田金背鲤消化酶活性1)
Table 3 Digestive enzyme activity of Cyprinus carpio var. Jinbei in rice fields at different altitudes
U/mg 海拔
Altitude淀粉酶
Amylase脂肪酶
Lipase胰蛋白酶
Trypsin纤维素酶
Cellulase低 Low 1.37±0.54a 210.39±29.12a 4023.72 ±164.68b28.06±1.11a 中 Middle 0.86±0.37a 213.34±42.19a 4541.65 ±62.57a32.22±3.34a 高 High 0.95±0.43a 143.22±31.25a 3722.10 ±494.01b26.67±1.84a 1) 表中数据为3次重复的平均值±标准差,同列数据后的不同小写字母表示差异显著(Duncan’s法,P < 0.05)。
1) The data in the table is the mean ± standard deviation of three replicates, and different lowercase letters after the same column indicate significant differences (Duncan’s method, P < 0.05).表 4 不同海拔稻田金背鲤相对丰度大于0.1%的共有主要菌属
Table 4 Common primary bacterial genera with above 0.1% relative abundance of Cyprinus carpio var. Jinbei in rice fields at different altitudes
% 门
Phylum分类
Classification不同海拔占比 Proportion at different altitudes 低
Low中
Middle高
High放线菌门
Actinobacteria放线菌属 Actinomyces 6.28 1.23 0.24 放线菌目 Actinomycetales 0.12 1.33 5.53 土壤红杆菌目 Solirubrobacterales 0.29 0.70 0.81 间孢囊菌科 Intrasporangiaceae 0.14 0.10 0.63 类诺卡氏菌科 Nocardioidaceae 0.28 0.35 0.15 Gaiellaceae科 Gaiellaceae 0.11 0.18 0.11 变形菌门
Proteobacteria根瘤菌目 Rhizobiales 0.30 2.12 3.80 土壤杆菌属 Agrobacterium 2.19 0.31 0.24 甲基弯曲菌属 Methylosinus 0.11 0.39 2.22 生丝微菌科 Hyphomicrobiaceae 0.20 0.80 0.47 生丝微球菌属 Hyphomicrobium 0.11 0.29 0.82 红游动菌属 Rhodoplanes 0.20 0.61 0.25 厚壁菌门
Firmicutes链球菌属 Streptococcus 54.29 3.67 1.58 梭菌属 Clostridium 0.46 0.67 0.90 艰难肝菌科 Mogibacteriaceae 0.23 0.20 0.59 芽孢杆菌属 Bacillus 0.34 0.24 0.28 消化链球菌科 Peptostreptococcaceae 0.15 0.14 0.24 软壁菌门 Tenericutes 柔膜菌纲 Mollicutes 6.52 68.47 14.77 绿弯菌门 Chloroflexi Ellin6529纲 Ellin6529 0.14 0.49 12.32 -
[1] 倪国彬, 周捷. “一稻多渔”综合种养新模式初探[J]. 水产科技情报, 2023, 50(2): 112-115. [2] YUAN J, LIAO C, ZHANG T, et al. Advances in ecology research on integrated rice field aquaculture in china[J]. Water, 2022, 14(15): 2333. doi: 10.3390/w14152333
[3] XIE J, HU L, TANG J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. Proceedings of the Natitional Academy of Sciences of the United States of America, 2011, 108(50): E1381-E1387.
[4] 李荣福, 杜雪地, 徐忠香, 等. 中国稻田渔业起源与历史分析[J]. 中国渔业经济, 2023, 41(3): 113-126. [5] 叶茂林. 小议贵州出土的水塘稻田模型[J]. 贵州文史丛刊, 1990(4): 32-37. [6] 吴寿昌, 龙慧蕊, 吴德军. 和谐共生的千年高坡田 探访全球重要农业文化遗产贵州从江侗乡稻鱼鸭复合系统[J]. 中国民族, 2023(6): 45-49. [7] 王思明, 卢勇. 中国的农业遗产研究: 进展与变化[J]. 中国农史, 2010, 29(1): 3-11. [8] 纪达, 许劲松, 姚俊杰, 等. 贵州省5个金背鲤(Cyprinus carpio var. Jinbei)地理种群的遗传多样性与遗传结构分析[J]. 水产学杂志, 2022, 35(5): 8-17. [9] 张文争. 稻田养殖金背鲤肌肉生长及pi3k/akt通路的研究[D]. 贵阳: 贵州大学, 2023: 82. [10] 张文争, 杨立, 姚俊杰, 等. 稻田金背鲤尾柄肌纤维特征及相关代谢酶与基因表达研究[J]. 南方水产科学, 2023, 19(4): 77-85. [11] JI D, SU X, YAO J, et al. Genetic diversity and genetic differentiation of populations of golden-backed carp (Cyprinus carpio var. Jinbei) in traditional rice fields in guizhou, china[J]. Animals, 2022, 12(11): 1377. doi: 10.3390/ani12111377
[12] BUNDSCHUH M, MESQUITA-JOANES F, RICO A, et al. Understanding ecological complexity in a chemical stress context: A reflection on recolonization, recovery, and adaptation of aquatic populations and communities[J]. Environmental Toxicology and Chemistry, 2023, 42(9): 1857-1866. doi: 10.1002/etc.5677
[13] ZHANG W, LI N, TANG X, et al. Changes in intestinal microbiota across an altitudinal gradient in the lizard Phrynocephalus vlangalii[J]. Ecology and Evolution, 2018, 8(9): 4695-4703. doi: 10.1002/ece3.4029
[14] HUTCHISON V H, HAINES H B, ENGBRETSON G. Aquatic life at high altitude: respiratory adaptations in the lake titicaca frog, Telmatobius culeus[J]. Respiration Physiology, 1976, 27(1): 115-129. doi: 10.1016/0034-5687(76)90022-0
[15] WILLIAMS C M, SZEJNER-SIGAL A, MORGAN T J, et al. Adaptation to low temperature exposure increases metabolic rates independently of growth rates[J]. Integrative and Comparative Biology, 2016, 56(1): 62-72. doi: 10.1093/icb/icw009
[16] XIAO F, ZHU W, YU Y, et al. Host development overwhelms environmental dispersal in governing the ecological succession of zebrafish gut microbiota[J]. NPJ Biofilms and Microbiomes, 2021, 7(1): 5. doi: 10.1038/s41522-020-00176-2
[17] SHAPIRA M. Gut microbiotas and host evolution: Scaling up symbiosis[J]. Trends in Ecology & Evolution, 2016, 31(7): 539-549.
[18] ZHOU X, JIANG X, YANG C, et al. Cecal microbiota of Tibetan chickens from five geographic regions were determined by 16S rRNA sequencing[J]. MicrobiologyOpen, 2016, 5(5): 753-762. doi: 10.1002/mbo3.367
[19] WU D D, YANG C P, WANG M S, et al. Convergent genomic signatures of high-altitude adaptation among domestic mammals[J]. National Science Review, 2020, 7(6): 952-963. doi: 10.1093/nsr/nwz213
[20] ZHAO J, YAO Y, LI D, et al. Characterization of the gut microbiota in six geographical populations of Chinese rhesus macaques (Macaca mulatta), implying an adaptation to high-altitude environment[J]. Microbial Ecology, 2018, 76(2): 565-577. doi: 10.1007/s00248-018-1146-8
[21] ZHANG W, JIAO L, LIU R, et al. The effect of exposure to high altitude and low oxygen on intestinal microbial communities in mice[J]. PLoS One, 2018, 13(9): e203701.
[22] BEREDED N K, ABEBE G B, FANTA S W, et al. The gut bacterial microbiome of nile tilapia (Oreochromis niloticus) from lakes across an altitudinal gradient[J]. BMC Microbiology, 2022, 22(1): 87. doi: 10.1186/s12866-022-02496-z
[23] 段玲, 罗涵, 陈章. 高原缺氧与胃肠道屏障功能关系的研究进展[J]. 西南军医, 2015, 17(2): 179-182. [24] 吴文明, 张方信, 张盼, 等. 高原缺氧条件对大鼠肠黏膜组织及缺氧诱导因子−1α、诱导型一氧化氮合酶表达的影响[J]. 解放军医学杂志, 2010, 35(5): 592-594. [25] 李大鹏. 环境因子对史氏鲟生长的影响及其调控机制的研究[D]. 武汉: 华中农业大学, 2003: 182. [26] FAN Q, WANAPAT M, YAN T, et al. Altitude influences microbial diversity and herbage fermentation in the rumen of yaks[J]. BMC Microbiology, 2020, 20(1): 370. doi: 10.1186/s12866-020-02054-5
[27] MA Y, MA S, CHANG L, et al. Gut microbiota adaptation to high altitude in indigenous animals[J]. Biochemical and Biophysical Research Communications, 2019, 516(1): 120-126. doi: 10.1016/j.bbrc.2019.05.085
[28] WU Y, YAO Y, DONG M, et al. Characterisation of the gut microbial community of rhesus macaques in high-altitude environments[J]. BMC Microbiology, 2020, 20(1): 68. doi: 10.1186/s12866-020-01747-1
[29] RUBINO T, PAROLARO D. The impact of exposure to cannabinoids in adolescence: Insights from animal models[J]. Biological Psychiatry, 2016, 79(7): 578-585. doi: 10.1016/j.biopsych.2015.07.024
[30] GIATSIS C, SIPKEMA D, SMIDT H, et al. The impact of rearing environment on the development of gut microbiota in tilapia larvae[J]. Scientific Reports, 2015, 5: 18206. doi: 10.1038/srep18206
[31] PETERSEN C, ROUND J L. Defining dysbiosis and its influence on host immunity and disease[J]. Cellular Microbiology, 2014, 16(7): 1024-1033. doi: 10.1111/cmi.12308
[32] COLSTON T J, JACKSON C R. Microbiome evolution along divergent branches of the vertebrate tree of life: What is known and unknown[J]. Molecular Ecology, 2016, 25(16): 3776-3800. doi: 10.1111/mec.13730
[33] MURPHY E F, COTTER P D, HEALY S, et al. Composition and energy harvesting capacity of the gut microbiota: Relationship to diet, obesity and time in mouse models[J]. Gut, 2010, 59(12): 1635-1642. doi: 10.1136/gut.2010.215665
[34] SPRINGER A, FICHTEL C, Al-GHALITH G A, et al. Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux’s sifakas (Propithecus verreauxi)[J]. Ecology and Evolution, 2017, 7(15): 5732-5745. doi: 10.1002/ece3.3148
[35] 张京理, 许玲, 李鑫, 等. 陇县不同海拔烟田昆虫群落的多样性研究[J]. 西北农林科技大学学报(自然科学版), 2010, 38(11): 173-180. [36] LI X, ZHOU L, YU, Y, et al. Composition of gut microbiota in the gibel carp (Carassius auratus gibelio) varies with host development[J]. Microbial Ecology, 2017, 74(1): 239-249. doi: 10.1007/s00248-016-0924-4