厌氧氨氧化污泥耦合小球藻的双生物微生物燃料电池处理养殖废水研究

    唐方毅, 薛溢涵, 贾律伦, 林云琴

    唐方毅, 薛溢涵, 贾律伦, 等. 厌氧氨氧化污泥耦合小球藻的双生物微生物燃料电池处理养殖废水研究[J]. 华南农业大学学报, 2025, 46(2): 222-229. DOI: 10.7671/j.issn.1001-411X.202406037
    引用本文: 唐方毅, 薛溢涵, 贾律伦, 等. 厌氧氨氧化污泥耦合小球藻的双生物微生物燃料电池处理养殖废水研究[J]. 华南农业大学学报, 2025, 46(2): 222-229. DOI: 10.7671/j.issn.1001-411X.202406037
    TANG Fangyi, XUE Yihan, JIA Lülun, et al. Aquaculture wastewater disposal through dual microbial fuel cell constructed by coupling anaerobic ammonia oxidation sludge and chlorella[J]. Journal of South China Agricultural University, 2025, 46(2): 222-229. DOI: 10.7671/j.issn.1001-411X.202406037
    Citation: TANG Fangyi, XUE Yihan, JIA Lülun, et al. Aquaculture wastewater disposal through dual microbial fuel cell constructed by coupling anaerobic ammonia oxidation sludge and chlorella[J]. Journal of South China Agricultural University, 2025, 46(2): 222-229. DOI: 10.7671/j.issn.1001-411X.202406037

    厌氧氨氧化污泥耦合小球藻的双生物微生物燃料电池处理养殖废水研究

    基金项目: 广东省科技厅项目(2022A0505050063,KTP20210207);国家自然科学基金(42377475);广州市科技局项目(2024E04J0001)
    详细信息
      作者简介:

      唐方毅,硕士研究生,主要从事养殖废弃物资源化利用研究,E-mail: 825137033@qq.com

      通讯作者:

      林云琴,副教授,博士,主要从事固体废弃物资源化利用及特征污染物调控研究,E-mail: yqlin@scau.edu.cn

    • 中图分类号: X71

    Aquaculture wastewater disposal through dual microbial fuel cell constructed by coupling anaerobic ammonia oxidation sludge and chlorella

    • 摘要:
      目的 

      利用厌氧氨氧化污泥和小球藻耦合构建双生物微生物燃料电池(DMFC),以期在产电的同时有效去除养殖废水中的高浓度氮磷和有机物,为养殖废水处理和生物能源制备提供新途径。

      方法 

      将厌氧氨氧化污泥和模拟废水以体积比1∶4混合后投至阳极室,小球藻和BG-11培养基以体积比1∶4混合后加入阴极室,运行24 h后阳极开始出水,并将阳极出水加入阴极室中,保持恒温并设置光暗周期模式,监测电压及废水中氨氮、NO2−N、NO3−N、总磷质量浓度,可溶性化学需氧量(SCOD)和pH。

      结果 

      厌氧氨氧化污泥和小球藻之间存在明显的电子交换,系统产电性能良好,DMFC稳定运行阶段正负峰值电压分别为45、−125 mV。氨氮质量浓度由1 588.97 mg/L降至602.75 mg/L,去除率达62.07%;NO2−N、总磷和SCOD去除率分别为88.62%、54.45%和63.72%。系统在pH为9.5的条件下能稳定运行。

      结论 

      本研究成功构建了一个厌氧氨氧化污泥耦合小球藻的DMFC系统,该系统不仅能有效脱氮、除磷、降低有机物浓度,还能持续产电,是协同解决环境与能源问题的有效途径。

      Abstract:
      Objective 

      To construct the dual microbial fuel cell (DMFC) by coupling anaerobic ammonia oxidation sludge and chlorella, hoping to remove the high concentration of nitrogen, phosphorus and organic matter in aquaculture wastewater while generating electricity, and provide a new way for aquaculture wastewater disposal and bioenergy preparation.

      Method 

      The anaerobic ammonia oxidation sludge was mixed with simulated wastewater at the volume ratio of 1∶4 and added to the anode chamber, while chlorella was mixed with BG-11 medium at the volume ratio of 1∶4 and added to the cathode chamber. After running for 24 h, the anode chamber began to discharge water, which was then added to the cathode chamber. The system was maintained at a constant temperature and a light-dark cycle mode. The voltage, mass concentrations of ammonia nitrogen/NO2-N/NO3-N/total phosphorus, soluble chemical oxygen demand (SCOD) and pH of wastewater were monitored during the system running.

      Result 

      There was an obvious electron exchange between the anaerobic ammonia oxidation sludge and chlorella, and the system had good electricity generation performance, the positive and negative peak voltages of DMFC in the stable operation stage were 45 and −125 mV respectively. The ammonia nitrogen mass concentration decreased from 1 588.97 mg/L to 602.75 mg/L, with the removal rate of 62.07%; The removal rates of NO2-N, total phosphorus and SCOD were 88.62%, 54.45% and 63.72% respectively. The system operated stably at pH 9.5.

      Conclusion 

      This study successfully establishes a DMFC system constructed by coupling anaerobic ammonia oxidation sludge and chlorella. The system not only effectively removes nitrogen, phosphorus and reduces organic matter concentration, but also continuously generates electricity, providing an effective way to address environmental and energy issues simultaneously.

    • 霉酚酸(Mycophenolic acid)是青霉菌Penicillium产生的弱酸性次级代谢产物[1],具有一定的抗霉菌、抗细菌和抗病毒活性[2-3],也是霉酚酸酯(Mycophenolate mofetil)在体内的活性代谢产物,可抑制器官移植时的排异反应[4]。全球约25%的农作物受到霉菌毒素的污染[5],青贮饲料作为反刍动物的重要饲料,在加工、储存和运输时,处理不当容易产生霉变。青霉菌是霉变青贮饲料中常见的菌株[6],青贮饲料中霉酚酸平均含量可达256~7656 μg/kg[7-9]。霉变青贮饲料中毒素成分复杂,逐一检测较为困难,而霉酚酸作为青霉菌污染饲料的标志物,在受污染青贮饲料中具有代表性,可间接反映青贮饲料中霉菌毒素的水平[1]。此外,动物如果长期暴露于含霉酚酸的青贮饲料环境下,免疫力下降,容易受感染性疾病的侵袭[10]。因此建立能准确可靠地测定青贮饲料中霉酚酸含量的方法,从而评价青贮饲料的质量具有实践意义。

      基质中霉酚酸检测的报道常见于血浆[11]和尿液[12]中,也以瘤胃液作为基质[13],而霉酚酸分析测定方法大多只是经过简单的前处理[14],缺乏特异性,检测易受干扰,研发新的高选择性净化方法十分必要。分子印迹聚合物(Molecularly imprinted polymer,MIP)对目标物的结合具有特异性,结合固相萃取技术,采用高效液相色谱(High performance liquid chromatography,HPLC)法[15]可检测人血浆中的霉酚酸,采用液相色谱–串联质谱(Liquid chromatography-tandem mass spectrometry,LC-MS/MS)法[5]可完成对青贮饲料中霉酚酸的检测;然而采用本体聚合法制备的聚合物存在传质速度慢、识别位点被包裹和模板难以洗脱等缺陷[16-17]。以硅胶作为载体的表面分子印迹聚合技术是一种在硅胶表面发生印迹的方法[18],目标物传质速度快,模板洗脱容易;因此,本研究探究了霉酚酸–硅胶表面分子印迹聚合物的合成,作为固相萃取吸附填料评价其对霉酚酸的吸附保留能力,最后构建分子印迹固相萃取–HPLC法测定青贮饲料中霉酚酸含量,为青贮饲料中霉菌毒素污染水平的监控提供参考。

      Agilent 1260型高效液相色谱仪(Agilent公司),SHA-B型恒温水浴振荡器(常州国华电器有限公司),KH7200DB型超声波清洗器(昆山禾创超声仪器有限公司),Velocity 18R高速冷冻离心机(Dynamica公司),EVOMA 15扫描式电子显微镜(ZEISS公司)。

      霉酚酸酯原料药(上海源叶生物科技有限公司)、霉酚酸均购自MedChemExpress公司。硅胶购自Silicycle公司,γ–甲基丙烯酰氧基丙基三甲氧基硅烷(γ-MPS)、甲基丙烯酸(MAA)、二甲基丙烯酸乙二醇酯(EGDMA)、偶氮二异丁腈(AIBN)、甲基丙烯酸−2−羟基乙酯(HEMA)均购自Sigma-Aldrich公司,2–乙烯基吡啶(2-VP)和4–乙烯基吡啶(4-VP)购自Alfa Aesar公司,丙烯酰胺(AM)购自上海润捷化学试剂有限公司,衣康酸(IA)购自J&K Scientific公司。丙酮、三氯甲烷购自广州化学试剂厂,甲醇、乙腈均为色谱纯,超纯水由Millipore MilliQ系统制备,青贮饲料由某饲料厂提供。

      称5 g干燥硅胶于150 mL圆底烧瓶中,加入适量6 mol/L盐酸,混匀后于80 ℃油浴中搅拌10 h,冷却至室温后,离心弃上清液,沉淀物不断用水洗涤至中性,60 ℃真空干燥24 h,得到活化硅胶[19]

      取5 g活化硅胶于三颈圆底烧瓶中,依次加入100 mL无水甲苯、5 mL γ-MPS和1 mL三乙胺,混匀,在氩气保护下,120 ℃条件下加热回流12 h。将混合物离心弃上清液,沉淀依次用甲醇、超纯水交替洗涤,60 ℃条件下真空干燥,得到SiO2-MPS(改性硅胶)。

      将1 mmol的霉酚酸酯溶于80 mL乙腈中,加入2 mmol MAA,涡旋、超声混匀,在冰浴下磁力搅拌6 h后,依次加入0.6 g SiO2-MPS、20 mmol EGDMA和40 mg AIBN,超声混匀,通入氩气10 min,密封,60 ℃油浴下磁力搅拌24 h。将聚合物依次用甲醇、超纯水和φ为10%的乙酸甲醇溶液洗涤,用超纯水、甲醇去除残留的乙酸,直到检测不到模板分子后,于60 ℃ 条件下真空干燥24 h,备用。

      SiO2-MPS@NIP的制备:不加入霉酚酸酯,将2 mmol MAA溶于80 mL乙腈中,超声混匀、磁力搅拌后加入与制备SiO2-MPS@MIP相同量的SiO2-MPS、EGDMA和AIBN,混匀后通氮气,密封,60 ℃油浴下磁力搅拌24 h。依次用水和甲醇洗涤SiO2-MPS@NIP后,于60 ℃条件下真空干燥24 h,备用。

      通过扫描电镜观察活化硅胶、SiO2-MPS、SiO2-MPS@MIP和SiO2-MPS@NIP的形貌特征。

      称取20 mg干燥聚合物粉末于25 mL玻璃锥形瓶中,加入5 mL含有一定浓度霉酚酸的乙腈溶液,25 ℃条件下在恒温振荡水浴锅中振荡24 h,4 000 r/min离心10 min,取上清液并过0.22 μm微孔滤膜,HPLC测定。每个浓度准备3份平行样,取算术平均值。吸附量(Q)按照公式(1)计算,印迹因子(Impringting factor, IF)按公式(2)计算。

      $$ Q = \frac{{({\rho_{_0}} - {\rho_{\rm{e}}})V}}{m},$$ (1)
      $$ {\rm{IF}} = \frac{{{Q_{\rm{MIP}}}}}{{{Q_{\rm{MIP}}}}} ,$$ (2)

      式中,Q为吸附量,mg/g; ${\rho_{_0}} $ ρe分别是霉酚酸的初始质量浓度和达平衡时上清液中霉酚酸的质量浓度,mg/L;V为溶液体积,mL;m为称取的聚合物质量,mg;QMIPQNIP分别为SiO2-MPS@MIP和SiO2-MPS@NIP的吸附量,mg/g。

      将制备好的干燥聚合物装填于1 mL聚丙烯固相萃取空柱中,两端用配套的滤板封堵,轻轻压实,制备成分子印迹固相萃取(Molecularly imprinted polymer solid phase extraction)小柱。固相萃取柱依次用1 mL的甲醇、超纯水活化,1mL 100 mg/L的霉酚酸溶液上样,1 mL 10%(φ)甲醇溶液淋洗和2%(φ)乙酸甲醇溶液洗脱,洗脱溶液吹干后用1 mL流动相复溶,进行HPLC测定。

      称取5 g青贮饲料,添加适量霉酚酸标准溶液,涡旋混匀,室温下静置20 min。加入20 mL乙腈,经提取、振荡、离心后取10 mL上清液吹至近干,用2 mL酸性水(pH=6)溶解残留物,过固相萃取小柱,按“1.2.5”处理,上机测定。

      色谱柱:Aglient Extend-C18柱(250 mm × 4.6 mm,5 μm);检测波长:250 nm;流动相:A相为乙腈(含体积分数为0.3%的甲酸),B相为体积分数为0.3%的甲酸溶液,流动相比例为VAVB= 60∶40;流速:1 mL /min;进样量:20 μL。

      采用色谱纯乙腈稀释霉酚酸标准储备液,配制成0.5、1、2、5、10、20、50、100 mg/L的标准溶液,HPLC检测。以吸收峰面积(Y)为纵坐标,浓度(X)为横坐标,绘制标准曲线。

      向空白青贮饲料中添加适量霉酚酸标准溶液,经前处理后上机检测,以3倍(S/N≥3)和10倍(S/N≥10)信噪比作为检测限和定量限。

      向空白青贮饲料中添加霉酚酸标准溶液,配制成低(200 μg/kg)、中(2 000 μg/kg)和高(8 000 μg/kg)3个添加水平,前处理后上机检测。每个浓度做5个平行样,测定3批次,以同一批次和3批次的平均回收率作为日内和日间回收率,以相对标准偏差(Relative standard deviation)表示精密度。

      试验数据采用SPSS 17.0软件分析,采用Origin 2019b绘制统计图,采用Duncan’s法进行多重比较,显著性差异水平为P<0.05。

      乙腈作为致孔剂时SiO2-MPS@MIP吸附量最高,为3.7 mg/g,印迹因子达到2.1。如表1所示,向乙腈中添加少量三氯甲烷时,SiO2-MPS@MIP吸附量下降,随着三氯甲烷添加比例的升高,吸附量呈现先增大后降低最后稳定的趋势;SiO2-MPS@NIP的吸附量随着三氯甲烷添加比例的升高而增加,最后与SiO2-MPS@MIP的吸附量基本一致;印迹因子呈下降趋势。当致孔剂全为三氯甲烷时,聚合物呈块状,不适合进一步试验。后续试验以乙腈为致孔剂。

      表  1  乙腈溶液中不同三氯甲烷添加比例对SiO2-MPS@MIP和SiO2-MPS@NIP吸附量的影响
      Table  1.  The influence of different addition proportions of chloroform in acetonitrile on the adsorption capacity of SiO2-MPS@MIP and SiO2-MPS@NIP
      φ(三氯甲烷)/%
      Chloroform
      content
      吸附量/(mg·g−1)
      Adsorption capacity
      印迹因子
      Impringting factor
      SiO2−MPS
      @MIP
      SiO2−MPS
      @NIP
      10 2.9 1.8 1.6
      20 5.9 4.2 1.4
      30 4.7 4.4 1.1
      40 4.6 4.7 1.0
      50 4.7 4.7 1.0
      下载: 导出CSV 
      | 显示表格

      选择霉酚酸的结构类似物霉酚酸酯作为虚拟模板,比较了碱性单体(2-VP和4-VP)、中性单体(AM和HEMA)和酸性单体(IA和MAA)对印迹因子的影响,结果如图1A所示,MAA合成时印迹因子显著高于其他组合(P<0.05),2-VP和HEMA参与合成时印迹因子无显著差异(P>0.05),但显著高于单体为AM和IA时的印迹因子(P<0.05)。

      图  1  不同单体种类(A)和不同模板单体摩尔比(B)对印迹因子的影响
      各小图折线图上的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)
      Figure  1.  The influence of different monomer types (A) and different mole ratios of template to monomer (B) on impringting factor
      Different lowercase letters on line chart in each figure indicate significant differences among treatments (P<0.05, Duncan’s method)

      考察不同的模板单体摩尔比(1∶1、1∶2、1∶4、1∶6和1∶8)对印迹因子的影响,结果如图1B所示,模板单体摩尔比为1∶2时,印迹因子显著高于其他组合(P<0.05),模板单体摩尔比为1∶1和1∶4时印迹因子之间无显著差异(P>0.05),但均显著高于模板单体摩尔比为1∶6和1∶8时的印迹因子(P<0.05)。

      对活化硅胶、SiO2-MPS、SiO2-MPS@MIP和SiO2-MPS@NIP进行扫描电镜分析,结果如图2所示,活化硅胶和SiO2-MPS表面光滑,而SiO2-MPS@MIP和SiO2-MPS@NIP表面粗糙,均有聚合物包裹在硅球表面,包裹在SiO2-MPS@NIP表面的聚合物更多且致密。

      图  2  活化硅胶(A)、SiO2-MPS (B)、SiO2-MPS@MIP(C)和SiO2-MPS@NIP(D)的扫描电镜图
      Figure  2.  Scanning electron microscope images of activated silica gel (A), SiO2-MPS (B), SiO2-MPS@MIP (C) and SiO2-MPS@NIP (D)

      静态吸附试验研究了霉酚酸不同初始浓度对聚合物吸附量的影响,结果如图3A所示,在10~250 mg/L范围内,随着霉酚酸质量浓度的增加,SiO2-MPS@NIP和SiO2-MPS@MIP的吸附量增加,SiO2-MPS@MIP在霉酚酸质量浓度为250 mg/L时趋于饱和,饱和吸附量为4.5 mg/g。

      图  3  SiO2-MPS@MIP和SiO2-MPS@NIP的静态(A)和动态(B)吸附曲线
      Figure  3.  Static (A) and dynamic (B) adsorption curves of SiO2-MPS@MIP and SiO2-MPS@NIP

      动态吸附试验研究了吸附时间对聚合物吸附量的影响,在质量浓度为100 mg/L的霉酚酸溶液下进行动态吸附试验,结果如图3B所示,SiO2-MPS@NIP在30 min内达到吸附平衡,SiO2-MPS@MIP在30 min内吸附速率较快,60 min时达到吸附平衡。

      研究甲醇、乙腈、三氯甲烷和超纯水为上样溶液对霉酚酸回收率的影响,如图4A所示,超纯水作上样溶液时分子印迹固相萃取柱对霉酚酸的回收率可达到90%以上,高于非印迹固相萃取柱。在实际样品的考察中,比较不同pH水作为上样溶液过分子印迹固相萃取柱的效果,结果如图4B所示,随着pH的增加,分子印迹固相萃取柱和非印迹固相萃取柱对霉酚酸的回收率先增加后下降,在pH为6的时候分子印迹固相萃取柱的回收率最高,高于非印迹固相萃取柱的。

      图  4  不同上样溶液(A)及不同pH水(B)对霉酚酸回收率的影响
      Figure  4.  The influences of different loading solutions (A) and different pH water (B) on mycophenolic acid recovery rate

      分别采用不同体积分数的甲醇溶液(1%、5%、10%和20%)和乙腈溶液(10%和20%)淋洗,如图5A所示,分子印迹固相萃取柱对霉酚酸的回收率高于非印迹固相萃取柱。与乙腈溶液相比,采用甲醇溶液淋洗分子印迹固相萃取柱时霉酚酸回收率高,损失小。当甲醇溶液中甲醇体积分数大于10%时,有机相含量增加,回收率下降;当甲醇体积分数在10%以下时,回收率均大于90%。与体积分数为1%和5%甲醇溶液相比,体积分数为10%的甲醇溶液中有机相比例更高,容易除去实际样品中脂溶性杂质,因此选择体积分数为10%的甲醇溶液作为淋洗溶液。

      图  5  不同淋洗溶液(A)和洗脱溶液(B)对霉酚酸回收率的影响
      a:1% ($\varphi $)甲醇溶液;b:5% ($\varphi $)甲醇溶液;c:10% ($\varphi $)甲醇溶液;d:20% ($\varphi $)甲醇溶液;e:10% ($\varphi $)乙腈溶液;f:20% ($\varphi $)乙腈溶液;g:1% ($\varphi $)乙酸甲醇溶液;h:2% ($\varphi $)乙酸甲醇溶液;i:5% ($\varphi $)乙酸甲醇溶液;j:8% ($\varphi $)乙酸甲醇溶液
      Figure  5.  The influences of different washing solutions (A) and elution solutions (B) on mycophenolic acid recovery rate
      a: 1% ($\varphi $) methanol in water; b: 5% ($\varphi $) methanol in water; c: 10% ($\varphi $) methanol in water; d: 20% ($\varphi $) methanol in water; e: 10% ($\varphi $) acetonitrile in water; f: 20% ($\varphi $) acetonitrile in water; g: 1% ($\varphi $) acetic acid in methanol; h: 2% ($\varphi $) acetic acid in methanol; i: 5% ($\varphi $) acetic acid in methanol; j: 8% ($\varphi $) acetic acid in methanol

      图5B所示,分别考察了体积分数为1%、2%、5%和8%的乙酸甲醇溶液洗脱的效果,结果表明,分子印迹固相萃取柱对霉酚酸的回收率高于非印迹固相萃取柱,适当增加乙酸的比例可以有效提高洗脱的效率,但是酸过多时回收率基本保持不变,因此选择体积分数为2%的乙酸甲醇溶液为洗脱溶液即可。

      霉酚酸在0.5~100 mg/L范围内线性良好(R2=0.999),检测限和定量限分别为60和200 μg/kg。过分子印迹固相萃取柱前后HPLC色谱图见图6,回收率数据见表2。霉酚酸的回收率为76.0%~81.2%,相对标准偏差为3.3%~6.6%。

      表  2  空白样品中霉酚酸的加标回收率及相对标准偏差(RSD)
      Table  2.  Recovery rates of spiked mycophenolic acid and the relative standard deviation (RSD) in the blank sample
      w/(μg·kg−1)
      Spiked
      日内(n=5) Intraday 日间(n=15) Interday
      回收率/%
      Recovery rate
      RSD/% 回收率/%
      Recovery rate
      RSD/%
      200 81.2 3.7 79.2 4.8
      2 000 79.6 3.3 76.0 4.3
      8 000 78.8 6.6 77.3 6.4
      下载: 导出CSV 
      | 显示表格
      图  6  过分子印迹固相萃取柱前(A)和经分子印迹固相萃取柱净化后(B)的加标青贮饲料(2 000 μg/kg)以及相应的标准溶液(C)HPLC-UVD色谱图
      Figure  6.  HPLC-UVD chromatograms of the spiked silage (2 000 μg/kg) before (A) and after (B) purification by the molecularly imprinted polymer solid phase extraction column and the corresponding standard solution (C)

      对20份青贮饲料样品进行检测,结果显示,在3份样品中检出霉酚酸,质量分数分别为227、391和1 770 μg/kg,其他样品中未检出霉酚酸。

      试验结果显示三氯甲烷降低了SiO2-MPS@MIP的特异性,这是因为三氯甲烷会导致聚合物溶胀、挤压甚至破坏特异性孔穴,从而降低聚合物的特异性[20]。De Smet等[5]采用碱性单体4-VP合成,采用LC-MS/MS法检测霉酚酸,而本研究采用酸性单体MAA进行合成,制备的分子印迹固相萃取小柱对霉酚酸净化效果良好,表明霉酚酸酯除了通过氢键与MAA在立体结构上相匹配外,霉酚酸酯中的含氮基团吗啉与MAA存在静电相互作用,增强了预聚物的稳定性,从而提高了SiO2-MPS@MIP特异性识别能力。结合表征结果并分析聚合物动静态吸附曲线发现,由于硅球表面成功覆盖了聚合物层,霉酚酸更容易进入孔穴中,因此与De Smet等[5]采用的本体聚合法相比,表面印迹法制备的印迹聚合物达平衡时间更短,可节约试验时间。考察聚合物装柱后的效果,由于疏水作用参与了目标物与印迹聚合物的识别过程[21],促进了霉酚酸的保留,因此上样溶液为水时更好。进一步研究发现,霉酚酸在过酸或过碱条件下回收率低,因为pH较低时,过多的氢离子会竞争性地结合霉酚酸中的氧原子,阻碍霉酚酸与填料之间氢键的形成,而pH较高时,填料中的羧基基本完全电离,也不利于霉酚酸与填料的结合[22]

      本研究利用表面印迹聚合法成功制备出对霉酚酸具有吸附特异性的硅胶表面接枝分子印迹聚合物,聚合物具有良好吸附能力和传质速度,建立的合成印迹聚合物固相萃取–HPLC法可净化、富集和检测青贮饲料中的霉酚酸,为青贮饲料的质量安全控制提供指导。

    • 图  1   试验装置模拟图(A)和实物图(B)

      1:阳极室(厌氧氨氧化污泥),2:阴极室(小球藻),3:阳离子交换膜,4:石墨棒电极,5:数据采集卡;废水从进水口a处进入装置,停留24 h后从出水口a处排出并收集,循环利用至进水口b,停留24 h后从出水口b排出。

      Figure  1.   Simulation image (A) and actual object image (B) of experiment apparatus

      1: Anode chamber (anaerobic ammonia oxidation sludge), 2: Cathode chamber (chlorella), 3: Cation exchange membrane, 4: Graphite rod electrode, 5: Data acquisition card; The wastewater enters the device from inlet a, and is then discharged and collected from outlet a after 24 h, it is recycled and used again at inlet b, where it stays for another 24 h before being discharged from outlet b.

      图  2   双生物微生物燃料电池电压变化曲线

      Figure  2.   Voltage change curve of dual microbial fuel cell

      图  3   出水中氨氮(A)和NO2−N(B)质量浓度的变化

      Figure  3.   Mass concentration changes of ammonium nitrogen (A) and NO2-N (B) in discharged wastewater

      图  4   出水中可溶性化学需氧量的变化

      Figure  4.   Changes of soluble chemical oxygen demand in discharged wastewater

      图  5   出水中总磷质量浓度的变化

      Figure  5.   Mass concentration changes of total phosphorus in discharged wastewater

      图  6   阴极出水中pH的变化

      Figure  6.   Change of pH in wastewater discharged by cathode

    • [1]

      ZHENG H, WU X, ZOU G, et al. Cultivation of Chlorella vulgaris in manure-free piggery wastewater with high-strength ammonium for nutrients removal and biomass production: Effect of ammonium concentration, carbon/nitrogen ratio and pH[J]. Bioresource Technology, 2019, 273: 203-211. doi: 10.1016/j.biortech.2018.11.019

      [2]

      AHMAD A L, CHIN J Y, HARUN M H Z M, et al. Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review[J]. Journal of Water Process Engineering, 2022, 46: 102553. doi: 10.1016/j.jwpe.2021.102553

      [3]

      LI X, WU S, YANG C, et al. Microalgal and duckweed based constructed wetlands for swine wastewater treatment: A review[J]. Bioresource Technology, 2020, 318: 123858. doi: 10.1016/j.biortech.2020.123858

      [4]

      ZENG W S, WANG D H, WU Z Y, et al. Recovery of nitrogen and phosphorus fertilizer from pig farm biogas slurry and incinerated chicken manure fly ash[J]. Science of the Total Environment, 2021, 782: 146856. doi: 10.1016/j.scitotenv.2021.146856

      [5]

      KABUBA J, LEPHALLO J, RUTTO H. Comparison of various technologies used to eliminate nitrogen from wastewater: A review[J]. Journal of Water Process Engineering, 2022, 48: 102885. doi: 10.1016/j.jwpe.2022.102885

      [6]

      ZHANG W, CHU H, YANG L, et al. Technologies for pollutant removal and resource recovery from blackwater: A review[J]. Frontiers of Environmental Science & Engineering, 2023, 17(7): 83. doi: 10.1007/s11783-023-1683-3

      [7]

      CHEN X, LIU L, BI Y, et al. A review of anammox metabolic response to environmental factors: Characteristics and mechanisms[J]. Environmental Research, 2023, 223: 115464. doi: 10.1016/j.envres.2023.115464

      [8]

      ABMA W, SCHULTZ C, MULDER J W, et al. The advance of anammox[J]. Water, 2007: 36-37.

      [9] 李彩林, 刘扬, 李月. 菌藻微生物燃料电池处理模拟养殖废水的研究[J]. 青海大学学报(自然科学版), 2023, 41(6): 1-8.
      [10] 苟珍琼, 郑道会, 罗发文. 光催化耦合微生物燃料电池协同处理废水的研究进展[J]. 现代化工, 2023, 43(S1): 101-104.
      [11] 王子义, 张嫄, 刘根深, 等. 微生物燃料电池污废水处理及能源化研究进展[J]. 净水技术, 2024, 43(11): 29-38.
      [12]

      WANG Y M, LIN Z Y, SU X S, et al. Cost-effective domestic wastewater treatment and bioenergy recovery in an immobilized microalgal-based photoautotrophic microbial fuel cell (PMFC)[J]. Chemical Engineering Journal, 2019, 372: 956-965. doi: 10.1016/j.cej.2019.05.004

      [13]

      SONU K, SOGANI M, SYED Z, et al. Improved decolorization of dye wastewater and enhanced power output in the electrically stacked microbial fuel cells with H2O2 modified corncob anodes[J]. Environmental Progress & Sustainable Energy, 2021, 40(5): ep13638. doi: 10.1002/ep.13638

      [14]

      MIN B, KIM J R, OH S E, et al. Electricity generation from swine wastewater using microbial fuel cells[J]. Water Research, 2005, 39(20): 4961-4968. doi: 10.1016/j.watres.2005.09.039

      [15] 王佳璇, 段嘉琪, 刘喆, 等. 藻类微生物燃料电池的构型发展及应用现状[J]. 环境科学与技术, 2023, 46(4): 61-71.
      [16]

      HASSAN M, WEI H, QIU H, et al. Power generation and pollutants removal from landfill leachate in microbial fuel cell: Variation and influence of anodic microbiomes[J]. Bioresource Technology, 2018, 247: 434-442. doi: 10.1016/j.biortech.2017.09.124

      [17]

      YADAV G, SHARMA I, GHANGREKAR M, et al. A live bio-cathode to enhance power output steered by bacteria-microalgae synergistic metabolism in microbial fuel cell[J]. Journal of Power Sources, 2020, 449: 227560. doi: 10.1016/j.jpowsour.2019.227560

      [18] 严茜. 藻膜阴极微生物电化学系统处理垃圾渗滤液效能及机理研究[D]. 烟台: 烟台大学, 2023.
      [19]

      DING A, ZHAO D, DING F, et al. Effect of inocula on performance of bio-cathode denitrification and its microbial mechanism[J]. Chemical Engineering Journal, 2018, 343: 399-407. doi: 10.1016/j.cej.2018.02.119

      [20]

      ZHANG Y, ZHAO Y, ZHOU M. A photosynthetic algal microbial fuel cell for treating swine wastewater[J]. Environmental Science and Pollution Research, 2019, 26(6): 6182-6190. doi: 10.1007/s11356-018-3960-4

      [21]

      ZHANG J, ZHANG Z, RONG K, et al. Simultaneous anaerobic ammonium oxidation and electricity generation in microbial fuel cell: Performance and electrochemical characteristics[J]. Processes, 2022, 10(11): 2379. doi: 10.3390/pr10112379

      [22]

      SAM T, LE ROES-HILL M, HOOSAIN N, et al. Strategies for controlling filamentous bulking in activated sludge wastewater treatment plants: The old and the new[J]. Water, 2022, 14(20): 3223. doi: 10.3390/w14203223

      [23]

      GUO J, WANG S, WANG Z, et al. Effects of feeding pattern and dissolved oxygen concentration on microbial morphology and community structure: The competition between floc-forming bacteria and filamentous bacteria[J]. Journal of Water Process Engineering, 2014, 1: 108-114. doi: 10.1016/j.jwpe.2014.03.011

      [24]

      DALIRY S, HALLAJISANI A, MOHAMMADI ROSHANDEH J, et al. Investigation of optimal condition for Chlorella vulgaris microalgae growth[J]. Global Journal of Environmental Science and Management, 2017, 3(2): 217-230.

      [25]

      ZHANG C, LI S, HO S. Converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia: A critical review[J]. Bioresource Technology, 2021, 342: 126056. doi: 10.1016/j.biortech.2021.126056

      [26] 黄山, 杨莹莹, 仇志峰, 等. 蛋白核小球藻-硝化细菌共培养条件优化与氮磷去除效果[J]. 青岛理工大学学报, 2023, 44(3): 15-25. doi: 10.3969/j.issn.1673-4602.2023.03.003
      [27] 中国环境监测总站. 水质 化学需氧量的测定 重铬酸盐法: HJ 828—2017[S]. 1989.
      [28] 北京市环保监测中心, 上海市环境监测中心. 水质 总磷的测定 钼酸铵分光光度法: GB/T 11893—1989[S]. 1989.
      [29] 江苏省环境监测站. 水质 铵的测定 纳氏试剂比色法: GB/T 7479—1987[S]. 1987.
      [30] 中国科学院南京土壤研究所, 中国科学院亚热带农业生态研究所, 中国科学院西双版纳热带植物园, 等. 土壤硝态氮的测定 紫外分光光度法: GB/T 32737—2016[S]. 北京: 中国标准出版社, 2016.
      [31] 中国环境监测总站. 大气降水中亚硝酸盐的测定 N-(1-萘基)-乙二胺光度法: GB/T 13580.7—1992[S]. 1992.
      [32]

      ZHANG H, GE C, YU M, et al. Performance of cathodic nitrate reduction driven by electricity generated from ANAMMOX sludge in anode[J]. Process Biochemistry, 2020, 90: 148-155. doi: 10.1016/j.procbio.2019.11.013

      [33]

      ZHANG G, ZHAO Q, JIAO Y, et al. Efficient electricity generation from sewage sludge using biocathode microbial fuel cell[J]. Water Research, 2012, 46(1): 43-52. doi: 10.1016/j.watres.2011.10.036

      [34]

      WANG J T, SONG A I, HUANG Y, et al. Domesticating Chlorella vulgaris with gradually increased the concentration of digested piggery wastewater to bio-remove ammonia nitrogen[J]. Algal Research-Biomass Biofuels and Bioproducts, 2021, 60: 102526. doi: 10.1016/j.algal.2021.102526

      [35]

      COLLOS Y, HARRISON P J. Acclimation and toxicity of high ammonium concentrations to unicellular algae[J]. Marine Pollution Bulletin, 2014, 80(1/2): 8-23.

      [36] 李宝珍, 范晓荣, 徐国华. 植物吸收利用铵态氮和硝态氮的分子调控[J]. 植物生理学通讯, 2009, 45(1): 80-88.
      [37]

      MAESTRINI S Y, ROBERT, J M, LEFTLEY J W, et al. Ammonium thresholds for simutaneous uptake of ammonium and nitrate by oyster-pond algae[J]. Journal of Experimental Marine Biology and Ecology, 1986, 102(1): 75-98. doi: 10.1016/0022-0981(86)90127-9

      [38]

      ZHANG L, TIAN Z, QIAN Y, et al. Long-term effects of phosphorus deficiency on one-stage partial nitrification-anammox system and recovery strategies[J]. Journal of Cleaner Production, 2023, 402: 136820. doi: 10.1016/j.jclepro.2023.136820

      [39]

      HUANG W, ZHOU J, HE X, et al. Simultaneous nitrogen and phosphorus removal from simulated digested piggery wastewater in a single-stage biofilm process coupling anammox and intracellular carbon metabolism[J]. Bioresource Technology, 2021, 333: 125152. doi: 10.1016/j.biortech.2021.125152

      [40]

      ZHA X, MA J, LU X. Use of a low-cost and energy-efficient device for treating low-strength wastewater at low temperatures focusing on nitrogen removal and microbial community[J]. Science of the Total Environment, 2020, 722: 137916. doi: 10.1016/j.scitotenv.2020.137916

      [41] 谭顺. 驯化对小球藻在沼液废水处理中的强化效果研究[D]. 南宁: 广西大学, 2022.
      [42]

      PRAVEEN P, GUO Y C, KANG H, et al. Enhancing microalgae cultivation in anaerobic digestate through nitrification[J]. Chemical Engineering Journal, 2018, 354: 905-912. doi: 10.1016/j.cej.2018.08.099

      [43]

      LU S M, LIU X G, LIU C, et al. A review of ammonia-oxidizing archaea and anaerobic ammonia-oxidizing bacteria in the aquaculture pond environment in China[J]. Frontiers in Microbiology, 2021, 12: 775794. doi: 10.3389/fmicb.2021.775794

      [44]

      HU P, STROM P F. Effect of pH on fungal growth and bulking in laboratory-activated sludges[J]. Research Journal of the Water Pollution Control Federation, 1991, 63(3): 276-277.

    • 期刊类型引用(0)

      其他类型引用(1)

    图(6)
    计量
    • 文章访问数:  79
    • HTML全文浏览量:  14
    • PDF下载量:  30
    • 被引次数: 1
    出版历程
    • 收稿日期:  2024-06-23
    • 修回日期:  2024-08-18
    • 录用日期:  2024-08-24
    • 网络出版日期:  2025-01-23
    • 发布日期:  2025-01-21
    • 刊出日期:  2025-03-09

    目录

    /

    返回文章
    返回