• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

基于树木定量结构模型的单木参数提取及生物量估测

于磊, 徐佳佳, 倪辰, 孔令瑗, 黄庆丰, 刘华, 唐雪海

于磊, 徐佳佳, 倪辰, 等. 基于树木定量结构模型的单木参数提取及生物量估测[J]. 华南农业大学学报, 2025, 46(3): 379-389. DOI: 10.7671/j.issn.1001-411X.202406034
引用本文: 于磊, 徐佳佳, 倪辰, 等. 基于树木定量结构模型的单木参数提取及生物量估测[J]. 华南农业大学学报, 2025, 46(3): 379-389. DOI: 10.7671/j.issn.1001-411X.202406034
YU Lei, XU Jiajia, NI Chen, et al. Individual tree parameter extraction and biomass estimation based on the quantitative structure model[J]. Journal of South China Agricultural University, 2025, 46(3): 379-389. DOI: 10.7671/j.issn.1001-411X.202406034
Citation: YU Lei, XU Jiajia, NI Chen, et al. Individual tree parameter extraction and biomass estimation based on the quantitative structure model[J]. Journal of South China Agricultural University, 2025, 46(3): 379-389. DOI: 10.7671/j.issn.1001-411X.202406034

基于树木定量结构模型的单木参数提取及生物量估测

基金项目: 

安徽省林业科技创新研究项目(AHLYCX-2022-5,AHLYCX-2022-11)

详细信息
    作者简介:

    于 磊,E-mail: yl255002@163.com

    通讯作者:

    唐雪海,主要从事林业定量遥感、森林资源动态监测、林业3S技术应用研究,E-mail: tangxuehai@ahau.edu.cn

  • 中图分类号: S758

Individual tree parameter extraction and biomass estimation based on the quantitative structure model

  • 摘要:
    目的 

    以安徽省天马国家级自然保护区内落叶阔叶林为研究对象,探究在复杂林境下树木定量结构模型利用无人机激光雷达数据进行单木生物量估测的应用潜力。

    方法 

    通过地面调查和无人机获取样地与激光雷达点云数据,其中以地面数据为实测参照数据。采用相对最短路径算法对雷达数据进行分割,利用树木定量结构模型提取分割后单木点云的树木参数(胸径、主干体积、枝干体积、分支数、冠层基部高度、冠层面积、冠层体积以及冠幅),并使用Pearson相关系数以及方差膨胀因子对参数进行变量筛选,最后构建基于3种机器学习算法的单木生物量估测模型。

    结果 

    基于随机森林(RF)构建的生物量模型训练效果最佳(R2=0.880 0,RMSE=192.81 kg,rRMSE=29.88%),多层感知机(MLP)训练效果(R2=0.820 0,RMSE=236.48 kg,rRMSE=36.65%)与支持向量机(SVM)较为相近(R2=0.810 0,RMSE=243.67 kg,rRMSE=37.77%)。

    结论 

    本文证实了从树木定量结构模型中所提取的树木参数能在落叶期阔叶树种中构建出精度较高的生物量估测模型,可以为复杂森林环境下的资源调查提供新方法。

    Abstract:
    Objective 

    This article takes the deciduous broad-leaved forest in the Tianma National Nature Reserve in Anhui Province as the research subject, exploring the application potential of the quantitative structure model in biomass estimation of individual tree in complex environment using unmanned aerial vehicle laser scanning data.

    Method 

    Through ground surveys and the use of unmanned aerial vehicles, plot data and LiDAR point cloud data were collected, with the ground data serving as the reference measurements. The comparative shortest-path algorithm was used for point cloud segmentation. Subsequently, tree parameters (such as diameter at breast height, trunk volume, branch volume, number of branches, canopy base height, canopy area, canopy volume, and crown width) were extracted from the segmented individual tree point clouds using the quantitative structure model. Pearson correlation coefficient and variance inflation factor were then employed for variable selection of the parameters. Finally, an individual tree biomass estimation model was constructed based on the three machine learning algorithms.

    Result 

    Among the biomass models, the one based on random forest (RF) achieved the best training performance (R2 = 0.880 0, RMSE = 192.81 kg, rRMSE = 29.88%). The performance of the multilayer perceptron (MLP) model (R2 = 0.820 0, RMSE = 233.62 kg, rRMSE = 36.65%) was quite similar to that of the support vector machine (SVM) model (R2 = 0.810 0, RMSE = 243.67 kg, rRMSE = 37.77%).

    Conclusion 

    This article confirms that the tree parameters extracted from the quantitative structure model can be used to construct a high-precision biomass estimation model for deciduous broadleaf species, providing a new method for resource surveys in complex forest environment.

  • 普通大蓟马Megalurothrips usitatus又名豆大蓟马、豆花蓟马,隶属于缨翅目蓟马科大蓟马属,主要分布于澳大利亚、马来西亚、斯里兰卡、菲律宾、斐济、印度、日本等[1-3],在我国海南、台湾、广东、广西、湖北、贵州、陕西等地也均有发生为害[4-5]。据报道,该虫有28种寄主,其中16种为豆科植物,目前它已成为危害华南地区豆科作物的主要害虫[6-9],田间调查和室内试验均表明豇豆为其嗜好寄主[10-11]。普通大蓟马主要以锉吸式口器取食豇豆幼嫩组织的汁液,可造成叶片皱缩、生长点萎缩、豆荚痂疤等,严重影响豇豆品质[12-13]。此外,该虫体积小、发生量大、隐秘性强,大部分时间都躲在花中取食,从豇豆苗期至采收期均可为害[14-15],以上特点均增加了农户的防治难度。当其为害严重时,农户只能增加施药频率和施药量,这也导致该虫对多种常用化学农药产生了严重的抗药性[16-17]

    目前关于普通大蓟马的研究主要集中在生物学特性[18]及综合防治技术[19-20]等层面,随着抗药性的不断发展与研究的不断深入,从分子层面解析普通大蓟马的抗药性机制和寄主选择机制等以寻求新型绿色防控方法势在必行,室内种群的大规模饲养是展开这些研究的基础。化蛹基质作为影响昆虫种群规模的关键因子,韩云等[21]曾指出普通大蓟马在含水量(w)为15%的砂壤土中羽化率显著高于砂土、壤土和黏土,但不适用于室内大规模饲养,因为实际应用中,存在土壤类型无法明确区分、配制砂壤土会增加人工饲养的工作量等问题。土壤以外的其他基质对普通大蓟马化蛹的适合度鲜见研究报道。

    本研究以普通大蓟马为试验对象,室内观测其在沙子、蛭石和厨房用纸3种基质及无基质条件下的羽化规律,分析该虫对不同化蛹基质的适合度,以期为普通大蓟马的室内大规模饲养提供基础资料,为该虫的综合治理提供理论依据。

    普通大蓟马于2017年采自广东省广州市增城区朱村豇豆田,采回后在RXZ-500C型智能人工气候箱(宁波江南仪器厂)内用豇豆豆荚饲养,饲养条件为温度(26±6) ℃,光照周期12 h光∶12 h暗,相对湿度(70±5)%。室内饲养多代后,选取发育一致的老熟2龄若虫(以体色变为橙红色为标准)进行室内试验。

    供试基质包括沙子、蛭石、锯末和厨房用纸,并以无基质作为空白对照。试验前将沙子、蛭石和锯末置于DHG-9140型电热恒温鼓风干燥箱(上海精宏实验设备有限公司)中105 ℃恒温烘烤6 h备用。

    首先称取过筛烘干后的沙子50 g 3组,分别加入2.5、3.5和4.5 mL蒸馏水,充分混匀,配制成含水量(w)分别为5%、7%和9%的沙子化蛹基质;称取过筛烘干后的蛭石10 g 3组,分别加入10.0、12.5和15.0 mL蒸馏水,充分混匀,配制成含水量(w)分别为20%、25%和30%的蛭石化蛹基质;称取过筛烘干后的蛭石10 g 3组,分别加入12.5、15.0和17.5 mL蒸馏水,充分混匀,配制成含水量(w)分别为25%、30%和35%的锯末化蛹基质。将以上基质分别转移至350 mL玻璃组培瓶内,基质深度均为5 cm,将厨房用纸对折成合适大小后平铺在组培瓶底部作为基质。在所有基质上放置纱网,再加入1根新鲜的豇豆豆荚(长度约4~5 cm),分别接入50头普通大蓟马老熟2龄若虫,用250目纱布封口后置于人工气候箱中饲养,每日观察并记录成虫羽化数量。每个处理设6次重复。设置不加入任何化蛹基质的空白对照。

    含水量的测定方法按以下公式[22]进行:

    含水量=实际含水质量/烘干后基质质量×100%。

    运用SPSS 24.0软件进行试验数据处理分析,不同基质及含水量对普通大蓟马羽化率、蛹历期和性比(雄性∶雌性)的影响采用单因素方差分析,并运用Duncan’s法检验差异显著性。

    普通大蓟马在不同基质中的羽化率、蛹历期和性比具有显著差异(图1)。由图1A可知,普通大蓟马在厨房用纸中的羽化率显著高于其他基质,为54.33%,其次为含水量5%(w)的沙子,羽化率为44.67%;锯末最不适宜于普通大蓟马羽化,在含水量(w)为25%、30%、35%的锯末中普通大蓟马的羽化率分别为10.33%、5.33%、16.67%,显著低于空白对照与其他基质。

    图  1  不同基质对普通大蓟马羽化率、发育历期和性比(雄性∶雌性)的影响
    1~3分别为含水量(w)为5%、7%和1%的沙子,4~6分别为含水量(w)为20%、25%和30%的蛭石,7~9分别为含水量(w)为25%、30%和35%锯末,10:厨房用纸,11:无基质;各图中的不同小写字母表示差异显著(P<0.05,Duncan’s法)
    Figure  1.  Effects of different substrates on eclosion rate, pupa developmental period and male-female ratio of Megalurothrips usitatus
    1: Sand with 5% moisture, 2: Sand with 7% moisture, 3: Sand with 10% moisture, 4: Vermiculite with 20% moisture, 5: Vermiculite with 25% moisture, 6: Vermiculite with 30% moisture, 7: Sawdust with 25% moisture, 8: Sawdust with 30% moisture, 9: Sawdust with 35% moisture, 10: Kitchen paper, 11: No substrate; Different lowercase leters in the same figure indicated significant difference among different substrate (P<0.05, Duncan’s method)

    图1B可知,普通大蓟马在含水量5%(w)的沙子中蛹的发育历期最短,为5.29 d,其次为含水量7%(w)的沙子,为6.01 d,在其他基质中的蛹期则无显著差异,在6.14~7.16 d。

    图1C可知,普通大蓟马在含水量30%(w)的蛭石中性比最高,为0.60,含水量10%(w)的沙子和30%(w)的蛭石性比相对较低,分别为0.12和0.06,在其他基质中性比无显著差异。

    表1数据可知,沙子含水量(w)为5%时普通大蓟马羽化最早,始于第2天;其次为蛭石,羽化始于第4天,其他条件下羽化均始于第3天;以锯末为基质时羽化最晚,始于第5天。沙子含水量(w)为5%和厨房用纸条件下,羽化高峰出现在第5天,羽化率分别为21%和22.67%;次高峰在第6天,羽化率分别为14.33%和21%。沙子含水量(w)为9%、锯末以及空白对照下羽化高峰出现在第7天,其他条件下羽化高峰均出现在第6天。不同基质类型及含水量条件下,普通大蓟马的羽化均结束于第8天或第9天,与不同基质培养条件下普通大蓟马蛹期之间的差异相对应。

    表  1  不同基质对普通大蓟马逐日羽化率的影响1)
    Table  1.  Effects of differents substrates on daily eclosion rate of Megalurothrips usitatus %
    t/d 沙子含水量(w) Water content in sand 蛭石含水量(w) Water content in vermiculite
    5% 7% 9% 20% 25% 30%
    1 0 0 0 0 0 0
    2 1.67±0.42c 0 0 0 0 0
    3 1.00±1.68c 0 0 0 0 0
    4 1.33±0.67c 5.33±0.33c 0.33±0.33b 0 0 0
    5 21.00±3.82a 5.33±2.17b 2.67±1.91b 3.00±2.30bc 10.33±3.48ab 0.33±0.33b
    6 14.33±4.66b 17.33±1.76a 2.67±1.91b 11.67±2.09a 14.67±3.33a 7.67±2.22a
    7 2.33±0.80c 5.00±0.85b 8.67±1.84a 6.33±2.28b 7.67±1.74bc 6.67±1.52a
    8 0.67±0.42c 0.67±0.67c 0.67±0.42b 4.00±1.35bc 4.00±1.37cd 1.67±0.94b
    9 0 0 0.33±0.33b 0.67±0.42b 0 0.67±0.42b
    10 0 0 0 0 0 0
    下载: 导出CSV 
    | 显示表格

    化蛹基质的类型对普通大蓟马化蛹具有一定影响,本研究发现锯末和蛭石不适宜于普通大蓟马化蛹,锯末和蛭石不同含水量条件下大蓟马的羽化率都显著低于空白对照。有研究指出土壤中砂土含量低于30%时,蓟马若虫不能化蛹[23],蓟马在砂壤土中的羽化率也显著高于砂土、黏土、壤土等单一土壤[21]

    化蛹基质的含水量对普通大蓟马化蛹具有显著影响,本研究发现当沙子含水量(w)为5%时,羽化率仅次于厨房用纸,高达44.67%,与孟国玲等[23]关于豆带蓟马Taenithripsglycines在含水量(w)为5.7%时羽化率最高(43.63%)的报道相对一致。韩云等[21]研究发现普通大蓟马在含水量(w)为15%的砂壤土中羽化率最高,为52.08%,而土壤含水量(w)5%时羽化率仅为6.67%。这与本研究结果不符,究其原因可能是不同类型的基质吸水力与保水力不同,导致在相同的绝对含水量下湿度有差异。此外,有研究曾指出高含水量不利于蓟马化蛹[24],这与本研究结果相一致,沙子含水量(w)5%时的羽化率显著高于含水量(w)7%和10%。

    在本研究中,成虫性比普遍低于1∶1,含水量(w)30%的蛭石羽化性比最高,为0.6,含水量(w)30%锯末最低,为0.06,其他处理的性比无显著差异,为0.12~0.48。张念台[8]和谭柯[24]在田间调查的结果也显示其成虫性比低于1∶1,后代总是偏于雌性,谭柯[24]则表示后代偏雌性可能是蓟马暴发的原因之一。这与本研究结果相一致,后代偏于雌性。

    本研究发现普通大蓟马在厨房用纸中的羽化率最高,蛹发育历期与其他基质相比无明显差异,且以厨房用纸为化蛹基质时,可以清楚地观察到普通大蓟马蛹期的形态特征变化,可以随时根据试验需求收集不同时期的若虫或成虫。虽然沙子含水量(w)5%时蛹发育历期最短且羽化率也较高,但蓟马一旦入土化蛹便无法继续观察形态或收集虫体。因此,本试验条件下,厨房用纸是最适合室内普通大蓟马大量饲养的化蛹基质。

  • 图  1   航线规划图

    Figure  1.   Flight path planning map

    图  2   归一化前后对比结果

    Figure  2.   Comparison results before and after normalization

    图  3   海拔验证图

    Figure  3.   Elevation verification map

    图  4   树高回归图

    Figure  4.   Tree height regression graph

    图  5   TreeQSM建模前(a)、后(b)对比图

    Figure  5.   Comparison images before (a) and after (b) TreeQSM modeling

    图  6   胸径(DBH)及冠幅拟合结果

    Figure  6.   Diameter at breast height (DBH) and crown width fitting results

    图  7   3种机器学习算法的生物量估测模型散点拟合对比

    Figure  7.   Scatter plot fitting comparison of biomass estimation models based on the three machine learning algorithms

    表  1   样地基本情况

    Table  1   Basic information of sample plots

    统计值
    Statistical value
    胸径/cm
    DBH
    树高/m
    Tree height
    平均冠幅/m
    Average crown
    breadth
    最大值 Max. 65.50 21.70 12.00
    最小值 Min. 5.00 2.00 0.50
    平均值 Average 17.03 10.16 3.17
    标准差 SD 12.12 4.82 1.67
    下载: 导出CSV

    表  2   样地分割精度统计结果

    Table  2   Plot segmentation accuracy statistical results

    样地
    Plot
    实测株数
    Actual tree count
    分割株数
    Segmented tree count
    TP FN FP t P F
    F-score
    1 20 19 18 2 1 0.90 0.95 0.92
    2 23 22 19 4 3 0.83 0.86 0.84
    3 27 24 21 6 3 0.78 0.88 0.82
    4 23 23 18 5 5 0.78 0.78 0.78
    5 36 37 30 6 7 0.83 0.81 0.82
    6 27 26 20 6 5 0.77 0.80 0.78
    7 19 19 18 1 1 0.95 0.95 0.95
    8 17 19 16 3 1 0.84 0.94 0.89
    9 28 28 25 3 3 0.89 0.89 0.89
    下载: 导出CSV

    表  3   参数统计信息

    Table  3   Parameter statistical information

    统计量
    Statistic
    主干体积/m3
    Trunk volume
    枝干体积/m3
    Branch volume
    分支数
    Branch number
    冠层基部高度/m
    Crown base height
    冠层面积/m2
    Crown area
    冠层体积/m3
    Crown volume
    冠幅/m
    Crown width
    平均值 Average 0.82 0.76 146.97 7.89 16.79 39.72 3.78
    标准差 SD 0.58 1.40 166.26 3.17 19.34 103.76 2.31
    最小值 Min. 0.12 0.01 8.00 0.44 1.38 0.01 0.67
    下四分位 P25 0.41 0.11 41.00 5.47 5.09 0.71 2.10
    中位数 P50 0.67 0.25 85.00 8.34 10.49 3.81 3.25
    上四分位 P75 1.04 0.68 173.00 10.43 19.27 26.33 4.85
    最大值 Max. 3.56 10.35 903.00 14.57 138.73 929.58 13.17
    下载: 导出CSV

    表  4   各建模因子相关性统计1)

    Table  4   Correlation analysis of each modeling factor

    因素
    Factor
    生物量
    Biomass
    主干体积
    Trunk volume
    冠层体积
    Crown volume
    冠幅
    Crown width
    冠层基部高度
    Crown base height
    分支数
    Branch number
    生物量 Biomass 1.00
    主干体积 Trunk volume 0.91*** 1.00
    冠层体积 Crown volume 0.72*** 0.71*** 1.00
    冠幅 Crown width 0.77*** 0.77*** 0.73*** 1.00
    冠层基部高度 Crown base height −0.46*** −0.40*** −0.38*** −0.46*** 1.00
    分支数 Branch number 0.64*** 0.61*** 0.77*** 0.81*** −0.44*** 1.00
     1) ***表示在P<0.001水平显著相关(Pearson法)。
     1) *** indicates significant correlation at P<0.001 level (Pearson method).
    下载: 导出CSV
  • [1]

    BROWN S, SCHROEDER P, KERN J. Spatial distribution of biomass in forests of the eastern USA[J]. Forest Ecology and Management, 1999, 123(1): 81-90. doi: 10.1016/S0378-1127(99)00017-1

    [2] 刘立斌, 周运超, 程安云, 等. 利用皆伐法估算黔中喀斯特森林地上生物量[J]. 生态学报, 2020, 40(13): 4455-4461.
    [3] 孟凡栋, 王常顺, 朱小雪, 等. 西藏高原金露梅灌丛草甸物种丰富度和生物量取样方法探讨[J]. 生态学杂志, 2016, 35(12): 3435-3442.
    [4] 万五星, 王效科, 李东义, 等. 暖温带森林生态系统林下灌木生物量相对生长模型[J]. 生态学报, 2014, 34(23): 6985-6992.
    [5]

    WHITE J C, COOPS N C, WULDER M A, et al. Remote sensing technologies for enhancing forest inventories: A review[J]. Canadian Journal of Remote Sensing, 2016, 42(5): 619-641. doi: 10.1080/07038992.2016.1207484

    [6]

    WULDER M A, WHITE J C, NELSON R F, et al. Lidar sampling for large-area forest characterization: A review[J]. Remote Sensing of Environment, 2012, 121: 196-209. doi: 10.1016/j.rse.2012.02.001

    [7]

    LU J, WANG H, QIN S, et al. Estimation of aboveground biomass of Robinia pseudoacacia forest in the Yellow River Delta based on UAV and backpack LiDAR point clouds[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 86: 102014. doi: 10.1016/j.jag.2019.102014

    [8] 罗谨璇, 田义超, 张强, 等. 利用无人机激光雷达估算红树林地上生物量[J]. 海洋学报, 2023, 45(8): 108-119.
    [9]

    GARCIA M, RIANO D, CHUVIECO E, et al. Estimating biomass carbon stocks for a Mediterranean forest in central spain using LiDAR height and intensity data[J]. Remote Sensing of Environment, 2010, 114(4): 816-830. doi: 10.1016/j.rse.2009.11.021

    [10]

    CORTE A P D, SOUZA D V, REX F E, et al. Forest inventory with high-density UAV-LiDAR: Machine learning approaches for predicting individual tree attributes[J]. Computers and Electronics in Agriculture, 2020, 179: 105815. doi: 10.1016/j.compag.2020.105815

    [11]

    KNAPP N, FISCHER R, CAZCARRA-BES V, et al. Structure metrics to generalize biomass estimation from LiDAR across forest types from different continents[J]. Remote Sensing of Environment, 2020, 237: 111597. doi: 10.1016/j.rse.2019.111597

    [12] 刘浩然, 范伟伟, 徐永胜, 等. 基于无人机激光雷达点云的单木生物量估测[J]. 中南林业科技大学学报, 2021, 41(8): 92-99.
    [13]

    HALL S A, BURKE I C, BOX D O, et al. Estimating stand structure using discrete-return LiDAR: An example from low density, fire prone ponderosa pine forests[J]. Forest Ecology and Management, 2005, 208(1/2/3): 189-209. doi: 10.1016/j.foreco.2004.12.001

    [14]

    HOSOI F, NAKAI Y, OMASA K. 3-D voxel-based solid modeling of a broad-leaved tree for accurate volume estimation using portable scanning LiDAR[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 82: 41-48. doi: 10.1016/j.isprsjprs.2013.04.011

    [15]

    DEMOL M, CALDERS K, VERBEECK H, et al. Forest above-ground volume assessments with terrestrial laser scanning: A ground-truth validation experiment in temperate, managed forests[J]. Annals of Botany, 2021, 128(6): 805-819. doi: 10.1093/aob/mcab110

    [16]

    HAUGLIN M, ASTRUP R, GOBAKKEN T, et al. Estimating single-tree branch biomass of Norway spruce with terrestrial laser scanning using voxel-based and crown dimension features[J]. Scandinavian Journal of Forest Research, 2013, 28(5): 456-469. doi: 10.1080/02827581.2013.777772

    [17]

    BREDE B, TERRYN L, BARBIER N, et al. Non-destructive estimation of individual tree biomass: Allometric models, terrestrial and UAV laser scanning[J]. Remote Sensing of Environment, 2022, 280: 113180. doi: 10.1016/j.rse.2022.113180

    [18]

    DALLA CORTE A P, DE VASCONCELLOS B N, REX F E, et al. Applying high-resolution UAV-LiDAR and quantitative structure modelling for estimating tree attributes in a crop-livestock-forest system[J]. Land, 2022, 11(4): 507. doi: 10.3390/land11040507

    [19]

    YE N, VAN LEEUWEN L, NYKTAS P. Analysing the potential of UAV point cloud as input in quantitative structure modelling for assessment of woody biomass of single trees[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 81: 47-57. doi: 10.1016/j.jag.2019.05.010

    [20] 赵丽娟, 项文化. 常绿阔叶林石栎和青冈种群生活史特征与空间分布格局[J]. 西北植物学报, 2014, 34(6): 1259-1268. doi: 10.7606/j.issn.1000-4025.2014.06.1259
    [21]

    ZHANG W, QI J, WAN P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501. doi: 10.3390/rs8060501

    [22]

    TAO S, WU F, GUO Q, et al. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 110: 66-76. doi: 10.1016/j.isprsjprs.2015.10.007

    [23]

    DELAGRANGE S, JAUVIN C, ROCHON P. PypeTree: A tool for reconstructing tree perennial tissues from point clouds[J]. Sensors, 2014, 14(3): 4271-4289. doi: 10.3390/s140304271

    [24]

    RAUMONEN P, KAASALAINEN M, AKERBLOM M, et al. Fast automatic precision tree models from terrestrial laser scanner data[J]. Remote Sensing, 2013, 5(2): 491-520. doi: 10.3390/rs5020491

    [25]

    HACKENBERG J, SPIECKER H, CALDERS K, et al. SimpleTree: An efficient open source tool to build tree models from TLS clouds[J]. Forests, 2015, 6(11): 4245-4294. doi: 10.3390/f6114245

    [26] 国家市场监督管理总局, 国家标准化管理委员会. 主要树种立木生物量模型与碳计量参数: GB/T 43648—2024[S]. 北京: 中国标准出版社, 2024.
    [27]

    MAXWELL A E, WARNER T A, FANG F. Implementation of machine-learning classification in remote sensing: An applied review[J]. International Journal of Remote Sensing, 2018.

    [28]

    ZHANG Y, MA J, LIANG S, et al. An evaluation of eight machine learning regression algorithms for forest aboveground biomass estimation from multiple satellite data products[J]. Remote Sensing, 2020, 12(24): 4015. doi: 10.3390/rs12244015

    [29]

    FEKRY R, YAO W, CAO L, et al. Ground-based/UAV-LiDAR data fusion for quantitative structure modeling and tree parameter retrieval in subtropical planted forest[J]. Forest Ecosystems, 2022, 9: 100065. doi: 10.1016/j.fecs.2022.100065

    [30]

    KRŮČEK M, KRÁL K, CUSHMAN K C, et al. Supervised segmentation of ultra-high-density drone lidar for large-area mapping of individual trees[J]. Remote Sensing, 2020, 12(19): 3260. doi: 10.3390/rs12193260

    [31]

    SCHNEIDER F D, KÜKENBRINK D, SCHAEPMAN M E, et al. Quantifying 3D structure and occlusion in dense tropical and temperate forests using close-range LiDAR[J]. Agricultural and Forest Meteorology, 2019, 268: 249-257. doi: 10.1016/j.agrformet.2019.01.033

    [32]

    COOPS N C, TOMPALSKI P, GOODBODY T R H, et al. Modelling LiDAR-derived estimates of forest attributes over space and time: A review of approaches and future trends[J]. Remote Sensing of Environment, 2021, 260: 112477. doi: 10.1016/j.rse.2021.112477

    [33] 陈中超, 刘清旺, 李春干, 等. 基于无人机激光雷达的人工林碳储量线性与非线性估测模型比较[J]. 北京林业大学学报, 2021, 43(12): 9-16. doi: 10.12171/j.1000-1522.20200417
    [34]

    ABD RAHMAN M Z, ABU BAKAR M A, RAZAK K A, et al. Non-destructive, laser-based individual tree aboveground biomass estimation in a tropical rainforest[J]. Forests, 2017, 8(3): 86. doi: 10.3390/f8030086

    [35] 唐依人, 贾炜玮, 王帆, 等. 基于TLS辅助的长白落叶松一级枝条生物量模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 130-140.
    [36]

    CHEN S, FENG Z, CHEN P, et al. Nondestructive estimation of the above-ground biomass of multiple tree species in boreal forests of china using terrestrial laser scanning[J]. Forests, 2019, 10(11): 936. doi: 10.3390/f10110936

    [37] 刘鲁霞, 庞勇, 李增元. 基于地基激光雷达的亚热带森林单木胸径与树高提取[J]. 林业科学, 2016, 52(2): 26-37.
    [38]

    CALDERS K, ADAMS J, ARMSTON J, et al. Terrestrial laser scanning in forest ecology: Expanding the horizon[J]. Remote Sensing of Environment, 2020, 251: 112102. doi: 10.1016/j.rse.2020.112102

    [39]

    QI Y, COOPS N, DANIELS L, et al. Comparing tree attributes derived from quantitative structure models based on drone and mobile laser scanning point clouds across varying canopy cover conditions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 192: 49-65. doi: 10.1016/j.isprsjprs.2022.07.021

    [40]

    ÅKERBLOM M, RAUMONEN P, MÄKIPÄÄ R, et al. Automatic tree species recognition with quantitative structure models[J]. Remote Sensing of Environment, 2017, 191: 1-12. doi: 10.1016/j.rse.2016.12.002

    [41]

    TERRYN L, CALDERS K, DISNEY M, et al. Tree species classification using structural features derived from terrestrial laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168: 170-181. doi: 10.1016/j.isprsjprs.2020.08.009

    [42]

    HUI Z, CAI Z, XU P, et al. Tree species classification using optimized features derived from light detection and ranging point clouds based on fractal geometry and quantitative structure model[J]. Forests, 2023, 14(6): 1265. doi: 10.3390/f14061265

  • 期刊类型引用(5)

    1. 金海峰,李芬,袁琳琳,侯清芳,吴少英. 不同波长光对普通大蓟马成虫寿命、繁殖力及抗氧化酶活性的影响. 植物保护. 2024(04): 101-107 . 百度学术
    2. 潘润东,李培征,韩冬银,符悦冠,詹灿烂,李磊. 土壤类型及含水量对花蓟马蛹期发育及羽化的影响. 中国农学通报. 2023(30): 138-143 . 百度学术
    3. 金海峰,王朝政,侯清芳,咸利民,张华剑,吴少英. 普通大蓟马MuRhodopsin基因的全长克隆及生物信息学分析. 热带生物学报. 2023(06): 651-659 . 百度学术
    4. 史彩华,谢文,吴明月,邹祥,吴青君,张友军. 豆大蓟马生物生态学特性与绿色防控技术研究进展. 应用昆虫学报. 2023(06): 1643-1653 . 百度学术
    5. 潘雪莲,杨磊,金海峰,陆容材,李芬,曹凤勤,吴少英. 豆大蓟马在海南发生及防治的研究进展. 热带生物学报. 2021(04): 508-513 . 百度学术

    其他类型引用(1)

图(7)  /  表(4)
计量
  • 文章访问数:  531
  • HTML全文浏览量:  29
  • PDF下载量:  24
  • 被引次数: 6
出版历程
  • 收稿日期:  2024-06-22
  • 网络出版日期:  2025-03-02
  • 发布日期:  2025-03-03
  • 刊出日期:  2025-05-09

目录

/

返回文章
返回