-
摘要:
稻田的水热环境是鲤科Cyprinidae鱼类天然适生生境,由此演育出了稻鱼共生系统。我国南方山丘区的稻鱼共生系统具有悠久的历史,是利用当地水热和景观条件而发展起来的独特稻作系统,对增加稻田产出、稳定农民收入、保护当地生物资源起着重要作用。本文概述了我国南方山丘区稻鱼共生系统的发展历程;从稻鱼共生系统的生产力、有害生物的控制和农药减量、土壤碳氮保持和肥料减量、甲烷产生和氧化及排放、水资源利用与保护以及遗传多样性保育等方面综述了稻鱼共生系统的研究进展;分析了我国南方山丘区稻鱼共生产业发展的潜力和可持续发展的路径,并对稻鱼共生系统今后的研究方向进行了展望。
Abstract:A paddy field with shallow water provides a suitable environment for aquatic animals such as cyprinid fish, which makes it possible to develop the rice-fish coculture system. Raising fish in paddy field has a long history in hilly regions of southern China. The rice-fish coculture system has become an important rice farming system in this area, which plays an important role in increasing productivity, stabilizing farmers’ income, and preserving local genetic resources. In this paper, we outlined the development of rice-fish coculture system in southern China, reviewed the recent studies on ecological functions of the rice-fish coculture system (e.g. productivity, pest control and pesticide reduction, soil carbon and fertility maintenance with low fertilizers, methane emission and oxidation, water resource use and the local genetic diversity preservation). The potential and possible approaches for the sustainable development of rice-fish coculture were discussed. The future researches on rice-fish coculture were prospected.
-
小麦是仅次于大米的主要粮食作物,是人类生活中不可缺少的食物,通常利用制粉设备加工成面粉,制作成面包、面条等各种面食供人类食用。全世界每年需要加工制粉的谷物有20多亿t,其中小麦大约有6亿t[1]。辊式磨粉机是加工面粉的主要设备,其工作原理是通过1对水平排列并以不同角速度高速相向旋转的圆柱形磨辊,对小麦粉料施加挤压、剪切、摩擦等方式的载荷,将物料颗粒压碎、研磨成细粉,制成各种不同用途的成品面粉[2-3]。
磨辊是辊式磨粉机的核心部件,其内层材料以灰口铁为主,外层抗磨部分主要为白口铁。制粉过程中其与小麦粉料剧烈摩擦,产生磨料磨损现象,造成磨辊表面原有的形态发生变化,如齿辊的齿部钝化、光辊表面粗糙度降低。当磨辊磨损达到一定程度后,磨粉机出粉率与生产效率都会明显降低,需重新做磨光拉丝或喷砂处理[4-6]。磨辊磨损问题已经成为制约辊式磨粉机发展和应用的瓶颈,提高磨辊表面耐磨性能是目前制粉行业急需解决的难题。因此,磨辊金属材料的耐磨性是非常重要的性能,金属材料的耐磨性与表面硬度之间存在相应的关系,一般情况下,同类材料硬度增大则耐磨性提高,因此可以通过表面硬度间接反映材料的耐磨性[7-8]。
激光表面淬火是强化材料表面硬度的一种热处理方法[9-10],该技术解决了许多普通热处理工艺无法解决的难题,广泛用于汽车、冶金、模具、五金、轻工、机械制造等行业[11-17]。有学者研究了激光淬火工艺参数对HT210、模具钢718等材料淬硬层深度及表面硬度的影响[18-21],发现获得高而均匀的硬度是提高铸铁材料耐磨性的关键。本研究拟利用响应曲面方法设计激光淬火试验,探究激光淬火工艺参数对磨辊表面金属材料硬度的影响规律,并确定最优工艺参数组合,探讨经激光淬火处理后磨辊表面金属材料的性能变化和磨损机理。
1. 材料与方法
1.1 材料
试验材料为低铬白口铁,尺寸为57 mm × 25.5 mm × 6 mm,表面机械研磨抛光,其化学成分质量分数如下:C 2.6%~3.2%、Si 低于0.8%、Mn 1.0%~2.5%、Cr 2.0%~3.0%、Mo 2.0%~3.0%、Cu 2.0%~3.0%。
磨损试验中使用的磨料为甘肃产‘西旱1号’小麦籽粒,自然风干后经破碎、筛分及匀化处理制备粒度分布为0.5~1.5 mm的小麦粉料。小麦粉料不同成分质量分数为:淀粉71.8%、粗蛋白12.9%、水分9.8%、脂肪2.2%、粗纤维1.7%、粗灰分1.6%。
1.2 试验设备
1.2.1 激光淬火试验
使用额定功率200 W,波长1 070 nm的光纤激光器,工作频率40 Hz,脉宽20 ms。
1.2.2 硬度测定试验与金相组织试验
硬度测定采用莱州华银公司生产的HVS−1000型数显显微硬度计,施加载荷100 g,加载时间10 s。每组试样硬度测定试验重复3次,取3次测量值的平均值。采用MR5000型倒置金相显微镜(南京江南永新光学公司生产)检验试样金相组织。
1.2.3 磨损试验
采用MLS−225型橡胶轮式磨损试验机(张家口市宣化科华试验机制造有限公司生产)进行三体磨料磨损试验,采用精度为0.1 mg的分析天平称量试样磨损前后的质量损失,采用扫描电子显微镜(东莞市天测光学设备有限公司生产)观察试样被磨面的表面微观形貌。
1.3 试验方法
1.3.1 激光淬火试验
试样编号为1~20,分别进行不同工艺参数的激光表面淬火热处理,表面淬火区域的淬火扫描点呈线性排列在试样表面,如图1,淬火面积为30 mm × 18 mm。在进行激光淬火试验前,将试样置入丙酮溶液中,放入清洗机清洗6 min,用碳素吸光涂料对试样作黑化处理,提高材料对激光的吸收率。完成激光淬火试验后,将试样沿着与激光扫描垂直的方向切开,用硬度计测量硬度值。
1.3.2 响应曲面试验设计
通过前期单因素激光淬火试验筛选,影响磨辊表面硬度的因素主要是激光功率、光斑直径和扫描速度。根据中心复合的旋转组合设计原理,以激光功率(A)、光斑直径(B)、扫描速度(C)为试验影响因素,以硬度(R)作为响应指标,采用3因素5水平试验。各试验因素水平如表1所示。
表 1 因素水平表Table 1. Factor-level table水平
Level激光功率/W
Laser power光斑直径/mm
Spot diameter扫描速度/(mm·s−1)
Scanning speed−1.682 163 0.53 166 −1 170 0.60 200 0 180 0.70 250 +1 190 0.80 300 +1.682 197 0.87 334 1.3.3 磨损试验
在三体磨料磨损试验前,磨损试验机的参数设定如下:转速400 r/min,压力225 N,轧距0.15 mm。选用硬度为60 邵尔的橡胶轮,在室温条件下分别对未经激光淬火处理、经激光淬火最优工艺参数组合处理的2组试样进行为期2 h的抗小麦粉料磨损试验,共计5个磨损周期,即总磨程为10 h。将试样磨损前后的质量损失作为评价指标,每组试样磨损试验重复3次,取3次测量值的平均值作为分析数据。
1.4 数据统计与分析
采用Design-expert 8.0.6对数据进行统计分析;用Origin 8.0软件进行作图。
2. 结果与分析
2.1 激光淬火试验
响应面各因素试验设计与结果如表2所示。使用Design-expert 8.0.6软件分析试验结果,得到各因素与响应值R的二次回归方程:
表 2 试验设计与结果Table 2. Experiment design and result试样编号
Sample number因素 Factor 硬度/HV
Hardness激光功率 Laser power 光斑直径 Spot diameter 扫描速度 Scanning speed 1 −1 −1 −1 545.36 2 1 −1 −1 600.13 3 −1 1 −1 520.86 4 1 1 −1 637.81 5 −1 −1 1 530.77 6 1 −1 1 515.00 7 −1 1 1 592.02 8 1 1 1 560.35 9 −1.682 0 0 532.10 10 +1.682 0 0 695.13 11 0 −1.682 0 534.76 12 0 +1.682 0 658.30 13 0 0 −1.682 627.76 14 0 0 +1.682 521.55 15 0 0 0 644.24 16 0 0 0 680.32 17 0 0 0 659.18 18 0 0 0 663.26 19 0 0 0 687.08 20 0 0 0 631.29 $$\begin{aligned} {{R}} = & {{661}}{{.80}} + {{2}}9.18{{A}} + {{2}}3.98{{B}} - {{2}}0.84{{C}} + \\ & {{5}}{{.79AB}} - {{2}}7.39{{AC}} + {{1}}1.68{{BC}} - \\ & {{22}}{{.66}}{{{A}}^{{2}}} - {{2}}8.70{{{B}}^{{2}}} - {{3}}6.43{{{C}}^{{2}}} {\text{。}} \end{aligned}$$ 对回归方程进行方差分析和回归系数显著性检验,结果见表3。回归模型P<0.01,表明回归模型中各因素与响应值的相关性是显著的。其中模型的一次项A(激光功率)、B(光斑直径)与C(扫描速度)对磨辊材料表面硬度影响显著(P<0.05);二次项B2、C2对磨辊材料表面硬度影响极显著(P<0.01),A2影响显著(P<0.05);交互项AC对磨辊材料表面硬度影响显著(P<0.05),AB与BC影响均不显著(P>0.05)。根据模型各因素回归系数和P值大小,得到影响磨辊材料表面硬度的各因素依次为激光功率、光斑直径、扫描速度。模型的复相关系数为0.846 8,模型的校正决定系数Radj2为0.708 9,试验误差小,可以用于硬度的预测。
表 3 方差分析表1)Table 3. Variance analysis table变异来源 Variance source SS DF MS F P 模型 Model 65 184.71 9 7 242.75 6.14 0.004 5 A 11 625.85 1 11 625.85 9.86 0.010 5 B 7 855.99 1 7 855.99 6.66 0.027 4 C 5 932.68 1 5 932.68 5.03 0.048 8 AB 267.73 1 267.73 0.23 0.644 0 AC 6 003.89 1 6 003.89 5.09 0.047 7 BC 1 090.91 1 1 090.91 0.93 0.358 8 A2 7 396.70 1 7 396.70 6.27 0.031 2 B2 11 866.84 1 11 866.84 10.06 0.010 0 C2 19 125.48 1 19 125.48 16.22 0.002 4 残差 Residual 11 792.58 10 1 179.26 失拟项 Lack of fit 9 567.22 5 1 913.44 4.30 0.067 7 纯误差 Pure error 2 225.36 5 445.07 总计 Total 76 977.29 19 1)A、B、C分别为激光功率、光斑直径、扫描速度
1) A, B and C indicated laser power, spot diameter and scanning speed, respectively2.2 淬火工艺参数交互作用分析
为了考察各因素及其交互作用对磨辊材料表面硬度的影响,采用Design-expert 8.0.6软件得到了各因素间的响应曲面图和等高线图,如图2~4所示。各因素间交互作用的显著性取决于响应曲面的陡峭程度。响应曲面坡度越陡,说明该因素对响应值的影响越显著。当等高线的形状为椭圆形时,线密度大,表明因素间交互作用对硬度影响显著;等高线的形状为圆形或近似圆形时,线密度小,交互作用对硬度影响不显著。
2.2.1 激光功率与扫描速度对硬度的影响
激光功率方向的坡度比扫描速度陡峭(图2a),表明激光功率对磨辊材料表面硬度的影响大于扫描速度。等高线图形状呈椭圆形(图2b),表明激光功率与扫描速度间的交互作用对硬度影响显著。
2.2.2 激光功率与光斑直径对硬度的影响
响应面图中激光功率方向的曲线坡度大于光斑直径方向(图3a),说明激光功率对磨辊材料表面硬度的影响大于光斑直径。与激光功率和扫描速度交互作用下等高线密度(图2b)相比较,图3b中的等高线轮廓近似圆形,线密度较小,表明激光功率与光斑直径间的交互作用对硬度影响不显著。
2.2.3 光斑直径与扫描速度对硬度的影响
从响应曲面图可观察出,光斑直径方向响应面曲线比扫描速度方向陡峭(图4a),表明光斑直径对磨辊材料表面硬度的影响大于扫描速度。等高线图的线密度小,轮廓呈圆形(图4b),说明光斑直径与扫描速度间的交互作用对硬度的影响也不显著,这与回归分析结果一致。由上述结果可知,影响磨辊材料表面硬度的最主要因素为激光功率,其次为光斑直径和扫描速度。
2.2.4 激光淬火工艺参数最优组合
在实际面粉生产中,最终目的是提高磨辊的硬度,加强磨辊的耐磨性能,延长磨辊的使用周期。本试验利用响应曲面旋转二次组合设计方法,采用激光功率、光斑直径和扫描速度3个参数的试验范围作为约束条件,经过显著性检验的响应值R作为目标函数,经过非线性优化后得出最优的参数组合。分析得到激光淬火优化参数组合为:激光功率190 W,光斑直径0.74 mm,扫描速度220.14 mm/s,该参数组合下的试样表面硬度为688.67 HV。考虑到实际试验操作的便利,将此工艺条件进行进一步修正,得到可在实际生产中应用的工艺参数组合:激光功率190 W,光斑直径0.70 mm,扫描速度220 mm/s。为了检验软件分析结果的正确性,用上述最佳的淬火工艺参数进行3次验证试验,试验的结果与软件分析的结果基本吻合。
2.3 金相组织分析
该试样的原始硬度为509 HV,激光淬火处理后其硬度提升了35%,对试样进行激光淬火处理提升其耐磨性的本质是使其金相组织发生变化。图5为试样淬火后的金相组织图。
在激光快速加热条件下奥氏体晶粒非常细小。快速加热升温增加了奥氏体内碳、铬等元素的溶解度。碳化物在奥氏体内溶解,使其薄弱处发生断裂,形态得到改善。碳、铬等元素在奥氏体内溶解使得它们在奥氏体内的溶入量增长,激光淬火后得到的马氏体含碳量增加,基体硬度提高。同时,激光淬火使试样内部组织晶粒细化,形成大量马氏体,残留少量奥氏体。因此,试样经激光淬火后耐磨性得到极大的改善。试样在淬火后未产生裂纹现象。
2.4 磨损试验
2.4.1 质量损失试验结果
小麦粉料与试样表面接触时,其中的硬颗粒会与试样表面发生摩擦,试样表面因塑性挤压产生划痕,同时试样表面因压入的粉料硬颗粒形成沟槽,试样表面经多次塑性变形,发生疲劳破坏,表面材料掉落,脱离母体,造成试样质量损失。图6所示为未经激光淬火处理和激光淬火最优参数组合处理2组试样以小麦粉料为磨料的三体磨料磨损试验质量损失。对比图6中2组数据可知,经激光淬火最优参数组合处理后的试样质量损失约为未经激光淬火处理的试样的7%,由此可知,激光淬火处理后磨辊表面材料抗小麦粉料磨损性能显著提升。
2.4.2 磨损面微观形貌分析
图7所示为激光淬火前后2组试样典型被磨表面微观形貌扫描电子显微镜图。试样经激光淬火处理后,小麦粉料在试样表面的划痕较轻,粉料中的坚硬颗粒在激光淬火试样表面很难存留,表面上形成的划痕比较短,在小麦粉料作用下形成的沟槽更浅窄。因此,经激光淬火后的磨辊表面材料与小麦粉料间的摩擦磨损作用减弱,塑性变形次数降低,磨辊表面疲劳破坏得到改善,磨辊的磨损周期延长,生产成本降低。
3. 结论
本文采用旋转组合设计方法设计3因素5水平响应曲面试验,探究了激光功率、光斑直径和扫描速度对磨辊金属材料硬度的影响规律,并对3个试验因素进行参数优化,探讨磨辊材料耐磨性变化,得到以下结论:
1)各激光淬火工艺参数对磨辊金属材料硬度影响依次为激光功率>光斑直径>扫描速度;激光功率与扫描速度间的交互作用对硬度影响显著。
2)提高磨辊表面材料硬度的最优激光淬火工艺参数组合为:激光功率190 W、光斑直径0.70 mm、扫描速度220 mm/s;激光淬火处理后试样硬度提升了35%。
3)经激光淬火最佳工艺参数组合处理后试样的质量损失约为未经激光淬火处理试样的7%,经激光淬火处理后的磨辊表面材料与小麦粉料间的摩擦磨损作用减弱,小麦粉料在试样表面的划痕较轻较短,试样磨损面的沟槽更浅窄。
本试验结果表明,经过激光淬火处理后磨辊表面材料较未经处理的材料硬度显著提升,耐磨性能增强,这与华希俊等[22]的研究结果一致。淬火后的试样与小麦粉料发生摩擦磨损时,由于其表面的硬度得到强化,小麦粉料中的硬颗粒很难存留在试样表面,在表面产生的划痕与沟槽极为浅窄,使材料表面的损伤减少,极大地缓解了磨辊磨损严重等问题。
-
图 1 中国南方地区主要省市(自治区)梯田和稻鱼系统分布图及稻田比例
该图采用国家地理信息公共服务平台地图绘制[审图号:GS(2024)0650号],底图边界无修改。台湾省和海南省的稻鱼共生系统及水田面积暂缺详细资料。梯田分布数据来自Cao等[19];水田和旱地面积数据来自中国统计年鉴(2022)[20]。稻鱼共生系统分布点根据抽样调查,棕色圆点是稻鱼系统以养殖当地田鲤鱼地方种群为主,红色圆点是稻鱼系统除了养殖当地田鲤鱼地方种群外,还养殖了其他鲤科鱼类或普通鲤鱼人工培育品种;地图上的值表示1 km × 1 km网格单元内梯田所占的面积比例。
Figure 1. Map and pie charts describing the distribution of terraces and rice-fish systems in the main provinces of southern China
This map is based on the standard map with a review number GS (2024) 0650 downloaded from the website of National Platform for Common GeoSpatial Information Services, and no modification was made to the boundary of the base map. Data of rice-fish system and paddy field areas for provinces of Hainan and Taiwan lack in this study. Data of terrace distribution were obtained from Cao et al [19]. Data of paddy field and upland areas were obtained from China Statistical Yearbook (2022) [20]. The distribution of rice-fish system was based on a stratified sampling. Brow dots indicated that local common carps were majorly raised in the rice-fish system. Red dots indicated that other common carp strains or cyprinid fish were also raised in the rice-fish system except for local common carp. The map values indicated the proportion of terraces within a 1 km × 1 km grid cell.
图 2 与水稻单作相比稻鱼共生系统的水稻产量变化[35]
Figure 2. Changes of rice yield in rice-fish system compared to rice monoculture system
表 1 我国南方地区传统稻鱼系统中的田鱼地方种群
Table 1 Local common carp populations of the traditional rice-fish systems in southern China
序号
No.田鱼地方名称
Local name of common carp稻鱼系统所在地
Location of the rice-fish system地理坐标位置
Geographic coordinate position1 青田田鱼 浙江青田 27°25′N,118°41′E 2 武夷山稻花鱼 福建武夷山 27°75′N,117°67′E 3 辰溪稻花鱼 湖南辰溪 27°53′N,109°54′E 4 连山禾花鱼 广东连山 24°17′N,112°02′E 5 全州禾花鲤 广西全州 25°29′N,110°37′E 6 晒江田鲤 广西三江 25°22′N,108°53′E 7 融水金背鲤 广西融水 25°04′N,109°14′E 8 靖西黑背鲤 广西靖西 22°51′N,105°56′E 9 那坡橘红鲤 广西那坡 23°24′N,105°50′E 10 从江田鱼 贵州从江 25°55′N,106°65′E -
[1] 陈欣, 唐建军, 胡亮亮, 等. 生态型种养结合原理与实践[M]. 北京: 中国农业出版社, 2019. [2] 于秀娟, 郝向举, 党子乔, 等. 中国稻渔综合种养产业发展报告(2023)[J]. 中国水产, 2023(8): 19-26. [3] XIE J, HU L L, TANG J J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 1381-1387. doi: 10.1073/pnas.1111043108
[4] 陈欣, 唐建军, 胡亮亮, 等. 青田稻鱼共生系统生态学基础及保护与利用[M]. 北京: 科学出版社, 2020. [5] GUO L, ZHAO L F, YE J L, et al. Using aquatic animals as partners to increase yield and maintain soil nitrogen in the paddy ecosystems[J]. eLife, 2022, 11: e73869. doi: 10.7554/eLife.73869
[6] ZHAO L F, DAI R X, ZHANG T J, et al. Fish mediate surface soil methane oxidation in the agriculture heritage rice-fish system[J]. Ecosystems, 2023, 26(8): 1656-1669. doi: 10.1007/s10021-023-00856-y
[7] HALWART M, GUPTA M V. Culture of fish in rice fields[M]. 2004, Rome: FAO.
[8] AHMED N, GARNETT S T. Integrated rice-fish farming in Bangladesh: Meeting the challenges of food security[J]. Food Security, 2011, 3(1): 81-92. doi: 10.1007/s12571-011-0113-8
[9] 胡亮亮, 唐建军, 张剑, 等. 稻−鱼系统的发展与未来思考[J]. 中国生态农业学报, 2015, 23(3): 268-275. doi: 10.13930/j.cnki.cjea.150025 [10] COLEMAN R A, GAUFFRE B, PAVLOVA A, et al. Artificial barriers prevent genetic recovery of small isolated populations of a low-mobility freshwater fish[J]. Heredity, 2018, 120(6): 515-532. doi: 10.1038/s41437-017-0008-3
[11] FREED S, BARMAN B, DUBOIS M, et al. Maintaining diversity of integrated rice and fish production confers adaptability of food systems to global change[J]. Frontiers in Sustainable Food Systems, 2020, 4: 576179. doi: 10.3389/fsufs.2020.576179
[12] AHMED N, HORNBUCKLE J, TURCHINI G M. Blue-green water utilization in rice-fish cultivation towards sustainable food production[J]. AMBIO, 2022, 51(9): 1933-1948. doi: 10.1007/s13280-022-01711-5
[13] MARIYONO J. Sustainable intensification practices of fish-rice co-culture in Java, Indonesia: Technical, socio-economic and environmental features[J]. Journal of Agribusiness in Developing and Emerging Economies, 2023. doi: 10.1108/JADEE-09-2022-0208.
[14] SATHORIA P, ROY B. Sustainable food production through integrated rice-fish farming in India: a brief review[J]. Renewable Agriculture and Food Systems, 2022, 37(5): 527-535. doi: 10.1017/S1742170522000126
[15] 胡亮亮, 赵璐峰, 唐建军, 等. 稻鱼共生系统的推广潜力分析: 以中国南方10省为例[J]. 中国生态农业学报(中英文), 2019, 27(7): 981-993. doi: 10.13930/j.cnki.cjea.190203 [16] KOOHANFKAN P, FURTADO J. Traditional rice-fish systems as globally important agricultural heritage systems (GIAHS)[J]. International Rice Commission Newsletter, 2004, 53: 66-74.
[17] 张丹, 闵庆文. 贵州从江侗乡稻−鱼−鸭系统[M]. 北京: 中国农业出版社, 2015. [18] ZHANG Y, GUAN C Y, LI Z Y, et al. Review of rice-fish-duck symbiosis system in China: One of the globally important ingenious agricultural heritage systems (GIAHS)[J]. Sustainability, 2023, 15(3): 1910. doi: 10.3390/su15031910
[19] CAO B, YU L, NAIPAL V, et al. A 30 m terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine[J]. Earth System Science Data, 2021, 13(5): 2437-2456. doi: 10.5194/essd-13-2437-2021
[20] 中国统计年鉴编辑委员会. 中国统计年鉴[M]. 北京: 中国农业出版社, 2022. [21] 郭梁, 任伟征, 胡亮亮, 等. 传统稻鱼系统中“田鲤鱼”的形态特征[J]. 应用生态学报, 2017, 28(2): 665-672. doi: 10.13287/j.1001-9332.201702.033 [22] 吴碧银, 许建, 曹顶臣, 等. 鲤低氧适应性状的全基因组关联分析[J]. 渔业科学进展, 2022, 43(2): 98-106. doi: 10.19663/j.issn2095-9869.20201218002 [23] CHENG X B, LI F, KUMILAMBA G, et al. Transcriptome analysis in hepatopancreases reveals the response of domesticated common carp to a high-temperature environment in the agricultural heritage rice-fish system[J]. Frontiers in Physiology, 2023, 14: 1294729. doi: 10.3389/fphys.2023.1294729
[24] MORTILLARO J M, DABBADIE L, RAMINOHARISOA A E, et al. Trophic functioning of integrated rice-fish farming in Madagascar: Insights from stable isotopes (δ13C & δ15N)[J]. Aquaculture, 2022, 555: 738240. doi: 10.1016/j.aquaculture.2022.738240
[25] 张剑, 胡亮亮, 任伟征, 等. 稻鱼系统中田鱼对资源的利用及对水稻生长的影响[J]. 应用生态学报, 2017, 28(1): 299-307. doi: 10.13287/j.1001-9332.201701.040 [26] REN W Z, HU L L, GUO L, et al. Preservation of the genetic diversity of a local common carp in the agricultural heritage rice–fish system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(3): E546-E554. doi: 10.1073/pnas.1709582115
[27] 赵璐峰. 稻鱼共生对稻田系统碳氮及土壤甲烷氧化的影响[D]. 杭州: 浙江大学, 2022. [28] FREI M, BECKER K. Integrated rice-fish culture: Coupled production saves resources[J]. Natural Resources Forum, 2005, 29(2): 135-143. doi: 10.1111/j.1477-8947.2005.00122.x
[29] GURUNG T B, WAGLE S K. Revisiting underlying ecological principles of rice-fish integrated farming for environmental, economical and social benefits[J]. Our Nature, 2005, 3(1): 1-12. doi: 10.3126/on.v3i1.328
[30] TSURUTA T, YAMAGUCHI M, ABE S, et al. Effect of fish in rice-fish culture on the rice yield[J]. Fisheries Science, 2011, 77(1): 95-106. doi: 10.1007/s12562-010-0299-2
[31] 谢坚. 农田物种间相互作用的生态系统功能: 以全球重要农业文化遗产“稻鱼系统”为研究范例[D]. 杭州: 浙江大学, 2011. [32] 胡亮亮. 农业生物种间互惠的生态系统功能[D]. 杭州: 浙江大学, 2014. [33] 郭梁. 稻渔系统土壤氮素的维持及其生态学机理[D]. 杭州: 浙江大学, 2020. [34] 蔡淑芳, 黄献光, 黄惠珍, 等. 稻鱼共作对水稻产量效应的Meta分析[J]. 水生生物学报, 2022, 46(12): 1924-1931. [35] 胡中元. 稻田复合种养的生态系统功能与服务[D]. 杭州: 浙江大学, 2024. [36] ROTHUIS A J, NHAN D K, RICHTER C J, et al. Rice with fish culture in the semi-deep waters of the Mekong Delta, Vietnam: A socio-economical survey[J]. Aquaculture Research, 1998, 29(1): 47-57. doi: 10.1111/j.1365-2109.1998.tb01099.x
[37] 吴雪. 稻鱼系统养分循环利用研究[D]. 杭州: 浙江大学, 2012. [38] 李娜娜. 中国主要稻田种养模式生态分析[D]. 杭州: 浙江大学, 2014. [39] HU L L, ZHANG J, REN W Z, et al. Can the co-cultivation of rice and fish help sustain rice production?[J]. Scientific Reports, 2016, 6(1): 28728. doi: 10.1038/srep28728
[40] BERG H, TAM N T. Use of pesticides and attitude to pest management strategies among rice and rice-fish farmers in the Mekong Delta, Vietnam[J]. International Journal of Pest Management, 2012, 58(2): 153-164. doi: 10.1080/09670874.2012.672776
[41] DWIYANA E, MENDOZA T C. Determinants of productivity and profitability of rice-fish farming systems[J]. Asia Life Sciences, 2008, 17(1): 21-42.
[42] CHEN X, WU X, LI N N, et al. 2011. Globally important agricultural heritage system (GIAHS) rice-fish system in China: An ecological and economic analysis[C]//LI P P. Advances in Ecological Research, Zhenjian: Jiangsu University Press, 2021: 126-137. CHEN X, WU X, LI N N, et al. 2011. Globally important agricultural heritage system (GIAHS) rice-fish system in China: An ecological and economic analysis[C]//LI P P. Advances in Ecological Research, Zhenjian: Jiangsu University Press, 2021: 126-137.
[43] VROMANT N, ROTHUIS A J, CUC N T T, et al. The effect of fish on the abundance of the rice caseworm Nymphula depunctalis (Guenee) (Lepidoptera: Pyralidae) in direct seeded, concurrent rice-fish fields[J]. Biocontrol Science and Technology, 1998, 8(4): 539-546. doi: 10.1080/09583159830054
[44] SINHABABU D P, MAJUMDAR N. Evidence of feeding on brown plant hopper, Nilaparvata lugens (Stall) by common carp, Cyprinus carpio var. communis L.[J]. Journal of the Inland Fisheries Society of India, 1985, 13(2): 16-21.
[45] VROMANT N, NHAN D K, CHAU N T H, et al. Effect of stocked fish on rice leaffolder Cnaphalocrocis medinalis and rice caseworm Nymphula depunctalis populations in intensive rice culture[J]. Biocontrol Science and Technology, 2003, 13(3): 285-297. doi: 10.1080/0958315031000110319
[46] FREI M, KHAN M A M, RAZZAK M A, et al. Effects of a mixed culture of common carp, Cyprinus carpio L. , and Nile tilapia, Oreochromis niloticus (L. ), on terrestrial arthropod population, benthic fauna, and weed biomass in rice fields in Bangladesh[J]. Biological Control, 2007, 41(2): 207-213.
[47] JI Z J, ZHAO L F, ZHANG T J, et al. Coculturing rice with aquatic animals promotes ecological intensification of paddy ecosystem[J]. Journal of Plant Ecology, 2023, 16: rtad014. doi: 10.1093/jpe/rtad014
[48] 肖筱成, 谌学珑, 刘永华, 等. 稻田主养彭泽鲫防治水稻病虫草害的效果观测[J]. 江西农业科技, 2001(4): 45-46. [49] ROTHUIS A J, VROMANT N, XUAN V T, et al. The effect of rice seeding rate on rice and fish production, and weed abundance in direct-seeded rice-fish culture[J]. Aquaculture, 1999, 172(3/4): 255-274. doi: 10.1016/S0044-8486(98)00396-2
[50] SINHABABU D P, SANJOY SAHA S, SAHU P K. Performance of different fish species for controlling weeds in rainfed lowland rice field[J]. Biocontrol Science and Technology, 2013, 23(12): 1362-1372. doi: 10.1080/09583157.2013.838622
[51] NAYAK P K, PANDA B B, DAS S K, et al. Weed control efficiency and productivity in rice-fish-duck integrated farming system[J]. Indian Journal of Fisheries, 2020, 67(3): 62-71. doi: 10.21077/ijf.2020.67.3.94309-07
[52] GUO L, HU L L, ZHAO L F, et al. Coupling rice with fish for sustainable yields and soil fertility in China[J]. Rice Science, 2020, 27(3): 175-179. doi: 10.1016/j.rsci.2020.04.001
[53] REN L P, LIU P P, XU F, et al. Rice-fish coculture system enhances paddy soil fertility, bacterial network stability and keystone taxa diversity[J]. Agriculture Ecosystems & Environment, 2023, 348: 108399. doi: 10.1016/j.agee.2023.108399
[54] 戴然欣, 赵璐峰, 唐建军, 等. 稻渔系统碳固持与甲烷排放特征[J]. 中国生态农业学报(中英文), 2022, 30(4): 616-629. doi: 10.12357/cjea.20210811 [55] FREI M, BECKER K. A greenhouse experiment on growth and yield effects in integrated rice-fish culture[J]. Aquaculture, 2005, 244(1/2/3/4): 119-128. doi: 10.1016/j.aquaculture.2004.11.014
[56] DATTA A, NAYAK D R, SINHABABU D P, et al. Methane and nitrous oxide emissions from an integrated rainfed rice-fish farming system of eastern India[J]. Agriculture, Ecosystems & Environment, 2009, 129(1/2/3): 228-237.
[57] 袁伟玲, 曹凑贵, 李成芳, 等. 稻鸭、稻鱼共作生态系统CH4和N2O温室效应及经济效益评估[J]. 中国农业科学, 2009, 42(6): 2052-2060. doi: 10.3864/j.issn.0578-1752.2009.06.022 [58] 展茗, 曹凑贵, 汪金平, 等. 复合稻田生态系统温室气体交换及其综合增温潜势[J]. 生态学报, 2008(11): 5461-5468. doi: 10.3321/j.issn:1000-0933.2008.11.030 [59] 刘小燕. 稻鸭鱼生态种养对稻田甲烷减排及水稻栽培环境改善的功能研究[D]. 长沙: 湖南农业大学, 2004. [60] 刘小燕, 黄璜, 杨治平, 等. 稻鸭鱼共栖生态系统CH4排放规律研究[J]. 生态环境, 2006(2): 265-269. doi: 10.16258/j.cnki.1674-5906.2006.02.014 [61] HUANG M, ZHOU Y E, GUO J P, et al. Co-culture of rice and aquatic animals mitigates greenhouse gas emissions from rice paddies[J]. Aquaculture International, 2024, 32(2): 1785-1799. doi: 10.1007/s10499-023-01243-z
[62] ZHANG L, LI L L, TANG Q Y, et al. Intermittent irrigation as a solution for reduced emissions and increased yields in ratoon rice systems[J]. Plant and Soil, 2024, 501: 225-236.
[63] ZHANG G B, JI Y, MA J, et al. Intermittent irrigation changes production, oxidation, and emission of CH4 in paddy fields determined with stable carbon isotope technique[J]. Soil Biology & Biochemistry, 2012, 52: 108-116. doi: 10.1016/j.soilbio.2012.04.017
[64] 王楷, 李伏生, 方泽涛, 等. 不同灌溉模式和施氮量条件下稻田甲烷排放及其与有机碳组分关系[J]. 农业环境科学学报, 2017, 36(5): 1012-1020. doi: 10.11654/jaes.2016-1581 [65] 陈佳, 赵璐峰, 戴然欣, 等. 稻鱼共生系统的土壤产甲烷和甲烷氧化微生物群落[J]. 生态学杂志, 2023, 42(12): 2961-2971. doi: 10.13292/j.1000-4890.202312.001 [66] BHATTACHARYYA P, SINHABABU D P, ROY K S, et al. Effect of fish species on methane and nitrous oxide emission in relation to soil C, N pools and enzymatic activities in minted shallow lowland rice-fish farming system[J]. Agriculture Ecosystems & Environment, 2013, 176: 53-62.
[67] HU Y, YANG T, LIU Y B, et al. High fish stocking density weakens the effects of rice-fish co-culture on water eutrophication and greenhouse gas emissions[J]. Water Air and Soil Pollution, 2022, 233(6): 222. doi: 10.1007/s11270-022-05691-w
[68] 丁姣龙, 陈璐, 王忍, 等. 鱼排泄物与分泌物对水稻土壤酶活性及土壤养分的影响[J]. 湖南师范大学自然科学学报, 2021, 44(2): 74-79. doi: 10.7612/j.issn.2096-5281.2021.02.010 [69] VROMANT N, CHAU N T H. Overall effect of rice biomass and fish on the aquatic ecology of experimental rice plots[J]. Agriculture Ecosystems & Environment, 2005, 111(1/2/3/4): 153-165.
[70] YUAN W L, CAO C G, LI C F, et al. Methane and nitrous oxide emissions from rice-duck and rice-fish complex ecosystems and the evaluation of their economic significance[J]. Agricultural Sciences in China, 2009, 8(10): 1246-1255. doi: 10.1016/S1671-2927(08)60335-1
[71] CONRAD R, ROTHFUSS F. Methane oxidation in the soil surface-layer of a flooded rice field and the effect of ammonium[J]. Biology and Fertility of Soils, 1991, 12(1): 28-32. doi: 10.1007/BF00369384
[72] 何建清, 潜祖琪, 郑建初, 等. 丽水稻作[M]. 北京: 中国农业出版社, 2006. [73] 唐露. 重要传统农业贵州从江稻鱼鸭系统的水稻遗传多样性[D]. 杭州: 浙江大学, 2018. [74] YE Y Y, REN W Z, ZHANG S X, et al. Genetic diversity of fish in aquaculture and of common carp (Cyprinus carpio) in traditional rice-fish coculture[J]. Agriculture-Basel, 2022, 12(7): 997. doi: 10.3390/agriculture12070997
[75] LIANG Z Q, ZOU L, TIAN L, et al. Genetic origin and differentiation of ten paddy field-farmed Cyprinus carpio strains in China[J]. Aquaculture, 2022, 561: 738573. doi: 10.1016/j.aquaculture.2022.738573
[76] ZHONG Z X, FAN J J, SU H H, et al. Genetic sources and diversity of the paddy field carp in the Pearl River basin inferred from two mitochondrial loci[J]. Frontiers in Ecology and Evolution, 2022, 10: 896609. doi: 10.3389/fevo.2022.896609
[77] JI D, SU X, YAO J J, et al. Genetic diversity and genetic differentiation of populations of golden-backed carp (Cyprinus carpio var. Jinbei) in traditional rice fields in Guizhou, China[J]. Animals, 2022, 12(11): 1377. doi: 10.3390/ani12111377
[78] 罗崎月. 传统稻鱼共生系统田鱼的遗传多样性[D]. 杭州: 浙江大学, 2023. [79] 罗康隆. 侗乡鱼米[M]. 北京: 北京美术摄影出版社, 2020. [80] 杨星星, 谢坚, 陈欣, 等. 稻鱼共生系统不同水深对水稻和鱼的效应[J]. 贵州农业科学, 2010(2): 73-74. doi: 10.3969/j.issn.1001-3601.2010.02.022 -
期刊类型引用(4)
1. 张馨悦,王超,王庆杰,康可新,李贵蓉,刘立晶. 玉米苗期行间除草二级对行装置设计与试验. 农业机械学报. 2025(04): 42-51+60 . 百度学术
2. 何创新,巩蕾,苗中华,韩科立,郝付平,韩增德. 基于平行轨迹导航的采棉机自动对行控制方法. 农业机械学报. 2024(06): 34-41 . 百度学术
3. 苏鹏鉴,马海琴,叶俊明. 基于无人系统的智能视觉控制算法研究. 电子测量技术. 2024(09): 93-97 . 百度学术
4. 张晓龙,易克传,姜春霞,凃何平,郭子明. 基于四连杆机构自动对行装置的设计与仿真. 东莞理工学院学报. 2024(05): 110-116 . 百度学术
其他类型引用(0)