• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

中国南方地区稻鱼共生系统的研究进展与思考

陈欣, 胡中元, 赵璐峰, 郝向举, 李坚明, 何金钊, 胡亮亮, 唐建军

陈欣, 胡中元, 赵璐峰, 等. 中国南方地区稻鱼共生系统的研究进展与思考[J]. 华南农业大学学报, 2024, 45(6): 825-835. DOI: 10.7671/j.issn.1001-411X.202405026
引用本文: 陈欣, 胡中元, 赵璐峰, 等. 中国南方地区稻鱼共生系统的研究进展与思考[J]. 华南农业大学学报, 2024, 45(6): 825-835. DOI: 10.7671/j.issn.1001-411X.202405026
CHEN Xin, HU Zhongyuan, ZHAO Lufeng, et al. Progress and prospect on the rice-fish system in southern China[J]. Journal of South China Agricultural University, 2024, 45(6): 825-835. DOI: 10.7671/j.issn.1001-411X.202405026
Citation: CHEN Xin, HU Zhongyuan, ZHAO Lufeng, et al. Progress and prospect on the rice-fish system in southern China[J]. Journal of South China Agricultural University, 2024, 45(6): 825-835. DOI: 10.7671/j.issn.1001-411X.202405026

中国南方地区稻鱼共生系统的研究进展与思考

基金项目: 国家自然科学基金(U21A20184);广东省重点研发计划(2021B0202030002);浙江省重点研发计划(2022C02058)
详细信息
    作者简介:

    陈 欣,教授,博士,主要从事农业生态学领域研究,E-mail: chen-tang@zju.edu.cn

  • 中图分类号: S964.2

Progress and prospect on the rice-fish system in southern China

More Information
    Author Bio:

    CHEN Xin:   陈 欣,博士,浙江大学二级教授,博士生导师。主讲本科课程《生态学》 《生态学基础及实验》等课程;国家级一流课程《基于稳定性同位素技术的生态系统氮素运转虚拟仿真实验》负责人;线上线下混合型实验教材《生态学实验》(高等教育出版社,2021)副主编。长期研究生物之间相互作用的生态系统功能及其在农业上的应用,聚焦稻鱼共生系统;担任国际重要学术期刊《Agriculture, Ecosystems and Environment》副主编、中国水产学会稻渔综合种养专业委员副主任、“科创中国”稻渔生态种养产业服务团团长;主持国家自然科学基金项目(面上项目、国际合作项目重点、区域创新联合重点项目)、国家重点研发计划、浙江省“尖兵”“领雁”研发攻关计划等科研项目;研究结果发表在《Science》《PNAS》《Frontiers in Ecology and the Environment》《Global Change Biology》《Journal of Ecology》《Soil Biology and Biochemistry》《eLife》《Ecosystems》等国内外学术期刊上;出版《生态型种养结合原理与实践》和《青田稻鱼共生系统生态学基础及保护与利用》等专著;曾荣获国家科学技术进步奖二等奖(第9完成人)、教育部科技进步一等奖(第1完成人)、广西科学技术合作奖(第1完成人)及神农中华农业科技奖二等奖(第1完成人)

  • 摘要:

    稻田的水热环境是鲤科Cyprinidae鱼类天然适生生境,由此演育出了稻鱼共生系统。我国南方山丘区的稻鱼共生系统具有悠久的历史,是利用当地水热和景观条件而发展起来的独特稻作系统,对增加稻田产出、稳定农民收入、保护当地生物资源起着重要作用。本文概述了我国南方山丘区稻鱼共生系统的发展历程;从稻鱼共生系统的生产力、有害生物的控制和农药减量、土壤碳氮保持和肥料减量、甲烷产生和氧化及排放、水资源利用与保护以及遗传多样性保育等方面综述了稻鱼共生系统的研究进展;分析了我国南方山丘区稻鱼共生产业发展的潜力和可持续发展的路径,并对稻鱼共生系统今后的研究方向进行了展望。

    Abstract:

    A paddy field with shallow water provides a suitable environment for aquatic animals such as cyprinid fish, which makes it possible to develop the rice-fish coculture system. Raising fish in paddy field has a long history in hilly regions of southern China. The rice-fish coculture system has become an important rice farming system in this area, which plays an important role in increasing productivity, stabilizing farmers’ income, and preserving local genetic resources. In this paper, we outlined the development of rice-fish coculture system in southern China, reviewed the recent studies on ecological functions of the rice-fish coculture system (e.g. productivity, pest control and pesticide reduction, soil carbon and fertility maintenance with low fertilizers, methane emission and oxidation, water resource use and the local genetic diversity preservation). The potential and possible approaches for the sustainable development of rice-fish coculture were discussed. The future researches on rice-fish coculture were prospected.

  • 根据市场的发展方向,二区原种场不断进行猪优良品种选育改良,最终选育出繁殖特性突出的种猪,为温氏WS501配套系提供了优质的第一母本。本研究对该猪场2014—2017年繁殖相关的数据进行统计及分析,以期为优良品种选育提供科学依据。

    WS501配套系W62种母猪和WS501配套系W62种公猪。

    调查并记录2014到2017年WS501配套系W62种母猪的繁殖特性,包括初配日龄、初配体重、日增重、开配情期、初胎产仔数、产仔数、产仔均重和年产胎次。

    调查并记录2014到2017年WS501配套系W62种公猪的繁殖特性,包括精液量、精液密度及合格率。

    样本数据用EXCEL、Foxpro6.0、SPSS10.0等软件进行整理和统计分析。

    WS501配套系W62种母猪的初配日龄为225~260 d,平均初配日龄接近240 d,具体结果见表 1。初配体重大于125 kg,平均初配体重160 kg,从2014到2017年,增加了4.16 kg,详情见表 2。初配日增重是后备母猪初配体重除以初配日龄,日增重为480.0~1 076.2 g,平均日增重为666.67 g,详情见表 3。WS501配套系W62种母猪的初情期出现较早,一般在150~180日龄时出现第1个发情期,平均3.50个情期,详情见表 4。综上所述,WS501配套系W62种母猪长速快、发情早、情期多。

    表  1  WS501配套系母系种猪的初配日龄 d
    年份 个体数 平均值 标准差 最大值 最小值
    2014 778 257.91 20.19 350 219
    2015 1 040 246.37 13.48 365 222
    2016 1 132 244.33 13.39 362 214
    2017 1 327 243.33 12.76 321 219
    总计 4 277 246.99 15.62 365 214
    下载: 导出CSV 
    | 显示表格
    表  2  WS501配套系母系种猪的初配体重 kg
    年份 个体数 平均值 标准差 最大值 最小值
    2014 778 162.63 5.04 230 150
    2015 1 040 160.02 5.55 260 125
    2016 1 132 166.05 11.53 222 140
    2017 1 327 166.79 11.64 212 140
    总计 4 277 164.19 9.85 260 125
    下载: 导出CSV 
    | 显示表格
    表  3  WS501配套系母系种猪的日增重 g
    年份 个体数 平均值 标准差 最大值 最小值
    2014 778 633.72 46.72 946.50 480.00
    2015 1 040 651.01 37.13 1 076.20 482.36
    2016 1 132 680.57 47.69 831.99 548.79
    2017 1 327 686.32 47.13 832.81 496.63
    总计 4 277 666.67 49.51 1 076.20 480.00
    下载: 导出CSV 
    | 显示表格
    表  4  WS501配套系母系种猪的开配情期 d
    年份 个体数 平均情期 标准差 最大值 最小值
    2014 778 3.83 1.23 8 2
    2015 1 040 3.34 0.84 9 2
    2016 1 132 3.43 0.97 8 1
    2017 1 327 3.55 0.97 7 1
    总计 4 277 3.52 1.01 9 1
    下载: 导出CSV 
    | 显示表格

    WS501配套系W62种母猪的平均总仔数13.92头(初胎13.81头),平均活仔数12.72头(初胎12.65头),平均健仔数10.65头(初胎10.51头),总分娩率89.28%(初胎90.21%),详情见表 5表 6。仔猪平均出生重为1.28 kg,详情见表 7。平均无效生产日为41.87 d,年产胎次2.43胎,详情见表 8。综上所述,WS501配套系W62种母猪高产、年产胎次多。

    表  5  WS501配套系母系种猪的产仔数
    年份 分娩窝数 分娩率/% 总仔1)/头 活仔1)/头 健仔1)/头
    2014 3 445 88.49 13.85±3.69 12.76±3.64 10.43±2.95
    2015 3 623 89.14 13.34±3.44 12.38±3.49 10.34±2.98
    2016 3 485 88.89 14.11±3.31 12.64±3.41 10.38±2.98
    2017 3 532 90.60 14.40±3.27 13.09±3.26 11.46±2.94
    总计 14 085 89.28 13.92±3.45 12.72±3.46 10.65±3.00
    1)数据为平均值±标准差
    下载: 导出CSV 
    | 显示表格
    表  6  WS501配套系母系种猪的初胎产仔数
    年份 分娩窝数 分娩率/% 总仔1)/头 活仔1)/头 健仔1)/头
    2014 849 89.65 13.92±3.42 12.89±3.49 10.36±2.94
    2015 1 019 90.34 13.31±3.14 12.49±3.30 10.30±2.89
    2016 1 030 89.19 13.85±3.20 12.29±3.44 9.97±3.06
    2017 1 243 91.38 14.13±3.08 12.91±3.22 11.22±2.93
    总计 4 141 90.21 13.81±3.21 12.65±3.36 10.51±3.00
    1)数据为平均值±标准差
    下载: 导出CSV 
    | 显示表格
    表  7  WS501配套系母系种猪的产仔均重
    年份 分娩
    窝数
    窝产总仔
    /头
    仔猪均重
    /kg
    标准差
    /kg
    2014 3 445 13.85 1.29 0.24
    2015 3 623 13.34 1.23 0.22
    2016 3 485 14.11 1.24 0.25
    2017 3 532 14.40 1.35 0.25
    总计 14 085 13.92 1.28 0.25
    下载: 导出CSV 
    | 显示表格
    表  8  WS501配套系母系种猪的年产胎次
    年份 个体数 无效生
    产日/d
    年产
    胎次/窝
    2014 1 366 46.65 2.39
    2015 1 393 40.66 2.47
    2016 1 495 40.25 2.44
    2017 1 442 42.29 2.39
    平均值 1 424 41.87 2.43
    下载: 导出CSV 
    | 显示表格

    WS501配套系W62种公猪,具有体型壮硕(高、长)、长速快、115 kg体重校正日龄小的特征,精液量适中、精液密度较优,平均精液量为每次298 mL,精液平均密度为2.87×108 mL-1,精液平均合格率为96.06%,具体数据见表 9

    表  9  WS501配套系母系种公猪精液质量
    年份 采精次数 精液量/mL 密度/(×108 mL-1) 合格率/%
    2014 1 221 277.12±101.13 2.94±1.04 97.46
    2015 1 441 276.15±87.32 2.64±0.67 94.38
    2016 1 173 335.58±90.77 2.75±0.52 93.35
    2017 1 634 307.49±98.01 3.12±0.90 98.53
    总计 5 469 298.48±97.35 2.87±0.83 96.09
    下载: 导出CSV 
    | 显示表格

    有研究表明丹系大白母猪的平均胎产活仔数为15.37头,美丹大白母猪的平均胎产活仔数为12.35头[1],WS501配套系W62种母猪生产的平均活仔数为12.72头,比丹系大白少2.63头,比美系大白多0.37头,说明WS501配套系种母猪繁殖性能与丹系母猪还有一定的差距。潘英等[2]研究表明加系大白母猪在231~260日龄初配时繁殖性能最佳,WS501配套系种母猪也符合这一规律,平均初配日龄为247 d,同时通过长期选育可将最适初配日龄不断降低,以保证配套系的长速优势。根据丁月云等[3]的研究,丹系大白母猪初配平均日增重为602.4 g,李庆岗等[4]研究表明,美系大白母猪初配平均日增重为609.9 g,WS501配套系种母猪日增重为480.0~1 076.2 g,平均日增重为666.67 g,与丹系和美系大白母猪对比具有长速优势。

    WS501配套系W62母系种猪的繁殖性能较好、长速快、产仔多,充分发挥了新法系大白母猪的繁殖特性,但是距离丹系大白种猪高产的繁殖特性,还有较长时间的育种过程。

  • 图  1   中国南方地区主要省市(自治区)梯田和稻鱼系统分布图及稻田比例

    该图采用国家地理信息公共服务平台地图绘制[审图号:GS(2024)0650号],底图边界无修改。台湾省和海南省的稻鱼共生系统及水田面积暂缺详细资料。梯田分布数据来自Cao等[19];水田和旱地面积数据来自中国统计年鉴(2022)[20]。稻鱼共生系统分布点根据抽样调查,棕色圆点是稻鱼系统以养殖当地田鲤鱼地方种群为主,红色圆点是稻鱼系统除了养殖当地田鲤鱼地方种群外,还养殖了其他鲤科鱼类或普通鲤鱼人工培育品种;地图上的值表示1 km × 1 km网格单元内梯田所占的面积比例。

    Figure  1.   Map and pie charts describing the distribution of terraces and rice-fish systems in the main provinces of southern China

    This map is based on the standard map with a review number GS (2024) 0650 downloaded from the website of National Platform for Common GeoSpatial Information Services, and no modification was made to the boundary of the base map. Data of rice-fish system and paddy field areas for provinces of Hainan and Taiwan lack in this study. Data of terrace distribution were obtained from Cao et al [19]. Data of paddy field and upland areas were obtained from China Statistical Yearbook (2022) [20]. The distribution of rice-fish system was based on a stratified sampling. Brow dots indicated that local common carps were majorly raised in the rice-fish system. Red dots indicated that other common carp strains or cyprinid fish were also raised in the rice-fish system except for local common carp. The map values indicated the proportion of terraces within a 1 km × 1 km grid cell.

    图  2   与水稻单作相比稻鱼共生系统的水稻产量变化[35]

    Figure  2.   Changes of rice yield in rice-fish system compared to rice monoculture system

    表  1   我国南方地区传统稻鱼系统中的田鱼地方种群

    Table  1   Local common carp populations of the traditional rice-fish systems in southern China

    序号
    No.
    田鱼地方名称
    Local name of common carp
    稻鱼系统所在地
    Location of the rice-fish system
    地理坐标位置
    Geographic coordinate position
    1 青田田鱼 浙江青田 27°25′N,118°41′E
    2 武夷山稻花鱼 福建武夷山 27°75′N,117°67′E
    3 辰溪稻花鱼 湖南辰溪 27°53′N,109°54′E
    4 连山禾花鱼 广东连山 24°17′N,112°02′E
    5 全州禾花鲤 广西全州 25°29′N,110°37′E
    6 晒江田鲤 广西三江 25°22′N,108°53′E
    7 融水金背鲤 广西融水 25°04′N,109°14′E
    8 靖西黑背鲤 广西靖西 22°51′N,105°56′E
    9 那坡橘红鲤 广西那坡 23°24′N,105°50′E
    10 从江田鱼 贵州从江 25°55′N,106°65′E
    下载: 导出CSV
  • [1] 陈欣, 唐建军, 胡亮亮, 等. 生态型种养结合原理与实践[M]. 北京: 中国农业出版社, 2019.
    [2] 于秀娟, 郝向举, 党子乔, 等. 中国稻渔综合种养产业发展报告(2023)[J]. 中国水产, 2023(8): 19-26.
    [3]

    XIE J, HU L L, TANG J J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 1381-1387. doi: 10.1073/pnas.1111043108

    [4] 陈欣, 唐建军, 胡亮亮, 等. 青田稻鱼共生系统生态学基础及保护与利用[M]. 北京: 科学出版社, 2020.
    [5]

    GUO L, ZHAO L F, YE J L, et al. Using aquatic animals as partners to increase yield and maintain soil nitrogen in the paddy ecosystems[J]. eLife, 2022, 11: e73869. doi: 10.7554/eLife.73869

    [6]

    ZHAO L F, DAI R X, ZHANG T J, et al. Fish mediate surface soil methane oxidation in the agriculture heritage rice-fish system[J]. Ecosystems, 2023, 26(8): 1656-1669. doi: 10.1007/s10021-023-00856-y

    [7]

    HALWART M, GUPTA M V. Culture of fish in rice fields[M]. 2004, Rome: FAO.

    [8]

    AHMED N, GARNETT S T. Integrated rice-fish farming in Bangladesh: Meeting the challenges of food security[J]. Food Security, 2011, 3(1): 81-92. doi: 10.1007/s12571-011-0113-8

    [9] 胡亮亮, 唐建军, 张剑, 等. 稻−鱼系统的发展与未来思考[J]. 中国生态农业学报, 2015, 23(3): 268-275. doi: 10.13930/j.cnki.cjea.150025
    [10]

    COLEMAN R A, GAUFFRE B, PAVLOVA A, et al. Artificial barriers prevent genetic recovery of small isolated populations of a low-mobility freshwater fish[J]. Heredity, 2018, 120(6): 515-532. doi: 10.1038/s41437-017-0008-3

    [11]

    FREED S, BARMAN B, DUBOIS M, et al. Maintaining diversity of integrated rice and fish production confers adaptability of food systems to global change[J]. Frontiers in Sustainable Food Systems, 2020, 4: 576179. doi: 10.3389/fsufs.2020.576179

    [12]

    AHMED N, HORNBUCKLE J, TURCHINI G M. Blue-green water utilization in rice-fish cultivation towards sustainable food production[J]. AMBIO, 2022, 51(9): 1933-1948. doi: 10.1007/s13280-022-01711-5

    [13]

    MARIYONO J. Sustainable intensification practices of fish-rice co-culture in Java, Indonesia: Technical, socio-economic and environmental features[J]. Journal of Agribusiness in Developing and Emerging Economies, 2023. doi: 10.1108/JADEE-09-2022-0208.

    [14]

    SATHORIA P, ROY B. Sustainable food production through integrated rice-fish farming in India: a brief review[J]. Renewable Agriculture and Food Systems, 2022, 37(5): 527-535. doi: 10.1017/S1742170522000126

    [15] 胡亮亮, 赵璐峰, 唐建军, 等. 稻鱼共生系统的推广潜力分析: 以中国南方10省为例[J]. 中国生态农业学报(中英文), 2019, 27(7): 981-993. doi: 10.13930/j.cnki.cjea.190203
    [16]

    KOOHANFKAN P, FURTADO J. Traditional rice-fish systems as globally important agricultural heritage systems (GIAHS)[J]. International Rice Commission Newsletter, 2004, 53: 66-74.

    [17] 张丹, 闵庆文. 贵州从江侗乡稻−鱼−鸭系统[M]. 北京: 中国农业出版社, 2015.
    [18]

    ZHANG Y, GUAN C Y, LI Z Y, et al. Review of rice-fish-duck symbiosis system in China: One of the globally important ingenious agricultural heritage systems (GIAHS)[J]. Sustainability, 2023, 15(3): 1910. doi: 10.3390/su15031910

    [19]

    CAO B, YU L, NAIPAL V, et al. A 30 m terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine[J]. Earth System Science Data, 2021, 13(5): 2437-2456. doi: 10.5194/essd-13-2437-2021

    [20] 中国统计年鉴编辑委员会. 中国统计年鉴[M]. 北京: 中国农业出版社, 2022.
    [21] 郭梁, 任伟征, 胡亮亮, 等. 传统稻鱼系统中“田鲤鱼”的形态特征[J]. 应用生态学报, 2017, 28(2): 665-672. doi: 10.13287/j.1001-9332.201702.033
    [22] 吴碧银, 许建, 曹顶臣, 等. 鲤低氧适应性状的全基因组关联分析[J]. 渔业科学进展, 2022, 43(2): 98-106. doi: 10.19663/j.issn2095-9869.20201218002
    [23]

    CHENG X B, LI F, KUMILAMBA G, et al. Transcriptome analysis in hepatopancreases reveals the response of domesticated common carp to a high-temperature environment in the agricultural heritage rice-fish system[J]. Frontiers in Physiology, 2023, 14: 1294729. doi: 10.3389/fphys.2023.1294729

    [24]

    MORTILLARO J M, DABBADIE L, RAMINOHARISOA A E, et al. Trophic functioning of integrated rice-fish farming in Madagascar: Insights from stable isotopes (δ13C & δ15N)[J]. Aquaculture, 2022, 555: 738240. doi: 10.1016/j.aquaculture.2022.738240

    [25] 张剑, 胡亮亮, 任伟征, 等. 稻鱼系统中田鱼对资源的利用及对水稻生长的影响[J]. 应用生态学报, 2017, 28(1): 299-307. doi: 10.13287/j.1001-9332.201701.040
    [26]

    REN W Z, HU L L, GUO L, et al. Preservation of the genetic diversity of a local common carp in the agricultural heritage rice–fish system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(3): E546-E554. doi: 10.1073/pnas.1709582115

    [27] 赵璐峰. 稻鱼共生对稻田系统碳氮及土壤甲烷氧化的影响[D]. 杭州: 浙江大学, 2022.
    [28]

    FREI M, BECKER K. Integrated rice-fish culture: Coupled production saves resources[J]. Natural Resources Forum, 2005, 29(2): 135-143. doi: 10.1111/j.1477-8947.2005.00122.x

    [29]

    GURUNG T B, WAGLE S K. Revisiting underlying ecological principles of rice-fish integrated farming for environmental, economical and social benefits[J]. Our Nature, 2005, 3(1): 1-12. doi: 10.3126/on.v3i1.328

    [30]

    TSURUTA T, YAMAGUCHI M, ABE S, et al. Effect of fish in rice-fish culture on the rice yield[J]. Fisheries Science, 2011, 77(1): 95-106. doi: 10.1007/s12562-010-0299-2

    [31] 谢坚. 农田物种间相互作用的生态系统功能: 以全球重要农业文化遗产“稻鱼系统”为研究范例[D]. 杭州: 浙江大学, 2011.
    [32] 胡亮亮. 农业生物种间互惠的生态系统功能[D]. 杭州: 浙江大学, 2014.
    [33] 郭梁. 稻渔系统土壤氮素的维持及其生态学机理[D]. 杭州: 浙江大学, 2020.
    [34] 蔡淑芳, 黄献光, 黄惠珍, 等. 稻鱼共作对水稻产量效应的Meta分析[J]. 水生生物学报, 2022, 46(12): 1924-1931.
    [35] 胡中元. 稻田复合种养的生态系统功能与服务[D]. 杭州: 浙江大学, 2024.
    [36]

    ROTHUIS A J, NHAN D K, RICHTER C J, et al. Rice with fish culture in the semi-deep waters of the Mekong Delta, Vietnam: A socio-economical survey[J]. Aquaculture Research, 1998, 29(1): 47-57. doi: 10.1111/j.1365-2109.1998.tb01099.x

    [37] 吴雪. 稻鱼系统养分循环利用研究[D]. 杭州: 浙江大学, 2012.
    [38] 李娜娜. 中国主要稻田种养模式生态分析[D]. 杭州: 浙江大学, 2014.
    [39]

    HU L L, ZHANG J, REN W Z, et al. Can the co-cultivation of rice and fish help sustain rice production?[J]. Scientific Reports, 2016, 6(1): 28728. doi: 10.1038/srep28728

    [40]

    BERG H, TAM N T. Use of pesticides and attitude to pest management strategies among rice and rice-fish farmers in the Mekong Delta, Vietnam[J]. International Journal of Pest Management, 2012, 58(2): 153-164. doi: 10.1080/09670874.2012.672776

    [41]

    DWIYANA E, MENDOZA T C. Determinants of productivity and profitability of rice-fish farming systems[J]. Asia Life Sciences, 2008, 17(1): 21-42.

    [42] CHEN X, WU X, LI N N, et al. 2011. Globally important agricultural heritage system (GIAHS) rice-fish system in China: An ecological and economic analysis[C]//LI P P. Advances in Ecological Research, Zhenjian: Jiangsu University Press, 2021: 126-137.

    CHEN X, WU X, LI N N, et al. 2011. Globally important agricultural heritage system (GIAHS) rice-fish system in China: An ecological and economic analysis[C]//LI P P. Advances in Ecological Research, Zhenjian: Jiangsu University Press, 2021: 126-137.

    [43]

    VROMANT N, ROTHUIS A J, CUC N T T, et al. The effect of fish on the abundance of the rice caseworm Nymphula depunctalis (Guenee) (Lepidoptera: Pyralidae) in direct seeded, concurrent rice-fish fields[J]. Biocontrol Science and Technology, 1998, 8(4): 539-546. doi: 10.1080/09583159830054

    [44]

    SINHABABU D P, MAJUMDAR N. Evidence of feeding on brown plant hopper, Nilaparvata lugens (Stall) by common carp, Cyprinus carpio var. communis L.[J]. Journal of the Inland Fisheries Society of India, 1985, 13(2): 16-21.

    [45]

    VROMANT N, NHAN D K, CHAU N T H, et al. Effect of stocked fish on rice leaffolder Cnaphalocrocis medinalis and rice caseworm Nymphula depunctalis populations in intensive rice culture[J]. Biocontrol Science and Technology, 2003, 13(3): 285-297. doi: 10.1080/0958315031000110319

    [46]

    FREI M, KHAN M A M, RAZZAK M A, et al. Effects of a mixed culture of common carp, Cyprinus carpio L. , and Nile tilapia, Oreochromis niloticus (L. ), on terrestrial arthropod population, benthic fauna, and weed biomass in rice fields in Bangladesh[J]. Biological Control, 2007, 41(2): 207-213.

    [47]

    JI Z J, ZHAO L F, ZHANG T J, et al. Coculturing rice with aquatic animals promotes ecological intensification of paddy ecosystem[J]. Journal of Plant Ecology, 2023, 16: rtad014. doi: 10.1093/jpe/rtad014

    [48] 肖筱成, 谌学珑, 刘永华, 等. 稻田主养彭泽鲫防治水稻病虫草害的效果观测[J]. 江西农业科技, 2001(4): 45-46.
    [49]

    ROTHUIS A J, VROMANT N, XUAN V T, et al. The effect of rice seeding rate on rice and fish production, and weed abundance in direct-seeded rice-fish culture[J]. Aquaculture, 1999, 172(3/4): 255-274. doi: 10.1016/S0044-8486(98)00396-2

    [50]

    SINHABABU D P, SANJOY SAHA S, SAHU P K. Performance of different fish species for controlling weeds in rainfed lowland rice field[J]. Biocontrol Science and Technology, 2013, 23(12): 1362-1372. doi: 10.1080/09583157.2013.838622

    [51]

    NAYAK P K, PANDA B B, DAS S K, et al. Weed control efficiency and productivity in rice-fish-duck integrated farming system[J]. Indian Journal of Fisheries, 2020, 67(3): 62-71. doi: 10.21077/ijf.2020.67.3.94309-07

    [52]

    GUO L, HU L L, ZHAO L F, et al. Coupling rice with fish for sustainable yields and soil fertility in China[J]. Rice Science, 2020, 27(3): 175-179. doi: 10.1016/j.rsci.2020.04.001

    [53]

    REN L P, LIU P P, XU F, et al. Rice-fish coculture system enhances paddy soil fertility, bacterial network stability and keystone taxa diversity[J]. Agriculture Ecosystems & Environment, 2023, 348: 108399. doi: 10.1016/j.agee.2023.108399

    [54] 戴然欣, 赵璐峰, 唐建军, 等. 稻渔系统碳固持与甲烷排放特征[J]. 中国生态农业学报(中英文), 2022, 30(4): 616-629. doi: 10.12357/cjea.20210811
    [55]

    FREI M, BECKER K. A greenhouse experiment on growth and yield effects in integrated rice-fish culture[J]. Aquaculture, 2005, 244(1/2/3/4): 119-128. doi: 10.1016/j.aquaculture.2004.11.014

    [56]

    DATTA A, NAYAK D R, SINHABABU D P, et al. Methane and nitrous oxide emissions from an integrated rainfed rice-fish farming system of eastern India[J]. Agriculture, Ecosystems & Environment, 2009, 129(1/2/3): 228-237.

    [57] 袁伟玲, 曹凑贵, 李成芳, 等. 稻鸭、稻鱼共作生态系统CH4和N2O温室效应及经济效益评估[J]. 中国农业科学, 2009, 42(6): 2052-2060. doi: 10.3864/j.issn.0578-1752.2009.06.022
    [58] 展茗, 曹凑贵, 汪金平, 等. 复合稻田生态系统温室气体交换及其综合增温潜势[J]. 生态学报, 2008(11): 5461-5468. doi: 10.3321/j.issn:1000-0933.2008.11.030
    [59] 刘小燕. 稻鸭鱼生态种养对稻田甲烷减排及水稻栽培环境改善的功能研究[D]. 长沙: 湖南农业大学, 2004.
    [60] 刘小燕, 黄璜, 杨治平, 等. 稻鸭鱼共栖生态系统CH4排放规律研究[J]. 生态环境, 2006(2): 265-269. doi: 10.16258/j.cnki.1674-5906.2006.02.014
    [61]

    HUANG M, ZHOU Y E, GUO J P, et al. Co-culture of rice and aquatic animals mitigates greenhouse gas emissions from rice paddies[J]. Aquaculture International, 2024, 32(2): 1785-1799. doi: 10.1007/s10499-023-01243-z

    [62]

    ZHANG L, LI L L, TANG Q Y, et al. Intermittent irrigation as a solution for reduced emissions and increased yields in ratoon rice systems[J]. Plant and Soil, 2024, 501: 225-236.

    [63]

    ZHANG G B, JI Y, MA J, et al. Intermittent irrigation changes production, oxidation, and emission of CH4 in paddy fields determined with stable carbon isotope technique[J]. Soil Biology & Biochemistry, 2012, 52: 108-116. doi: 10.1016/j.soilbio.2012.04.017

    [64] 王楷, 李伏生, 方泽涛, 等. 不同灌溉模式和施氮量条件下稻田甲烷排放及其与有机碳组分关系[J]. 农业环境科学学报, 2017, 36(5): 1012-1020. doi: 10.11654/jaes.2016-1581
    [65] 陈佳, 赵璐峰, 戴然欣, 等. 稻鱼共生系统的土壤产甲烷和甲烷氧化微生物群落[J]. 生态学杂志, 2023, 42(12): 2961-2971. doi: 10.13292/j.1000-4890.202312.001
    [66]

    BHATTACHARYYA P, SINHABABU D P, ROY K S, et al. Effect of fish species on methane and nitrous oxide emission in relation to soil C, N pools and enzymatic activities in minted shallow lowland rice-fish farming system[J]. Agriculture Ecosystems & Environment, 2013, 176: 53-62.

    [67]

    HU Y, YANG T, LIU Y B, et al. High fish stocking density weakens the effects of rice-fish co-culture on water eutrophication and greenhouse gas emissions[J]. Water Air and Soil Pollution, 2022, 233(6): 222. doi: 10.1007/s11270-022-05691-w

    [68] 丁姣龙, 陈璐, 王忍, 等. 鱼排泄物与分泌物对水稻土壤酶活性及土壤养分的影响[J]. 湖南师范大学自然科学学报, 2021, 44(2): 74-79. doi: 10.7612/j.issn.2096-5281.2021.02.010
    [69]

    VROMANT N, CHAU N T H. Overall effect of rice biomass and fish on the aquatic ecology of experimental rice plots[J]. Agriculture Ecosystems & Environment, 2005, 111(1/2/3/4): 153-165.

    [70]

    YUAN W L, CAO C G, LI C F, et al. Methane and nitrous oxide emissions from rice-duck and rice-fish complex ecosystems and the evaluation of their economic significance[J]. Agricultural Sciences in China, 2009, 8(10): 1246-1255. doi: 10.1016/S1671-2927(08)60335-1

    [71]

    CONRAD R, ROTHFUSS F. Methane oxidation in the soil surface-layer of a flooded rice field and the effect of ammonium[J]. Biology and Fertility of Soils, 1991, 12(1): 28-32. doi: 10.1007/BF00369384

    [72] 何建清, 潜祖琪, 郑建初, 等. 丽水稻作[M]. 北京: 中国农业出版社, 2006.
    [73] 唐露. 重要传统农业贵州从江稻鱼鸭系统的水稻遗传多样性[D]. 杭州: 浙江大学, 2018.
    [74]

    YE Y Y, REN W Z, ZHANG S X, et al. Genetic diversity of fish in aquaculture and of common carp (Cyprinus carpio) in traditional rice-fish coculture[J]. Agriculture-Basel, 2022, 12(7): 997. doi: 10.3390/agriculture12070997

    [75]

    LIANG Z Q, ZOU L, TIAN L, et al. Genetic origin and differentiation of ten paddy field-farmed Cyprinus carpio strains in China[J]. Aquaculture, 2022, 561: 738573. doi: 10.1016/j.aquaculture.2022.738573

    [76]

    ZHONG Z X, FAN J J, SU H H, et al. Genetic sources and diversity of the paddy field carp in the Pearl River basin inferred from two mitochondrial loci[J]. Frontiers in Ecology and Evolution, 2022, 10: 896609. doi: 10.3389/fevo.2022.896609

    [77]

    JI D, SU X, YAO J J, et al. Genetic diversity and genetic differentiation of populations of golden-backed carp (Cyprinus carpio var. Jinbei) in traditional rice fields in Guizhou, China[J]. Animals, 2022, 12(11): 1377. doi: 10.3390/ani12111377

    [78] 罗崎月. 传统稻鱼共生系统田鱼的遗传多样性[D]. 杭州: 浙江大学, 2023.
    [79] 罗康隆. 侗乡鱼米[M]. 北京: 北京美术摄影出版社, 2020.
    [80] 杨星星, 谢坚, 陈欣, 等. 稻鱼共生系统不同水深对水稻和鱼的效应[J]. 贵州农业科学, 2010(2): 73-74. doi: 10.3969/j.issn.1001-3601.2010.02.022
图(2)  /  表(1)
计量
  • 文章访问数:  859
  • HTML全文浏览量:  184
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-13
  • 网络出版日期:  2024-07-29
  • 发布日期:  2024-06-24
  • 刊出日期:  2024-11-09

目录

/

返回文章
返回