Advances of nano-drug delivery systems in the prevention and control of drug-resistant pathogenic bacteria
-
摘要:
抗菌药物的不规范使用和细菌选择性压力进化导致耐药病原菌日益增加,严重威胁畜禽养殖和公共卫生安全。随着纳米技术的发展,纳米药物递送系统在递送抗菌药物方面显示出一系列优势,如提高药物的生物利用度、减少毒副作用、降低药物使用成本等,为克服细菌耐药性提供了新的技术和策略。本文从畜禽耐药病原菌的危害及防治现状切入,综述纳米乳液、脂质体、固体脂质纳米粒、纳米胶束、金属纳米颗粒、纳米凝胶这6种纳米药物递送系统在耐药病原菌防控中的研究进展,以期为纳米药物递送系统在畜禽耐药病原菌防控中的应用提供借鉴,助力畜牧养殖业绿色可持续发展。
Abstract:The unregulated use of antimicrobial drugs and the evolution of bacterial selective pressure have led to an increasing number of drug-resistant pathogenic bacteria, which is a serious threat to livestock and poultry breeding as well as public health safety. With the development of nanotechnology, nano-drug delivery systems have shown a series of advantages in delivering antimicrobial drugs, such as improving the bioavailability of drugs, reducing the toxic side effects, and lowering the cost of drug use, which provide the new technologies and strategies for overcoming bacterial drug resistance. In this paper, we reviewed the progress of six nano-drug delivery system types of nanoemulsion, liposome, solid lipid nanoparticle, nano micelle, metal nanoparticle and nano gel in the prevention and control of drug-resistant pathogens, starting from the hazards of drug-resistant pathogens and the current status of their prevention and control in livestock and poultry. We expect to provide a reference for nano-drug delivery system application in the prevention and control of drug-resistant pathogen in livestock and poultry, and help the green and sustainable development of animal husbandry industry.
-
抗生素耐药性(Anti-microbial resistance,AMR)是微生物在抗菌药物压力下不断自我进化,对原本敏感的抗菌药产生高度耐受的特性[1]。早在1945年,青霉素的发现者亚历山大·弗莱明就已经发出了过度使用或误用抗菌药可能会使微生物产生耐药性的警告[2]。但人类医学、动物医学和农业领域的抗菌药物仍然缺乏管理,加速导致大量的抗菌药物对耐药病原菌失效[3]。因此,亟需开发新的药物对抗耐药病原菌。新抗菌药物研发周期长,成本高;传统抗生素的作用途径例如抑制细菌细胞壁、蛋白质和核酸合成,改变胞浆膜通透性等单一途径已经不足以应对耐药菌株[4]。相比之下,通过纳米技术改变药物剂型、提高靶向性、延长药物作用时间在增强药物抗菌活性和克服病原菌耐药性中受到更广泛的关注,成为应对细菌耐药性的新策略[5]。
本文将从畜禽耐药病原菌的危害及防控现状出发,综述纳米药物递送系统(Nano-drug delivery systems,Nano-DDS)在耐药病原菌防控中的研究进展,重点介绍各种类型Nano-DDS在提高药物抗菌活性和抑制病原菌耐药性方面的研究进展,并对药物递送系统在畜禽耐药病原菌防控中的应用进行总结和展望。
1. 畜禽耐药病原菌的危害及防控现状
过去,随着抗菌药物的大量不合理使用和集约化养殖规模的扩张,病原菌耐药现象日益凸显,对畜牧业产生了严重威胁。畜禽耐药病原菌的危害体现在多个方面。首先,耐药性细菌的传播可能导致人畜共患病的增加,增大人类感染耐药病原菌的风险[6]。其次,耐药性细菌的存在可能会导致畜禽生产中疾病的治疗更加困难,增加养殖成本,导致经济损失[7]。此外,抗生素在畜禽体内的不合理使用可能导致其在肉、蛋、奶等动物源性食品中残留,影响人类健康。因此,控制畜禽耐药病原菌对于保障畜牧养殖业的发展和公共健康至关重要[8]。
针对畜禽病原菌对现有抗生素普遍耐药及抗生素滥用导致的抗生素残留问题,寻找新型抗生素替代品是最直接有效的策略。自欧盟在1976年提出在饲料中限抗禁抗以来,各类抗生素替代品如抗菌肽、噬菌体、微生态制剂、植物提取物等成为当前的研究热点[9]。抗菌肽通过破坏细菌细胞膜展现出良好的抗菌活性,但由于毒性强、稳定性差、制造成本高,临床应用受到很大限制[10]。噬菌体作为一种感染细菌的病毒,其特点是以细菌为宿主,专门攻击特定的细菌,具有高度宿主特异性,只能针对特定的病原菌发挥作用[11],在治疗中往往需要与多种噬菌体或抗生素配合使用,操作难度大,而且噬菌体必须在特定条件下保存,相对提高了成本。益生菌等一些微生态制剂、植物提取物可用于预防细菌感染性疾病[12],不能单独用于治疗细菌性感染。
2. 纳米药物递送系统在耐药病原菌防控中的研究进展
随着纳米技术的快速发展,人们将研究方向转移到开发药物的新剂型上,希望借助Nano-DDS的独特优势和性能实现药物靶向和高效抗菌,这对耐药病原菌的防控具有重要意义[13]。Nano-DDS能通过多种机制对抗病原菌,例如破坏细胞壁、抑制细菌DNA合成、抑制蛋白质和酶的合成及代谢、利用光热等方式催化活性氧(Reactive oxygen species,ROS)的产生、破坏细胞膜等[14]。相比于传统抗生素,Nano-DDS具有显著优势(图1),例如:1)粒径为10~1 000 nm,尺寸小,结构多样且易调节;2)提高了药物的溶解度、稳定性和生物相容性;3)缓控释药物,通过控制制剂释药速度,影响药物在体内的药代动力学过程[15];4)对药物结构进行化学修饰,增强活性;5)通过修饰药物表面官能团,靶向运输到病灶区,最大限度地减少脱靶率,提高药物递送效率[16]。
目前许多研究运用纳米技术设计药物递送的载体以封装多种药物,包括生物活性分子、抗生素、肽[17]、核酸[18]等,以改善药物的生物利用度,最大限度减少抗菌药物的使用,提高疗效。大多数对Nano-DDS的研究着重于抗癌、治疗糖尿病等慢性疾病,针对Nano-DDS自身的研究较少。因此,本文概述几种目前常用的Nano-DDS(图2),总结论述其在耐药病原菌防控中的研究进展,为阻断畜禽病原菌耐药性的传播提供借鉴。
2.1 纳米乳液
纳米乳液(Nanoemulsion)是由水、油、表面活性剂和助表面活性剂按不同比例搅拌、混合形成的液滴,通常粒径为100~200 nm,呈透明或半透明状[19]。纳米乳液能提高药物溶解度、稳定性、生物利用度,具有靶向器官、细胞及生物膜的能力以及克服抗生素耐药性的潜力,被确定为一种有前途的Nano-DDS。与传统的乳液相比,纳米乳液具有更小的粒径和更大的表面积,更易穿透生物屏障,提高药物的生物利用度,增强抗菌活性。纳米乳液主要分为3种类型−水包油型(O/W)、油包水型(W/O)以及双重或多重型,可通过多种不同途径(口服、肠胃外、皮肤、肺、鼻、眼和直肠)给药[20]。
Moghimi等[21]制备了一种O/W型纳米乳液,并比较了纯精油和纳米乳液对大肠埃希菌的抗菌活性,通过分析最小抑菌浓度(Minimal inhibitory concentration,MIC)和最小杀菌浓度(Minimal bactericidal concentration,MBC)确定抗菌活性,并研究细胞中的钾离子稳态变化、蛋白质及核酸泄漏,探讨其抗菌活性的机理;结果表明,当精油被制作为纳米乳液时,对大肠埃希菌的抗菌活性大大增强。因此,研究人员提出精油纳米乳液抗大肠埃希菌的作用机制可能是通过增强精油破坏细胞膜的能力、改变其磷脂双分子层的完整性或干扰磷脂双层中的活性转运蛋白导致细菌裂解死亡[22]。Mohamed等[23]制备了3种负载不同抗生素的W/O型纳米乳液,以提高利奈唑胺、多西环素和克林霉素对金黄色葡萄球菌的抗菌活性;结果显示,与游离抗生素相比,纳米乳液中负载的抗生素具有更高的抗菌活性和更低的细胞毒性。Moghimi等[24]使用吐温−80和卵磷脂作为表面活性剂制备O/W型百里香酚纳米乳液;结果显示,相比于抗生素(黏菌素、美罗培南的MIC为640 μg/mL),纳米乳液对耐多药的鲍曼不动杆菌分离株的MIC为40 μg/mL,展现了对多重耐药致病菌的良好抑制作用,有效阻止了耐药菌的传播。同样地,Confessor等[25]利用橄榄油和吐温−80作为表面活性剂制备了O/W型姜黄素(Curcumin,Cur)纳米乳液;与游离的姜黄素相比,姜黄素纳米乳液增强了姜黄素对肺炎克雷伯菌临床分离菌株的抗菌活性,并且新增了抗生物膜活性。无独有偶,Hashem等[26]制备了一种基于丁香和百里香精油的纳米乳液,并证明其具有良好的抗多重耐药菌和生物膜的能力。由于生物膜可促进质粒基因的水平转移和吸收,使病原菌之间传递耐药基因,使耐药株增加[27],因此,基于抗菌药物的纳米乳液对抑制病原菌耐药性的传播具有重大意义。
纳米乳液制备方法简单,多经皮肤、口服给药,能增加油状液体的表面积,改善药物溶解度[28];但纳米乳液在制备过程中需要使用较多的表面活性剂,如卵磷脂[29]、辛酸癸酸聚乙二醇甘油酯(Labrasol)、聚氧乙烯蓖麻油EL(Cremophor EL)、吐温−20、吐温−80[30]等,而且这些表面活性剂通常都具有毒性,并且价格昂贵,如传统表面活性剂吐温−80具有一定肝毒性[31]。因此,需严格控制纳米乳液的处方组成,避免产生毒性。如何降低其毒性和控制成本是纳米乳液在畜禽病原菌耐药性防控中的一大挑战。
2.2 脂质体
脂质体(Liposome)是应用最为广泛的递送系统之一。脂质体是由一个或多个磷脂双分子层组成、粒径为20~1 000 nm的球形囊泡,将亲水性药物包裹在脂质体的亲水内部,将疏水性药物包裹在脂双层的烃链区域,从而实现对多种类型药物的有效递送,具有优良的生物相容性、可修饰性,并可高效载药[32]。
脂质体在充当抗菌药物载体中发挥极为重要的作用,不仅能够改善药代动力学,增强药物对病原菌的活性,克服细菌耐药性,还可通过其磷脂双分子层与细菌细胞膜相融合,精确释放药物,从而提高药物靶向性[33-35]。近年来,阳离子脂质体因能优先与带负电荷的细菌细胞壁或生物膜结合而进入研究者的视野[36]。Guo等[37]发现一种负载姜黄素的阳离子脂质体(C-LS/Cur),其与带负电荷的金黄色葡萄球菌通过静电作用相结合,提高了姜黄素在感染组织中的蓄积,在抗耐药性金黄色葡萄球菌感染中表现出巨大潜力。相比于阳离子脂质体,阴离子脂质体作为真核细胞的天然成分,具有更低的毒性和免疫原性,生产工艺也相对简单,能够通过常规的乳化、超声乳化或膜膨胀等方法制备[38-39];因此,阴离子脂质体在某些抗菌药物的递送中更具优势。例如,Thricin CD是一种二肽抗菌药物,对革兰阳性细菌具有抗菌活性。但肽类抗菌药物稳定性差,难以渗透到组织细胞内。Herrera等[40]将Thricin CD包裹在阴离子脂质体内,利用阴离子脂质体活性强且保护Thricin CD免受胃肠道中酶降解的特性,发挥抗菌增效的功能。细菌生物膜是附着在某些物质表面的一种或多种细菌的聚集体,能让细菌逃避抗菌药物的靶向作用而获得耐药性[41]。此外,集约化的养殖环境对畜禽的卫生及生存环境提出挑战,通风条件差常诱发畜禽铜绿假单胞菌下呼吸道感染。Rao等[42]设计了一种对低氧敏感的脂质体(NANO@PS-LPs),其构成包括阿奇霉素、2−硝基咪唑衍生物、一氧化氮(NO)供体和脂质体。该脂质体具有磷脂酶A2触发特性,可在其作用下分解,释放NO促进铜绿假单胞菌生物膜的扩散,6−(2−硝基咪唑)己胺(6-NIH)在气道的低氧条件下被还原为6−(2−氨基咪唑)己胺(6-AIH),作为阿奇霉素的佐剂增强抗菌活性。NO诱导生物膜扩散的策略是通过刺激环二鸟苷单磷酸(c-di-GMP)水解来破坏生物膜的稳定性从而控制生物膜相关感染[43-44]。因此,对低氧敏感的脂质体联合NO和抗菌药物可增强铜绿假单胞菌对抗菌药物的敏感性,消除铜绿假单胞菌及其生物膜,避免引起严重感染。
由于耐药细菌改变了自身细胞膜上与药物结合部位的靶点,因此,对脂质体进行修饰是提高靶向性的重要策略。壳聚糖(Chitosan,CH)是一种广谱天然抑菌剂,具有优良的生物相容性,易与脂质体结合[45]。与脂质体相比,壳聚糖修饰的肉桂醛脂质体的MIC显著下降,并且壳聚糖和肉桂醛能发挥协同抑菌作用,刺激脂质体破坏细胞膜,诱导细胞内成分泄漏,发挥长期抑菌作用[46]。利用光刺激脂质体的药物递送系统也引起广泛关注,通过改变光照时间、强度精确靶向细菌,控制药物释放剂量和给药时间,有效防止细菌耐药性的产生[47]。近年来有研究报道了一种基于近红外控制的抗菌纳米系统,该系统将硫化钨量子点(WS2 QDs)和抗生素万古霉素包封在脂质体中,利用WS2 QDs的光热敏感性来实现抗菌、抗生物膜的作用[48]。
随着对脂质体研究的深入,研究人员发现其在对抗耐药病原菌中扮演着至关重要的角色,但因难以规模化生产制约了未来发展,主要表现在质量难以控制、易化学和物理降解、生产材料价格昂贵等[32]。因此,规模化生产脂质体并应用于畜禽养殖业仍任重而道远。
2.3 固体脂质纳米颗粒
固体脂质纳米颗粒(Solid lipid nanoparticles,SLNs)是由固态、天然或合成的高熔点脂质包载药物形成的固体给药系统。固体脂质纳米颗粒与脂质体相似,粒径一般为50~1 000 nm,生物相容性良好,毒性低[49]。固体脂质纳米颗粒因制作工艺简易和载药种类丰富引起广泛关注。
Ghaderkhani等[50]报道了负载利福平的固体脂质纳米颗粒对布鲁氏菌的抗菌效果,相比于游离利福平,载药固体脂质体纳米颗粒的MIC在72 h时由256 μg/mL降至4 μg/mL,改善效果显著。同样有研究发现,将多黏菌素B负载于固体脂质纳米颗粒并交联海藻酸钠可实现对药物的持续释放,不仅增强了药物对铜绿假单胞菌的杀菌作用,还提高了药物包载量,达到缓释、高效抗菌的目的[51]。Singh等[52]制备了负载口服链霉素(Streptomycin sulphate,STRS)的固体脂质纳米颗粒(STRS-SLNs);STRS-SLNs的细胞摄取率比游离链霉素高60倍,对细胞内结核分枝杆菌H37RV的MIC降低了66.7%,口服药代动力学结果显示,STRS-SLNs的药物吸收率和生物利用度较游离链霉素提高了1.6~7.1倍。同时,多项研究报道固体脂质纳米颗粒能促进药物对胞内细菌的杀伤能力,例如,修饰固体脂质纳米颗粒表面能刺激活性细胞对纳米颗粒的摄取,促使更多药物进入细胞体内,提高抗菌作用,防止耐药基因扩散[53]。负载壳聚糖和DNase涂层的漆树酸(Anacardic acid,Ana)固体脂质纳米颗粒(Ana-SLNs-CH-DNase)对金黄色葡萄球菌及其生物膜有卓越的杀伤力,DNase涂层能降解环境DNA,壳聚糖涂层产生的带正电荷的固体脂质纳米颗粒能增加药物对生物膜的黏附力,增强药物对生物膜的清除率;在固体脂质纳米颗粒的作用下,最小生物膜抑制浓度(Minimal biofilm inhibitory concentration,MBIC)和最小生物膜清除浓度(Minimal biofilm eradication concentration,MBEC)相比于对照组明显降低[54]。此外,甘露糖修饰固体脂质纳米颗粒表面能快速激活巨噬细胞,促进其表面受体对甘露糖的摄取,并以特定的内吞途径进入细胞[55],改善细胞对纳米颗粒的相容性,这对于Nano-DDS至关重要。固体脂质纳米颗粒可以通过控制药物浓度改善对细菌的作用强度,从而提高抗菌治疗的效果[56];一些耐药菌通过外排泵编码基因的过表达增加药物的排出,减少药物对细菌本身的杀伤作用[57]。近来,寡核苷酸转录因子诱饵被认为是一种具有潜力的治疗方法。有研究报道了一种涂有阳离子双亲化合物1, 2−双四氢吖啶或原胺的阴离子固体脂质纳米颗粒[58];研究发现,寡核苷酸转录因子诱饵递送至细菌内的效率很高,在细菌内迅速累积,与其同源转录因子紧密结合,靶向细菌转录因子[59],抑制细菌生长,表现出特异的抗菌活性,这为解决细菌耐药性提供了新的研究思路。
固体脂质纳米颗粒的给药方式能跨越生理递送屏障,实现靶向抗菌功能[60]。然而,载药量有限、药物泄漏并在储存过程中容易结晶等缺点限制了其在畜禽养殖业中的使用。
2.4 纳米胶束
纳米胶束(Nano micelle)是由两亲性聚合物在水介质中形成的自组装超分子结构[61],主要由2个不同的结构域(疏水载药内核和亲水外壳)组成。与小分子表面活性剂类似,水溶液中的两亲性聚合物分子以低浓度的单分子形式存在。当浓度超过临界胶束浓度时,由于疏水、静电、氢键等分子作用力,聚合物的疏水区相互结合形成胶束。纳米胶束被设计为具备多重刺激响应特性(如pH、温度、超声、光照及氧化还原电位等),以实现智能化的药物控释系统[62]。
Yang等[63]设计了一种快速释放抗生素的纳米胶束平台,称为sir胶束(+),由活化的泊洛沙姆(Pluronic F-127)交联的黏菌素构成;经吞噬作用后胶束的二硫键裂解,sir胶束(+)迅速释放负载的黏菌素,可缓解小鼠肺炎模型中耐多药肺炎克雷伯菌对肺组织的损伤。Lu等[64]将抗生素左氧氟沙星(Levofloxacin,LF)偶联透明质酸(Hyaluronic acid,HA),制备了对NO敏感的纳米系统(HA-NO-LF)。HA-NO-LF纳米胶束通过内吞作用进入宿主细胞,暴露于内源性NO后逐渐释放左氧氟沙星,显著抑制金黄色葡萄球菌的活性。Gao等[65]设计了一种新型光动力给药体系(Pep@Ce6),基于二氢卟吩e6 (Chlorin e6,Ce6)与α−环糊精(α-CD)的分子共轭作用,结合聚乙二醇(Polyethylene,PEG)修饰的两亲性多肽(Pep)自组装策略,具有细菌靶向能力,可以吸附在细菌细胞膜上从而提高光动力学治疗效率;在近红外光辐照下,Pep@Ce6胶束具有优异的细菌靶向性,可有效抑制铜绿假单胞菌,清除其生物膜和灭活持续存活的细胞,而对哺乳动物细胞几乎无毒。Morteza等[66]开发了一种负载哌拉西林/他唑巴坦的新型聚合物纳米胶束,该制剂可以提高哌拉西林/他唑巴坦的抗菌活性,与游离药物相比,哌拉西林/他唑巴坦纳米胶束对耐药铜绿假单胞菌具有更加显著的抑制效果,这主要是因为纳米胶束能将抗生素直接转运到细菌生物膜中并消除生物膜的形成。另有研究通过两亲性嵌段共聚物PLGA-b-PEG与嵌合抗菌肽DSPE-PEG-HnMc的自组装策略,构建了一种具有细菌靶向功能的抗菌肽纳米载体,该体系通过HnMc多肽与PEG链段协同构筑功能化外壳,PEG链提供酶屏障保护HnMc免受蛋白水解酶降解,而表面暴露的HnMc通过静电作用特异性识别细菌细胞膜表面负电荷,赋予胶束对革兰阴性菌及革兰阳性菌的选择性靶向杀伤能力;体内试验表明,该纳米胶束在耐药铜绿假单胞菌肺部感染模型中可精准蓄积于感染部位[67]。Gupta等[68]报道了一种细菌胞外多糖(Exopolysaccharide,EPS)通过琥珀酸与姜黄素共价结合的胶束共轭物(Cur-EPS),在酸性条件下被释放出的姜黄素占总质量的87.5%;该胶束展现出优越的抗菌、抗生物膜和抗氧化活性,提高了姜黄素的生物利用度,具有潜在的医药应用价值。由于DNA的可编码性和两亲性,以DNA为基础的纳米载体研发在过去几年中被广泛探究。Sousa等[69]阐述了将阳离子两亲性抗生素多黏菌素B连接到DNA胶束上,利用多黏菌素B的亲和力提高DNA胶束的稳定性,发挥DNA胶束自组装和高生物相容性的优势,复合胶束可以穿透铜绿假单胞菌生物膜并表现出抗菌和抗生物膜特性。由于多黏菌素B是对抗革兰阴性菌的最后一道防线,其胶束复合体的形成对于治疗细菌感染及延缓细菌耐药性发展有巨大潜力。
基于靶向细菌与响应刺激的多功能纳米胶束已获得广泛关注,其具有优良的稳定性和单分散性,增强了靶向细菌的能力。但研究大多仅限于体外,未来研究者需设计更优异的纳米胶束并研究其体内药代动力学来应对复杂的体内代谢环境。
2.5 金属纳米颗粒
金属纳米颗粒(Metal nanoparticles,MNPs)因独特的物理化学性质在抗菌领域展现出广阔的应用前景,其抗菌性能在一定程度上取决于形成的纳米颗粒的形状和大小,目前显示出抗菌活性的纳米级材料包括Au、Ag和Cu等金属及部分金属氧化物如ZnO等[70]。
在金属纳米材料中,纳米银(Ag NPs)是一种具有代表性的抗菌材料,具有比表面积大、反应活性中心多、吸附力强等理化特点以及多种抗菌机制[71]。Ag/Ag+尺寸小,能够通过与含硫蛋白质或硫基的相互作用穿透细菌细胞壁和细胞膜[72]。一旦Ag/Ag+进入细菌,就会靶向并破坏细菌DNA和呼吸酶,导致细胞复制能力丧失,最终死亡[73]。此外,形状不同的Ag NPs有效表面积不同,杀菌活性也具有一定差异[74]。Zhu等[75]设计了一种具有光响应性的Ag NPs抗菌材料,体外试验结果表明,Ag NPs在660 nm可见光下照射20 min时,对金黄色葡萄球菌和大肠埃希菌的抑菌效率分别为98.66%和99.77%。Yang等[76]报道了一种Ag基金属有机框架(MOF/Ag)衍生的纳米颗粒,在近红外光照射下产生大量的热量破坏细菌细胞膜,同时释放金属离子,对细菌胞内物质产生化学损伤,其中抑菌试验表明,这种双重抑菌作用可以使纳米颗粒在极低的剂量(0.16 mg/mL)下对高浓度细菌产生近100%的杀菌率。Xie等[77]设计了一种均匀的pH响应的Ag纳米颗粒团簇(Ag nanoparticle clusters,Ag NCs),当其暴露于细菌感染的酸性微环境中时,可重新组装成不均匀的Ag NPs;这种pH触发的重组显著提高了Ag NCs对耐甲氧西林金黄色葡萄球菌(Methicillin-resistant Staphylococcus aureus,MRSA)和大肠埃希菌的抗菌活性,对MRSA的MIC和MBC分别为4和32 µg/mL,对大肠埃希菌分别为8和32 µg/mL。尽管Ag NPs展现出了优异的抗菌活性,但可能对畜禽养殖及人体健康造成潜在威胁。在细胞水平上,Ag NPs破坏DNA修复酶,并产生大量ROS,诱导细胞凋亡;在器官水平上,Ag NPs损伤肝、肺、心和生殖器官等,造成组织及结构改变,影响其代谢和功能[78-79]。
与Ag NPs相比,ZnO纳米颗粒(ZnO NPs)的特异毒性更低[80]。 ZnO NPs可以通过化学和物理相互作用表现出抗菌活性,其与细菌通过化学相互作用导致ROS产生[81]、H2O2形成和Zn2+释放;物理相互作用可以造成细菌细胞膜破裂、细胞内化或机械损伤,表现出对细菌的生物杀灭作用[82]。Xiang等[83]制备了一种具有Z型异质结构的ZnO/CDots/g-C3N4复合材料,经可见光照射15 min后,ZnO/CDots/g-C3N4复合材料对金黄色葡萄球菌和大肠埃希菌的抑菌率分别达到99.97%和99.99%。近年来,利用绿色技术合成简单、环保、经济的纳米颗粒受到科学界的关注。Velsankar等[84]用赤藓叶提取物介导合成ZnO纳米颗粒,对伤寒沙门菌、枯草芽孢杆菌和金黄色葡萄球菌具有良好的抗菌性能,抑菌率分别为93%、96%和97%。Ruangtong等[85]用香蕉皮提取物合成ZnO纳米颗粒,可抑制革兰阳性菌枯草芽孢杆菌、金黄色葡萄球菌和革兰阴性菌大肠埃希菌的生长。除上述研究结果外,ZnONPs可作为药物载体与抗菌药物共价连接,提高药物对病原菌的药理活性,达到抗菌的目的[86]。Jabir等[87]将姜黄素与Au@ZnO NPs连接制备Cur-Au@ZnO NPs,其抗菌性能强,可破坏细菌细胞壁的完整性并穿透细胞质膜破坏细菌细胞。金属纳米颗粒能高效抑菌,这主要得益于其优良的物理化学性质,但其在规模化和商业化上仍面临材料价格高昂、操作复杂等问题,难以扩大生产应用。
值得注意的是,细菌通过进化适应侵入体内的重金属离子,减少其对自身的损害,从而产生金属抗性,抗性基因由质粒编码,涵盖对Ag+、Cd2+、Co2+、Cu2+和Ni2+等金属离子的抗性[88],其机制包括通过外排泵抵抗外界重金属离子的作用,或与其他物质结合形成复合物,将金属离子氧化还原等[89]。这些具有重金属抗性的细菌多存在于工业废弃污水、土壤和饲料中,但有报道称从猪和人的MRSA分离株中也分离出具有Cd2+和Cu2+抗性的多重耐药质粒[90],这给公共卫生安全带来沉重负担。此外,Lu等[91]发现Ag NPs和Ag+能促进跨细菌属的质粒携带的抗生素抗性基因的水平转移,对细菌耐药性的产生造成潜在风险,也给重金属纳米颗粒抗菌性能研究敲响了警钟。我们应立刻采取有效措施解决环境及畜禽饲养中重金属超标的问题,阻止重金属离子通过土壤、水源和肉类食品进入食物链并蓄积,防止其对生态安全及人类健康造成威胁。
2.6 纳米凝胶
纳米凝胶(Nano gel)是一种新兴的纳米级水凝胶,由两亲性或水溶性聚合物组成聚合物网络,具有纳米颗粒和水凝胶的双重特性[92]。纳米凝胶能在水中分散,含水量大,并包封大量生物活性分子,是一种有价值的Nano-DDS[93]。Qi等[94]通过在聚多巴胺(Polydopamine,PDA)纳米颗粒表面修饰Ag来合成PDA@Ag纳米颗粒,然后将其包裹在阳离子瓜尔胶(Cationic guar,CG)水凝胶网络中,构建了一种纳米凝胶抗菌平台(CG/PDA@Ag,CPA);与未经Ag修饰的含有PDA的纳米凝胶(CG/PDA,CP)相比,CPA纳米凝胶的杀菌能力显著增强,可杀死46.1%的大肠埃希菌和48.9%的金黄色葡萄球菌,在808 nm近红外光的辅助下,几乎所有的大肠埃希菌(99.9%)和金黄色葡萄球菌(99.8%)都被灭活。这种快速杀灭细菌的优势在卫生条件差的养殖环境中至关重要。Huang等[95]报道了一种负载氮掺杂碳点的ZnO纳米粒子(N-CD@ZnO);该纳米凝胶通过二硫基团的静电作用快速捕获细菌,通过上转换介导的光动力学技术,经808 nm近红光照射15 min后,释放的Ag+和N-CD@ZnO产生ROS协同作用,杀灭99.9%的大肠埃希菌和99.8%的金黄色葡萄球菌。Luo等[96]设计了瓜尔胶(Guar gum,GG)改性的负载替米考星的海藻酸钠/明胶复合纳米凝胶;用瓜尔胶修饰的替米考星纳米凝胶具有最强的黏合强度,通过网格蛋白介导的内吞作用显著增强细胞对纳米凝胶的摄取和蓄积效率,其在胞内和胞外对胞内劳森氏菌的MIC分别为1、2 µg/mL,比游离的替米考星有所提升。近年来,多种药物载体联合使用以提高药物稳定性和治疗效果逐渐受到研究者的关注,如将中药单体姜黄素与硫化铜(CuS)纳米颗粒负载到醛基化改性的泊洛沙姆胶束上,通过希夫碱反应与羧甲基壳聚糖交联形成多功能复合水凝胶(CF-CuS-Cur),这种将多种纳米颗粒共包封的手段不仅能增强凝胶溶胀降解性能、简化治疗手段,而且能在1 064 nm近红光照射下表现出良好的光热抗菌能力,这种简单实用的可注射凝胶治疗策略对治疗临床慢性伤口有潜在的应用价值[97]。相似地,Fesseha等[98]开发了一种对pH敏感和具光反应性的含Ag离子的纳米凝胶;紫外线辐射下形成的球形纳米凝胶结构在弱酸性的细菌微环境中快速变化,促进Ag的释放并诱导ROS的产生,刺激细菌氧化应激,对革兰阳性菌和革兰阴性菌均具有强大的抗菌效果。
碳化纳米材料生物相容性良好,功能特性多样,被认为是无机纳米材料和抗生素的潜在替代品。Mao等[99]报道了一种碳化纳米凝胶(Carbon nanogels,CNGs),通过多种抗菌机制,包括产生ROS、降低膜电位和破坏膜功能等,对耐药细菌产生优异的抑菌效果;体外抑菌试验证明,CNGs对大肠埃希菌和金黄色葡萄球菌的MIC均为0.6 µg/mL,且连续传代后MIC不变,然而,在用纳米银、抗生素尤其是庆大霉素治疗后,MIC显著增加。Lin等[100]报道了一种由2种天然产物合成的CNGs(Qu/Lys-CNGs),其组成包括槲皮素(Quercetin,Qu)、赖氨酸(Lysine,Lys)和CNGs,可作为一种具有抗菌和抗氧化特性的双功能制剂,局部治疗细菌性角膜炎;Qu/Lys-CNGs对大肠埃希菌、铜绿假单胞菌、金黄色葡萄球菌、肠炎沙门氏菌以及MRSA均具有广谱抑菌作用。
2.7 不同纳米药物递送系统的比较
本文系统论述了6种纳米药物递送载体(纳米乳液、脂质体、固体脂质纳米颗粒、纳米胶束、金属纳米颗粒及纳米凝胶)在抗菌治疗中的创新应用及作用机制。研究表明,这些纳米载体通过装载抗生素、金属离子、大分子活性物质及植物提取物等抗菌成分,展现出显著的抑菌效果,其作用机制主要为通过增强疏水性药物的溶解度提升生物利用度、提高纳米颗粒对病原体接触面积以及采用金属纳米颗粒诱导ROS产生等多重途径,不同纳米药物递送系统的特点见表1。构建适宜、稳定的Nano-DDS对提高抗菌材料在不同条件下的稳定性和靶向细菌的能力极为重要,可为克服细菌生物膜屏障、解决抗生素耐药性问题提供创新性解决方案。
表 1 不同纳米药物递送系统及其特点Table 1. Different nano-drug delivery systems and their features种类
Type优点
Advantage缺点
Disadvantage装载药物
Loading drug病原体
Pathogen抑菌机制
Antibacterial mechanism参考文献
Reference纳米乳液
Nanoemulsion水相、油相混合,增加药物溶解度;提高药物生物利用度 工艺成本相对较高;不稳定,保质期较短 己醛、壳聚糖 副溶血性弧菌 细菌形态变化并破坏细胞膜 [101] 香芹酚 大肠埃希菌、肠炎沙门氏菌 提高香芹酚的生物活性 [102] 脂质体
Liposome封装水、脂溶性药物;提高药物稳定性;延长作用时间;减少药物不良反应 整体稳定性较差;生物利用度低;易引发免疫或毒性反应 妥布霉素 铜绿假单胞菌 增强破坏生物膜的能力 [103] 橄榄叶、橙皮提取物 金黄色葡萄球菌 提高组成成分的抗菌活性 [104] 氨苄西林 藤黄微球菌 提高氨苄西林的稳定性和抗菌活性 [105] 固体脂质纳米颗粒
Solid lipid nanoparticle改善生物利用度;保护药物免受酶分解或其他环境因素的破坏;实现缓慢持续的药物释放 长期储存稳定性差;可能引起细胞毒性;给药途径有限 多黏菌素B 铜绿假单胞菌 增加多黏菌素B的溶解度,增强对细菌细胞膜的作用 [106] 乳链菌肽 齿垢密螺旋体 保护乳链菌肽不被降解,延长作用时间 [107] 利福平 铜绿假单胞菌 抑制铜绿假单胞生物膜形成 [108] 纳米胶束
Nano micelle提高药物的生物利用度和溶解度;减少药物的副作用和毒性;有效改善药物的稳定性和溶解性 制备过程较复杂,成本较高;稳定性和储存性较差 脱氧胆酸、壳聚糖 大肠埃希菌、金黄色葡萄球菌 破坏细胞膜 [109] 纳米银、儿茶酚功能化季铵化壳聚糖 大肠埃希菌、金黄色葡萄球菌 靶向细菌,光热联合杀菌 [110] 金属纳米颗粒
Metal nanoparticle高效的杀菌能力;通过尺寸、形状、浓度等参数来调整抗菌性能 高浓度对机体有一定的毒性,易在体内蓄积;易发生沉淀、团聚 银、铜 大肠埃希菌、金黄色葡萄球菌 促进细菌活性氧产生 [111] 银、磺胺嘧啶 大肠埃希菌、金黄色葡萄球菌 提高磺胺嘧啶水溶性,增强磺胺嘧啶的释放和抗菌活性 [112] 纳米氧化铜、纳米氧化锌 大肠埃希菌、金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌 协同抗菌作用,促进细菌活性氧产生;引起脂质过氧化 [113] 纳米凝胶
Nano gel提供反应、吸附和催化活性位点,提高材料性能;通过改变反应条件控制其大小、形状和孔径等参数 合成过程复杂;性能易受温度、湿度、pH等因素影响 过氧化物酶 大肠埃希菌、金黄色葡萄球菌 消耗谷胱甘肽 [114] 茴香精油 金黄色葡萄球菌 药物与载体之间存在特殊互作,增强与药物的接触 [115] 纳米氧化锌 铜绿假单胞菌、金黄色葡萄球菌、大肠埃希菌 与纳米氧化锌协同抗菌 [116] 3. 总结与展望
抗生素的出现缓解了人类面对病原菌束手无策的局面,但是随着抗生素的广泛使用甚至滥用,耐药病原菌大量出现,常用的抗生素失效甚至完全无效,给公共卫生和养殖业造成了巨大威胁[117]。现有研究表明Nano-DDS在改善抗菌药物的药理学特性方面具有显著优势,包括延长作用时间、提高疗效、降低免疫原性和毒性、克服病原菌耐药性等[118]。然而这些研究大多仍处于实验室阶段,实际应用于畜禽养殖领域中的尚不多见;这主要是因为与临床医学相比,畜禽养殖更加注重成本、给药方式以及食品安全等问题。本综述对比了常见的6种Nano-DDS的优缺点及抑菌性能,发现目前纳米乳液的制备成本仍旧相对较高,且保质期短[119];脂质体和固体脂质纳米颗粒易水解和自氧化,容易导致药物渗透[120];纳米胶束的设计复杂,费时、费力,不利于临床应用[121];纳米凝胶及金属纳米颗粒的制备通常需要有机溶剂参与,进入机体后可能产生一定的毒性[122]。此外,目前对于Nano-DDS的研究大多集中在体外,缺乏足够的体内研究以及药物代谢动力学/药物效应动力学(Pharmacokinetic/pharmacodynamic)结合模型,难以应对临床应用中的复杂问题,这些因素可能是导致目前Nano-DDS无法在畜禽养殖中大规模推广的重要原因。
Nano-DDS技术在畜禽养殖领域面临着挑战,需要借鉴临床医学经验并结合实际需求进行改进,平衡成本、制备工艺和有效性,确保纳米颗粒的生物相容性和可降解性,开发出更适用的药物新剂型。未来Nano-DDS有望成为防治耐药病原菌感染的有力工具,助力畜牧养殖行业绿色可持续发展。
-
表 1 不同纳米药物递送系统及其特点
Table 1 Different nano-drug delivery systems and their features
种类
Type优点
Advantage缺点
Disadvantage装载药物
Loading drug病原体
Pathogen抑菌机制
Antibacterial mechanism参考文献
Reference纳米乳液
Nanoemulsion水相、油相混合,增加药物溶解度;提高药物生物利用度 工艺成本相对较高;不稳定,保质期较短 己醛、壳聚糖 副溶血性弧菌 细菌形态变化并破坏细胞膜 [101] 香芹酚 大肠埃希菌、肠炎沙门氏菌 提高香芹酚的生物活性 [102] 脂质体
Liposome封装水、脂溶性药物;提高药物稳定性;延长作用时间;减少药物不良反应 整体稳定性较差;生物利用度低;易引发免疫或毒性反应 妥布霉素 铜绿假单胞菌 增强破坏生物膜的能力 [103] 橄榄叶、橙皮提取物 金黄色葡萄球菌 提高组成成分的抗菌活性 [104] 氨苄西林 藤黄微球菌 提高氨苄西林的稳定性和抗菌活性 [105] 固体脂质纳米颗粒
Solid lipid nanoparticle改善生物利用度;保护药物免受酶分解或其他环境因素的破坏;实现缓慢持续的药物释放 长期储存稳定性差;可能引起细胞毒性;给药途径有限 多黏菌素B 铜绿假单胞菌 增加多黏菌素B的溶解度,增强对细菌细胞膜的作用 [106] 乳链菌肽 齿垢密螺旋体 保护乳链菌肽不被降解,延长作用时间 [107] 利福平 铜绿假单胞菌 抑制铜绿假单胞生物膜形成 [108] 纳米胶束
Nano micelle提高药物的生物利用度和溶解度;减少药物的副作用和毒性;有效改善药物的稳定性和溶解性 制备过程较复杂,成本较高;稳定性和储存性较差 脱氧胆酸、壳聚糖 大肠埃希菌、金黄色葡萄球菌 破坏细胞膜 [109] 纳米银、儿茶酚功能化季铵化壳聚糖 大肠埃希菌、金黄色葡萄球菌 靶向细菌,光热联合杀菌 [110] 金属纳米颗粒
Metal nanoparticle高效的杀菌能力;通过尺寸、形状、浓度等参数来调整抗菌性能 高浓度对机体有一定的毒性,易在体内蓄积;易发生沉淀、团聚 银、铜 大肠埃希菌、金黄色葡萄球菌 促进细菌活性氧产生 [111] 银、磺胺嘧啶 大肠埃希菌、金黄色葡萄球菌 提高磺胺嘧啶水溶性,增强磺胺嘧啶的释放和抗菌活性 [112] 纳米氧化铜、纳米氧化锌 大肠埃希菌、金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌 协同抗菌作用,促进细菌活性氧产生;引起脂质过氧化 [113] 纳米凝胶
Nano gel提供反应、吸附和催化活性位点,提高材料性能;通过改变反应条件控制其大小、形状和孔径等参数 合成过程复杂;性能易受温度、湿度、pH等因素影响 过氧化物酶 大肠埃希菌、金黄色葡萄球菌 消耗谷胱甘肽 [114] 茴香精油 金黄色葡萄球菌 药物与载体之间存在特殊互作,增强与药物的接触 [115] 纳米氧化锌 铜绿假单胞菌、金黄色葡萄球菌、大肠埃希菌 与纳米氧化锌协同抗菌 [116] -
[1] VARELA M F, STEPHEN J, LEKSHMI M, et al. Bacterial resistance to antimicrobial agents[J]. Antibiotics, 2021, 10(5): 593. doi: 10.3390/antibiotics10050593.
[2] THEURETZBACHER U, OUTTERSON K, ENGEL A, et al. The global preclinical antibacterial pipeline[J]. Nature Reviews Microbiology, 2020, 18(5): 275-285. doi: 10.1038/s41579-019-0288-0
[3] MANCUSO G, MIDIRI A, GERACE E, et al. Bacterial antibiotic resistance: The most critical pathogens[J]. Pathogens, 2021, 10(10): 1310. doi: 10.3390/pathogens10101310.
[4] MIETHKE M, PIERONI M, WEBER T, et al. Towards the sustainable discovery and development of new antibiotics[J]. Nature Reviews Chemistry, 2021, 5(10): 726-749. doi: 10.1038/s41570-021-00313-1
[5] ELERAKY N E, ALLAM A, HASSAN S B, et al. Nanomedicine fight against antibacterial resistance: An overview of the recent pharmaceutical innovations[J]. Pharmaceutics, 2020, 12(2): 142. doi: 10.3390/pharmaceutics12020142.
[6] MOFFO F, MOUICHE M M M, DJOMGANG H K, et al. Poultry litter contamination by Escherichia coli resistant to critically important antimicrobials for human and animal use and risk for public health in Cameroon[J]. Antibiotics, 2021, 10(4): 402. doi: 10.3390/antibiotics10040402.
[7] SARAIVA M D S, LIM K, DO MONTE D F M, et al. Antimicrobial resistance in the globalized food chain: A One Health perspective applied to the poultry industry[J]. Brazilian Journal of Microbiology, 2022, 53(1): 465-486. doi: 10.1007/s42770-021-00635-8
[8] HEDMAN H D, VASCO K A, ZHANG L. A review of antimicrobial resistance in poultry farming within low-resource settings[J]. Animals, 2020, 10(8): 1264. doi: 10.3390/ani10081264.
[9] LEÓN-BUITIMEA A, GARZA-CÁRDENAS C R, GARZA-CERVANTES J A, et al. The demand for new antibiotics: Antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design[J]. Frontiers in Microbiology, 2020, 11: 1669. doi: 10.3389/fmicb.2020.01669.
[10] 马天玥, 朱尤卓, 余冰欣, 等. 抗菌肽的作用机制与临床应用研究进展[J]. 抗感染药学, 2023, 20(5): 447-452. [11] DĄBROWSKA K, ABEDON S T. Pharmacologically aware phage therapy: Pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies[J]. Microbiology and Molecular Biology Reviews, 2019, 83(4): e00012-19. doi: 10.1128/MMBR.00012-19
[12] 董晨扬, 魏曼琳, 张航, 等. 植物提取物在动物生产中的研究进展[J]. 饲料研究, 2022, 45(4): 136-139. [13] HAJIPOUR M J, FROMM K M, AKBAR ASHKARRAN A, et al. Antibacterial properties of nanoparticles[J]. Trends in Biotechnology, 2012, 30(10): 499-511. doi: 10.1016/j.tibtech.2012.06.004
[14] WANG Y, YANG Y, SHI Y, et al. Antibiotic-free antibacterial strategies enabled by nanomaterials: Progress and perspectives[J]. Advanced Materials, 2020, 32(18): e1904106. doi: 10.1002/adma.201904106
[15] LOIRA-PASTORIZA C, TODOROFF J, VANBEVER R. Delivery strategies for sustained drug release in the lungs[J]. Advanced Drug Delivery Reviews, 2014, 75: 81-91. doi: 10.1016/j.addr.2014.05.017
[16] HOCHVALDOVÁ L, VEČEŘOVÁ R, KOLÁŘ M, et al. Antibacterial nanomaterials: Upcoming hope to overcome antibiotic resistance crisis[J]. Nanotechnology Reviews, 2022, 11(1): 1115-1142. doi: 10.1515/ntrev-2022-0059
[17] WANG Y, ZHANG Y, SU R, et al. Antimicrobial therapy based on self-assembling peptides[J]. Journal of Materials Chemistry B, 2024, 12(21): 5061-5075. doi: 10.1039/D4TB00260A
[18] MOREIRA L, GUIMARÃES N M, SANTOS R S, et al. Promising strategies employing nucleic acids as antimicrobial drugs[J]. Molecular Therapy-Nucleic Acids, 2024, 35(1): 102122. doi: 10.1016/j.omtn.2024.102122.
[19] PANDEY P, GULATI N, MAKHIJA M, et al. Nanoemulsion: A novel drug delivery approach for enhancement of bioavailability[J]. Recent Patents on Nanotechnology, 2020, 14(4): 276-293. doi: 10.2174/1872210514666200604145755
[20] GARCIA C R, MALIK M H, BISWAS S, et al. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils[J]. Biomaterials Science, 2022, 10(3): 633-653. doi: 10.1039/D1BM01537K
[21] MOGHIMI R, GHADERI L, RAFATI H, et al. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli[J]. Food Chemistry, 2016, 194: 410-415. doi: 10.1016/j.foodchem.2015.07.139
[22] RYU V, MCCLEMENTS D J, CORRADINI M G, et al. Natural antimicrobial delivery systems: Formulation, antimicrobial activity, and mechanism of action of quillaja saponin-stabilized carvacrol nanoemulsions[J]. Food Hydrocolloids, 2018, 82: 442-450. doi: 10.1016/j.foodhyd.2018.04.017
[23] MOHAMED M A, NASR M, ELKHATIB W F, et al. In vitro evaluation of antimicrobial activity and cytotoxicity of different nanobiotics targeting multidrug resistant and biofilm forming Staphylococci[J]. BioMed Research International, 2018, 2018: 7658238. doi: 10.1155/2018/7658238.
[24] MOGHIMI R, ALIAHMADI A, RAFATI H, et al. Antibacterial and anti-biofilm activity of nanoemulsion of Thymus daenensis oil against multi-drug resistant Acinetobacter baumannii[J]. Journal of Molecular Liquids, 2018, 265: 765-770. doi: 10.1016/j.molliq.2018.07.023
[25] CONFESSOR M V A, AGRELES M A A, CAMPOS L A D, et al. Olive oil nanoemulsion containing curcumin: Antimicrobial agent against multidrug-resistant bacteria[J]. Applied Microbiology and Biotechnology, 2024, 108(1): 241. doi: 10.1007/s00253-024-13057-x.
[26] HASHEM A H, DOGHISH A S, ISMAIL A, et al. A novel nanoemulsion based on clove and thyme essential oils: Characterization, antibacterial, antibiofilm and anticancer activities[J]. Electronic Journal of Biotechnology, 2024, 68: 20-30. doi: 10.1016/j.ejbt.2023.12.001
[27] 陈小楠, 申元娜, 李彭宇, 等. 细菌生物膜的特征及抗细菌生物膜策略[J]. 药学学报, 2018, 53(12): 2040-2049. [28] MOHAMED H R H, EL-SHAMY S, ABDELGAYED S S, et al. Modulation efficiency of clove oil nano-emulsion against genotoxic, oxidative stress, and histological injuries induced via titanium dioxide nanoparticles in mice[J]. Scientific Reports, 2024, 14(1): 7715. doi: 10.1038/s41598-024-57728-1.
[29] OZTURK B, ARGIN S, OZILGEN M, et al. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural surfactants: Quillaja saponin and lecithin[J]. Journal of Food Engineering, 2014, 142: 57-63. doi: 10.1016/j.jfoodeng.2014.06.015
[30] AZEEM A, RIZWAN M, AHMAD F J, et al. Nanoemulsion components screening and selection: A technical note[J]. Aaps Pharmscitech, 2009, 10(1): 69-76. doi: 10.1208/s12249-008-9178-x
[31] 吴毅, 金少鸿. 药用辅料吐温80的药理、药动学及分析方法研究进展[J]. 中国药事, 2008, 22(8): 717-720. [32] 李秀英, 曾凡, 赵曜, 等. 脂质体药物递送系统的研究进展[J]. 中国新药杂志, 2014, 23(16): 1904-1911. [33] ZHANG H, WANG G, YANG H. Drug delivery systems for differential release in combination therapy[J]. Expert Opinion on Drug Delivery, 2011, 8(2): 171-190. doi: 10.1517/17425247.2011.547470
[34] MIRZAIE A, PEIROVI N, AKBARZADEH I, et al. Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus[J]. Bioorganic Chemistry, 2020, 103: 104231. doi: 10.1016/j.bioorg.2020.104231.
[35] GHOSH R, DE M. Liposome-based antibacterial delivery: An emergent approach to combat bacterial infections[J]. ACS Omega, 2023, 8(39): 35442-35451. doi: 10.1021/acsomega.3c04893
[36] SCHEEDER A, BROCKHOFF M, WARD E N, et al. Molecular mechanisms of cationic fusogenic liposome interactions with bacterial envelopes[J]. Journal of the American Chemical Society, 2023, 145(51): 28240-28250. doi: 10.1021/jacs.3c11463
[37] GUO R, LIU Y, LI K, et al. Direct interactions between cationic liposomes and bacterial cells ameliorate the systemic treatment of invasive multidrug-resistant Staphylococcus aureus infections[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2021, 34: 102382. doi: 10.1016/j.nano.2021.102382.
[38] WANG Y. Liposome as a delivery system for the treatment of biofilm-mediated infections[J]. Journal of Applied Microbiology, 2021, 131(6): 2626-2639. doi: 10.1111/jam.15053
[39] DYMEK M, SIKORA E. Liposomes as biocompatible and smart delivery systems: The current state[J]. Advances in Colloid and Interface Science, 2022, 309: 102757. doi: 10.1016/j.cis.2022.102757.
[40] HERRERA C V, O’CONNOR P M, RATREY P, et al. Anionic liposome formulation for oral delivery of thuricin CD, a potential antimicrobial peptide therapeutic[J]. International Journal of Pharmaceutics, 2024, 654: 123918. doi: 10.1016/j.ijpharm.2024.123918.
[41] SINGH S, SINGH S K, CHOWDHURY I, et al. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents[J]. The Open Microbiology Journal, 2017, 11: 53-62. doi: 10.2174/1874285801711010053
[42] RAO Y, SUN Y Y, HU H Y, et al. Hypoxia-sensitive adjuvant loaded liposomes enhance the antimicrobial activity of azithromycin via phospholipase-triggered releasing for Pseudomonas aeruginosa biofilms eradication[J]. International Journal of Pharmaceutics, 2022, 623: 121910. doi: 10.1016/j.ijpharm.2022.121910.
[43] BARRAUD N, HASSETT D J, HWANG S H, et al. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2006, 188(21): 7344-7353. doi: 10.1128/JB.00779-06
[44] CUTRUZZOLÀ F, FRANKENBERG-DINKEL N. Origin and impact of nitric oxide in Pseudomonas aeruginosa biofilms[J]. Journal of Bacteriology, 2016, 198(1): 55-65. doi: 10.1128/JB.00371-15
[45] MANCONI M, CADDEO C, MANCA M L, et al. Oral delivery of natural compounds by phospholipid vesicles[J]. Nanomedicine, 2020, 15(18): 1795-1803. doi: 10.2217/nnm-2020-0085
[46] WANG X, CHENG F, WANG X, et al. Chitosan decoration improves the rapid and long-term antibacterial activities of cinnamaldehyde-loaded liposomes[J]. International Journal of Biological Macromolecules, 2021, 168: 59-66. doi: 10.1016/j.ijbiomac.2020.12.003
[47] BOZZUTO G, MOLINARI A. Liposomes as nanomedical devices[J]. International Journal of Nanomedicine, 2015, 10: 975-999.
[48] XU M, HU Y, XIAO Y, et al. Near-infrared-controlled nanoplatform exploiting photothermal promotion of peroxidase-like and OXD-like activities for potent antibacterial and anti-biofilm therapies[J]. ACS Applied Materials & Interfaces, 2020, 12(45): 50260-50274.
[49] VIEGAS C, PATRÍCIO A B, PRATA J M, et al. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review[J]. Pharmaceutics, 2023, 15(6): 1593. doi: 10.3390/pharmaceutics15061593.
[50] GHADERKHANI J, YOUSEFIMASHOUF R, ARABESTANI M, et al. Improved antibacterial function of Rifampicin-loaded solid lipid nanoparticles on Brucella abortus[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2019, 47(1): 1181-1193. doi: 10.1080/21691401.2019.1593858
[51] SEVERINO P, CHAUD M V, SHIMOJO A, et al. Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: Antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies[J]. Colloids and Surfaces B: Biointerfaces, 2015, 129: 191-197. doi: 10.1016/j.colsurfb.2015.03.049
[52] SINGH M, SCHIAVONE N, PAPUCCI L, et al. Streptomycin sulphate loaded solid lipid nanoparticles show enhanced uptake in macrophage, lower MIC in Mycobacterium and improved oral bioavailability[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 160: 100-124. doi: 10.1016/j.ejpb.2021.01.009
[53] SCIOLI MONTOTO S, MURACA G, RUIZ M E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects[J]. Frontiers in Molecular Biosciences, 2020, 7: 587997. doi: 10.3389/fmolb.2020.587997.
[54] ANJUM M M, PATEL K K, DEHARI D, et al. Anacardic acid encapsulated solid lipid nanoparticles for Staphylococcus aureus biofilm therapy: Chitosan and DNase coating improves antimicrobial activity[J]. Drug Delivery and Translational Research, 2021, 11(1): 305-317. doi: 10.1007/s13346-020-00795-4
[55] COSTA A, SARMENTO B, SEABRA V. Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages[J]. European Journal of Pharmaceutical Sciences, 2018, 114: 103-113. doi: 10.1016/j.ejps.2017.12.006
[56] DOLATABADI J E N, OMIDI Y. Solid lipid-based nanocarriers as efficient targeted drug and gene delivery systems[J]. TrAC-Trends in Analytical Chemistry, 2016, 77: 100-108. doi: 10.1016/j.trac.2015.12.016
[57] LI X Z, PLÉSIAT P, NIKAIDO H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria[J]. Clinical Microbiology Reviews, 2015, 28(2): 337-418. doi: 10.1128/CMR.00117-14
[58] GONZÁLEZ-PAREDES A, SITIA L, RUYRA A, et al. Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 134: 166-177. doi: 10.1016/j.ejpb.2018.11.017
[59] HIBBITTS A, LUCÍA A, SERRANO-SEVILLA I, et al. Co-delivery of free vancomycin and transcription factor decoy-nanostructured lipid carriers can enhance inhibition of methicillin resistant Staphylococcus aureus (MRSA)[J]. PLoS One, 2019, 14(9): e0220684. doi: 10.1371/journal.pone.0220684
[60] BERMUDEZ L E M, WU M, YOUNG L S. Intracellular killing of Mycobacterium avium complex by rifapentine and liposome-encapsulated amikacin[J]. The Journal of Infectious Diseases, 1987, 156(3): 510-513. doi: 10.1093/infdis/156.3.510
[61] TAWFIK S M, AZIZOV S, ELMASRY M R, et al. Recent advances in nanomicelles delivery systems[J]. Nanomaterials, 2020, 11(1): 70. doi: 10.3390/nano11010070.
[62] MOHAMED S, PARAYATH N N, TAURIN S, et al. Polymeric nano-micelles: Versatile platform for targeted delivery in cancer[J]. Therapeutic Delivery, 2014, 5(10): 1101-1121. doi: 10.4155/tde.14.69
[63] YANG X, QIU Q, LIU G, et al. Traceless antibiotic-crosslinked micelles for rapid clearance of intracellular bacteria[J]. Journal of Controlled Release, 2022, 341: 329-340. doi: 10.1016/j.jconrel.2021.11.037
[64] LU C, XIAO Y, LIU Y, et al. Hyaluronic acid-based levofloxacin nanomicelles for nitric oxide-triggered drug delivery to treat bacterial infections[J]. Carbohydrate Polymers, 2020, 229: 115479. doi: 10.1016/j.carbpol.2019.115479.
[65] GAO Q, HUANG D, DENG Y, et al. Chlorin e6 (Ce6)-loaded supramolecular polypeptide micelles with enhanced photodynamic therapy effect against Pseudomonas aeruginosa[J]. Chemical Engineering Journal, 2021, 417: 129334. doi: 10.1016/j.cej.2021.129334.
[66] MORTEZA M, ROYA S, HAMED H, et al. Synthesis and evaluation of polymeric micelle containing piperacillin/tazobactam for enhanced antibacterial activity[J]. Drug Delivery, 2019, 26(1): 1292-1299. doi: 10.1080/10717544.2019.1693708
[67] PARK S C, KO C, HYEON H, et al. Imaging and targeted antibacterial therapy using chimeric antimicrobial peptide micelles[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54306-54315.
[68] GUPTA C, HAZRA C, PODDAR P, et al. Development and performance evaluation of self-assembled pH-responsive curcumin-bacterial exopolysaccharide micellar conjugates as bioactive delivery system[J]. International Journal of Biological Macromolecules, 2024, 263: 130372. doi: 10.1016/j.ijbiomac.2024.130372.
[69] SOUSA A, BORØY V, BÆVERUD A, et al. Polymyxin B stabilized DNA micelles for sustained antibacterial and antibiofilm activity against P. aeruginosa[J]. Journal of Materials Chemistry B, 2023, 11(33): 7972-7985. doi: 10.1039/D3TB00704A
[70] JAMKHANDE P G, GHULE N W, BAMER A H, et al. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications[J]. Journal of Drug Delivery Science and Technology, 2019, 53: 101174. doi: 10.1016/j.jddst.2019.101174.
[71] 何盈盈, 周文铂, 邰启炜, 等. 纳米材料和纳米药物递释系统在抗细菌感染中的应用及机制[J]. 药学学报, 2023, 58(1): 106-117. [72] SONDI I, SALOPEK-SONDI B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria[J]. Journal of Colloid and Interface Science, 2004, 275(1): 177-182. doi: 10.1016/j.jcis.2004.02.012
[73] SANPUI P, MURUGADOSS A, DURGA PRASAD P V, et al. The antibacterial properties of a novel chitosan-Ag-nanoparticle composite[J]. International Journal of Food Microbiology, 2008, 124(2): 142-146. doi: 10.1016/j.ijfoodmicro.2008.03.004
[74] PAL S, TAK Y K, SONG J M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli[J]. Applied and Environmental Microbiology, 2007, 73(6): 1712-1720. doi: 10.1128/AEM.02218-06
[75] ZHU M, LIU X, TAN L, et al. Photo-responsive chitosan/Ag/MoS2 for rapid bacteria-killing[J]. Journal of Hazardous Materials, 2020, 383: 121122. doi: 10.1016/j.jhazmat.2019.121122.
[76] YANG Y, WU X, HE C, et al. Metal-organic framework/Ag-based hybrid nanoagents for rapid and synergistic bacterial eradication[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 13698-13708.
[77] XIE X, SUN T, XUE J, et al. Ag nanoparticles cluster with pH-triggered reassembly in targeting antimicrobial applications[J]. Advanced Functional Materials, 2020, 30(17): 2000511. doi: 10.1002/adfm.202000511.
[78] REZVANI E, RAFFERTY A, MCGUINNESS C, et al. Adverse effects of nanosilver on human health and the environment[J]. Acta Biomaterialia, 2019, 94: 145-159. doi: 10.1016/j.actbio.2019.05.042
[79] ZHANG J, WANG F, YALAMARTY S S K, et al. Nano silver-induced toxicity and associated mechanisms[J]. International Journal of Nanomedicine, 2022, 17: 1851-1864. doi: 10.2147/IJN.S355131
[80] ZHANG W, LIU X, BAO S, et al. Evaluation of nano-specific toxicity of zinc oxide, copper oxide, and silver nanoparticles through toxic ratio[J]. Journal of Nanoparticle Research, 2016, 18(12): 372. doi: 10.1007/s11051-016-3689-2.
[81] DUTTA R K, NENAVATHU B P, GANGISHETTY M K, et al. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation[J]. Colloids and Surfaces B: Biointerfaces, 2012, 94: 143-150. doi: 10.1016/j.colsurfb.2012.01.046
[82] KUMAR R, UMAR A, KUMAR G, et al. Antimicrobial properties of ZnO nanomaterials: A review[J]. Ceramics International, 2017, 43(5): 3940-3961. doi: 10.1016/j.ceramint.2016.12.062
[83] XIANG Y, ZHOU Q, LI Z, et al. A Z-scheme heterojunction of ZnO/CDots/C3N4 for strengthened photoresponsive bacteria-killing and acceleration of wound healing[J]. Journal of Materials Science & Technology, 2020, 57: 1-11.
[84] VELSANKAR K, VENKATESAN A, MUTHUMARI P, et al. Green inspired synthesis of ZnO nanoparticles and its characterizations with biofilm, antioxidant, anti-inflammatory, and anti-diabetic activities[J]. Journal of Molecular Structure, 2022, 1255: 132420. doi: 10.1016/j.molstruc.2022.132420.
[85] RUANGTONG J, T-THIENPRASERT J, T-THIENPRASERT N P. Green synthesized ZnO nanosheets from banana peel extract possess anti-bacterial activity and anti-cancer activity[J]. Materials Today Communications, 2020, 24: 101224. doi: 10.1016/j.mtcomm.2020.101224.
[86] SALAMA S A, ESSAM D, TAGYAN A I, et al. Novel composite of nano zinc oxide and nano propolis as antibiotic for antibiotic-resistant bacteria: A promising approach[J]. Scientific Reports, 2024, 14(1): 20894. doi: 10.1038/s41598-024-70490-8.
[87] JABIR M S, RASHID T M, NAYEF U M, et al. Inhibition of Staphylococcus aureus α-hemolysin production using nanocurcumin capped Au@ZnO nanocomposite[J]. Bioinorganic Chemistry and Applications, 2022, 2022: 2663812. doi: 10.1155/2022/2663812.
[88] XAVIER J, COSTA P, HISSA D, et al. Evaluation of the microbial diversity and heavy metal resistance genes of a microbial community on contaminated environment[J]. Applied Geochemistry, 2019, 105: 1-6. doi: 10.1016/j.apgeochem.2019.04.012
[89] NANDA M, KUMAR V, SHARMA D. Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water[J]. Aquatic Toxicology, 2019, 212: 1-10. doi: 10.1016/j.aquatox.2019.04.011
[90] DWEBA C C, ZISHIRI O T, EL ZOWALATY M E. Methicillin-resistant Staphylococcus aureus: Livestock-associated, antimicrobial, and heavy metal resistance[J]. Infection and Drug Resistance, 2018, 11: 2497-2509. doi: 10.2147/IDR.S175967
[91] LU J, WANG Y, JIN M, et al. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes[J]. Water Research, 2020, 169: 115229. doi: 10.1016/j.watres.2019.115229.
[92] DUAN Q Y, ZHU Y X, JIA H R, et al. Nanogels: Synthesis, properties, and recent biomedical applications[J]. Progress in Materials Science, 2023, 139: 101167. doi: 10.1016/j.pmatsci.2023.101167.
[93] KESKIN D, ZU G, FORSON A M, et al. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings[J]. Bioactive Materials, 2021, 6(10): 3634-3657. doi: 10.1016/j.bioactmat.2021.03.004
[94] QI X, HUANG Y, YOU S, et al. Engineering robust Ag-decorated polydopamine nano-photothermal platforms to combat bacterial infection and prompt wound healing[J]. Advanced Science, 2022, 9(11): 2106015. doi: 10.1002/advs.202106015.
[95] HUANG B, LIU X, LI Z, et al. Rapid bacteria capturing and killing by AgNPs/N-CD@ZnO hybrids strengthened photo-responsive xerogel for rapid healing of bacteria-infected wounds[J]. Chemical Engineering Journal, 2021, 414: 128805. doi: 10.1016/j.cej.2021.128805.
[96] LUO W, MENG K, ZHAO Y, et al. Guar gum modified tilmicosin-loaded sodium alginate/gelatin composite nanogels for effective therapy of porcine proliferative enteritis caused by Lawsonia intracellularis[J]. International Journal of Biological Macromolecules, 2023, 242: 125084. doi: 10.1016/j.ijbiomac.2023.125084.
[97] JIA P, ZOU Y, JIANG J. Antibacterial, antioxidant and injectable hydrogels constructed using CuS and curcumin co-loaded micelles for NIR-enhanced infected wound healing[J]. Journal of Materials Chemistry B, 2023, 11(47): 11319-11334. doi: 10.1039/D3TB02278A
[98] FESSEHA Y A, MANAYIA A H, LIU P C, et al. Photoreactive silver-containing supramolecular polymers that form self-assembled nanogels for efficient antibacterial treatment[J]. Journal of Colloid and Interface Science, 2024, 654: 967-978. doi: 10.1016/j.jcis.2023.10.119
[99] MAO J Y, MISCEVIC D, UNNIKRISHNAN B, et al. Carbon nanogels exert multipronged attack on resistant bacteria and strongly constrain resistance evolution[J]. Journal of Colloid and Interface Science, 2022, 608: 1813-1826. doi: 10.1016/j.jcis.2021.10.107
[100] LIN H Y, WANG S W, MAO J Y, et al. Carbonized nanogels for simultaneous antibacterial and antioxidant treatment of bacterial keratitis[J]. Chemical Engineering Journal, 2021, 411: 128469. doi: 10.1016/j.cej.2021.128469.
[101] FAN Q, YAN X, JIA H, et al. Antibacterial properties of hexanal-chitosan nanoemulsion against Vibrio parahaemolyticus and its application in shelled shrimp preservation at 4 ℃[J]. International Journal of Biological Macromolecules, 2024, 257: 128614. doi: 10.1016/j.ijbiomac.2023.128614.
[102] DA SILVA B D, DO ROSÁRIO D K A, NETO L T, et al. Antioxidant, antibacterial and antibiofilm activity of nanoemulsion-based natural compound delivery systems compared with non-nanoemulsified versions[J]. Foods, 2023, 12(9): 1901. doi: 10.3390/foods12091901.
[103] ALZAHRANI N M, BOOQ R Y, ALDOSSARY A M, et al. Liposome-encapsulated tobramycin and IDR-1018 peptide mediated biofilm disruption and enhanced antimicrobial activity against Pseudomonas aeruginosa[J]. Pharmaceutics, 2022, 14(5): 960. doi: 10.3390/pharmaceutics14050960.
[104] PREVETE G, CARVALHO L G, CARMEN RAZOLA-DIAZ M D, et al. Ultrasound assisted extraction and liposome encapsulation of olive leaves and orange peels: How to transform biomass waste into valuable resources with antimicrobial activity[J]. Ultrasonics Sonochemistry, 2024, 102: 106765. doi: 10.1016/j.ultsonch.2024.106765.
[105] SCHUMACHER I, MARGALIT R. Liposome-encapsulated ampicillin: Physicochemical and antibacterial properties[J]. Journal of Pharmaceutical Sciences, 1997, 86(5): 635-641. doi: 10.1021/js9503690
[106] SEVERINO P, SILVEIRA E F, LOUREIRO K, et al. Antimicrobial activity of polymyxin-loaded solid lipid nanoparticles (PLX-SLN): Characterization of physicochemical properties and in vitro efficacy[J]. European Journal of Pharmaceutical Sciences, 2017, 106: 177-184. doi: 10.1016/j.ejps.2017.05.063
[107] RADAIC A, MALONE E, KAMARAJAN P, et al. Solid lipid nanoparticles loaded with nisin (SLN-nisin) are more effective than free nisin as antimicrobial, antibiofilm, and anticancer agents[J]. Journal of Biomedical Nanotechnology, 2022, 18(4): 1227-1235. doi: 10.1166/jbn.2022.3314
[108] KHORRAMDEL M, GHADIKOLAII F P, HASHEMY S I, et al. Nanoformulated meloxicam and rifampin: Inhibiting quorum sensing and biofilm formation in Pseudomonas aeruginosa[J]. Nanomedicine, 2024, 19(7): 615-632. doi: 10.2217/nnm-2023-0268
[109] QI Y, CHEN Q, CAI X, et al. Self-assembled amphiphilic chitosan nanomicelles: Synthesis, characterization and antibacterial activity[J]. Biomolecules, 2023, 13(11): 1595. doi: 10.3390/biom13111595.
[110] ZHANG H, YU S, WU S, et al. Rational design of silver NPs-incorporated quaternized chitin nanomicelle with combinational antibacterial capability for infected wound healing[J]. International Journal of Biological Macromolecules, 2023, 224: 1206-1216. doi: 10.1016/j.ijbiomac.2022.10.206
[111] XIE Y, CHEN S, PENG X, et al. Alloyed nanostructures integrated metal-phenolic nanoplatform for synergistic wound disinfection and revascularization[J]. Bioactive Materials, 2022, 16: 95-106. doi: 10.1016/j.bioactmat.2022.03.004
[112] LUO T, SHAKYA S, MITTAL P, et al. Co-delivery of superfine nano-silver and solubilized sulfadiazine for enhanced antibacterial functions[J]. International Journal of Pharmaceutics, 2020, 584: 119407. doi: 10.1016/j.ijpharm.2020.119407.
[113] FRANCIS D V, JAYAKUMAR M N, AHMAD H, et al. Antimicrobial activity of biogenic metal oxide nanoparticles and their synergistic effect on clinical pathogens[J]. International Journal of Molecular Sciences, 2023, 24(12): 9998. doi: 10.3390/ijms24129998.
[114] ZHANG S, HAO J, DING F, et al. Nanocatalyst doped bacterial cellulose-based thermosensitive nanogel with biocatalytic function for antibacterial application[J]. International Journal of Biological Macromolecules, 2022, 195: 294-301. doi: 10.1016/j.ijbiomac.2021.12.020
[115] ALAM A, FOUDAH A, SALKINI M, et al. Herbal fennel essential oil nanogel: Formulation, characterization and antibacterial activity against Staphylococcus aureus[J]. Gels, 2022, 8(11): 736. doi: 10.3390/gels8110736.
[116] TAMADDON F, BAGHERI F, AHMADI-AHMADABADI E. Selective preparation of crystalline or fibrous nano-cellulose carboxylate to fabricate an anti-bacterial hydrogel in co-operation with ZnO and recycled gelatin[J]. International Journal of Biological Macromolecules, 2023, 242: 124922. doi: 10.1016/j.ijbiomac.2023.124922.
[117] ARSÈNE M M J, DAVARES A K L, VIKTOROVNA P I, et al. The public health issue of antibiotic residues in food and feed: Causes, consequences, and potential solutions[J]. Veterinary World, 2022, 15(3): 662-671.
[118] PATRA J K, DAS G, FRACETO L F, et al. Nano based drug delivery systems: Recent developments and future prospects[J]. Journal of Nanobiotechnology, 2018, 16(1): 71. doi: 10.1186/s12951-018-0392-8.
[119] AHIRE K, GORLE A, MAHARASHTRA I. An overview on methods of preparation and characterization of nanoemulsion[J]. World Journal of Pharmacy and Pharmaceutical Sciences, 2021, 10(8): 897-908.
[120] FAN Y, MARIOLI M, ZHANG K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery[J]. Journal of Pharmaceutical and Biomedical Analysis, 2021, 192: 113642. doi: 10.1016/j.jpba.2020.113642.
[121] BOSE A, ROY BURMAN D, SIKDAR B, et al. Nanomicelles: Types, properties and applications in drug delivery[J]. IET Nanobiotechnology, 2021, 15(1): 19-27. doi: 10.1049/nbt2.12018
[122] RIZVI S A A, SALEH A M. Applications of nanoparticle systems in drug delivery technology[J]. Saudi Pharmaceutical Journal, 2018, 26(1): 64-70. doi: 10.1016/j.jsps.2017.10.012