Abstract:
Objective To study the effect of adhesive in the forming process of biomass seedling tray and explore the effect of different applied amounts of adhesive on the physical and chemical properties of rice seedling tray.
Method Straw and cow dung were fermented at a mass ratio of 6∶4, and the products were used as biodegradable biological substrates. The self-synthesized modified starch adhesive, characterized by its weak acidity, high adhesive strength, and excellent water resistance, was incorporated into the formulation. Concurrently, nutritional elements were introduced and thoroughly mixed. Then, the rice seedling tray was fabricated through low-pressure molding at a pressure of 2−3 MPa, followed by dryness finalization after maintaining the pressure for 5−7 min. One-way ANOVA was used to analyze the effects of different applied adhesive amounts on the biodegradation rate, volume expansion rate, moisture content and shear strength of seedling raising tray.
Result The optimal applied amount of adhesive was 21% (w) of the total mass of the seedling raising tray, and the resulting seedling raising tray had the biodegradation rate of 82%, the shear strength of 0.07 MPa, the moisture content (w) of 12.5% and the volume expansion rate of 56%. Compared to commercially available seedling trays, the prepared rice seedling trays reduced the amount of adhesive used, improved water resistance, reduced molding pressure and temperature, shortened molding time, and were biodegradable, meeting the requirements for rice seedling trays.
Conclusion This result provides the technical support for the industrial production of biomass seedling raising trays, offers a new avenue for the high-value utilization of straw and cow dung, and promoes the quality production of seedlings.