Research progress on occurrence and control of litchi anthracnose
-
摘要:
荔枝Litchi chinensis Sonn.是中国重要的热带亚热带水果之一,然而刺盘孢属真菌Colletotrichum spp.侵染所致的荔枝炭疽病严重影响了荔枝的生产和果实采后贮运。荔枝炭疽病为害荔枝叶、枝梢、花穗和果实,症状复杂,病原种类多样,迄今已报道了5个复合种共22个种,其中,盘长孢状刺盘孢复合种C. gloeosporioides species complex为优势种群。高温、高湿的气候条件适合病害的发生,每年4—6月为我国荔枝炭疽病的爆发期。本文从荔枝炭疽病病害症状、病原、发生规律、致病机制以及防治技术等方面进行了全面综述,根据其侵染过程对已报道的刺盘孢属真菌的致病因子进行了归纳,对荔枝炭疽病的防控技术进行了总结分析,并对今后的荔枝炭疽致病机制研究和绿色防控技术进行了展望。
Abstract:Litchi (Litchi chinensis Sonn.) is one of the important tropical and subtropical fruits in China. However, anthracnose caused by Colletotrichum spp. severely impacts the yield and quality of litchi, posing a major threat during both production and postharvest storage. Litchi anthracnose infects leaves, flower clusters, shoots and fruits, exhibiting diverse and complex symptoms. To date, total 22 species belonging to five Colletotrichum species complex have been reported worldwide to infect litchi, with the C. gloeosporioides species complex being the dominant group. High temperature and humidity are conducive to the occurrence of litchi anthracnose, and the outbreak period of litchi anthracnose is from April to June every year in China. This paper reviewed comprehensively the symptoms, pathogens, occurrence patterns, pathogenic mechanisms, and control techniques of litchi anthracnose. The reported infection process and virulent factors of Colletotrichum spp. were categorized, the control technologies for litchi anthracnose were summarized and analyzed. Finally, the future research on pathogenic mechanisms and green prevention and control strategies for litchi anthracnose were prospected.
-
-
图 2 荔枝炭疽病菌发现时间轴线
图中不同背景颜色的荔枝炭疽病菌表示归属于不同的刺盘孢复合种;括号里面的内容表示报道的作者及其报道年份;CN、AU和JA分别表示该病菌的地理分布为中国、澳大利亚和日本。
Figure 2. Timeline for discovering litchi anthracnose pathogenic species
Pathogens of litchi anthracnose with different background colors represented different Colletotrichum species complex; The details in parentheses indicated the reporter and the reported year of the pathogens; CN, AU and JA indicated the distribution of the pathogens in China, Australia and Japan respectively .
表 1 已报道的引起炭疽病的致病因子
Table 1 The reported pathogenic factors of Colletotrichum
侵染过程
Infection process致病因子
Pathogenic factor基因
Gene种类
Species参考文献
Reference穿透寄主表面前
Pre-penetration of
host surface附着胞细胞壁蛋白 Cap20 盘长孢状刺盘孢 C. gloeosporioides [27] 附着胞细胞壁蛋白 Cap22 盘长孢状刺盘孢 [28] 金属硫蛋白 Cap3 盘长孢状刺盘孢 [28] 金属硫蛋白 Cap5 盘长孢状刺盘孢 [28] 异柠檬酸裂合酶 ICL1 瓜类刺盘孢 C. lagenarium [29] 蛋白激酶 RPK1 瓜类刺盘孢 [30] 甾醇糖基转移酶 Chip6 盘长孢状刺盘孢 [31] 穿透寄主表面
Penetration of host
surface角质酶 CutA 盘长孢状刺盘孢 [32] 聚酮合成酶 Pks1 瓜类刺盘孢 [33] 铜离子转运ATP酶 Clap1 豆类刺盘孢 C. lindemuthianum [34] 小柱孢酮脱水酶 Scd1 瓜类刺盘孢 [35] 单羧酸转运蛋白 CgMCT1 盘长孢状刺盘孢 [36] 寡肽转运因子 CgOPT2 盘长孢状刺盘孢 [36] 1,3,8−二羟基萘还原酶 Thr1 瓜类刺盘孢 [37] 泛素结合酶蛋白 Chip1 盘长孢状刺盘孢 [38] 漆酶 Lac2 圆孢刺盘孢 C. orbiculare [39] 假定钙调素激酶 CaMK 盘长孢状刺盘孢 [40] 四跨膜区蛋白 Pls1 豆类刺盘孢 [41] 自噬相关蛋白 Atg26 瓜类刺盘孢 [42] 穿透寄主表面相关的
信号转导途径
Signal transduction of
penetrating host
surface假定的丝氨酸/苏氨酸激酶 Clk1 豆类刺盘孢 [43] 过氧化物酶体蛋白 ClaPEX6 瓜类刺盘孢 [44] 丝裂原活化蛋白激酶 Cmk1 瓜类刺盘孢 [45] MAPK激酶 CgMEK 盘长孢状刺盘孢 [46] cAMP依赖性蛋白激酶 CtPKAC 苜蓿刺盘孢 C. trifolli [47] cAMP依赖性蛋白激酶 CgPKAC 盘长孢状刺盘孢 [48] 穿透寄主表面相关
的转录因子
Transcriptional
factors of penetrating host
surface转运因子 CLTA1 豆类刺盘孢 [49] Ste12 CST1 瓜类刺盘孢 [50] Ste12-like CLSTE12 豆类刺盘孢 [51] 转录因子 CMR1 葫芦刺盘孢 C. lagenaria [52] 肌动相关蛋白 ArpA 盘长孢状刺盘孢 [53] pH响应转录因子 PacC 尖孢刺盘孢 C. acutatum [54] 穿透寄主表面相关
的水解酶
Hydrolytic enzymes of
penetrating host
surface果胶酸裂解酶 CgPel 盘长孢状刺盘孢 [55] 果胶酸裂解酶 CgPel 盘长孢状刺盘孢 [56] 果胶酸裂解酶 Pel 壮丽刺盘孢 C. magna [57] 果胶酸裂解酶 PelB 盘长孢状刺盘孢 [58] 果胶酸裂解酶 PecCl1 豆类刺盘孢 [59] 果胶酸裂解酶 CcpelA 球刺盘孢 C. coccodes [60] 果胶酸酯裂解酶 PnlA 盘长孢状刺盘孢 [61] -
[1] 李建国. 中国果树科学与实践: 荔枝[M]. 西安: 陕西科学技术出版社, 2022. [2] 姜子德, 习平根, 冼继东, 等. 对未来五年我国荔枝植保研究的思考[J]. 中国热带农业, 2011(5): 61-63. doi: 10.3969/j.issn.1673-0658.2011.05.023 [3] 戚佩坤. 广东果树真菌病害志[M]. 北京: 中国农业出版社, 2000. [4] 戚佩坤. 广东省栽培药用植物真菌病害志[M]. 广州: 广东科技出版社, 1994. [5] 凌金锋, 彭埃天, 姜子德, 等. 荔枝果实麻点病与几种易混淆症状的识别、成因及防治措施[J]. 植物保护, 2022, 48(3): 216-224. [6] DEAN R, VAN KAN J A, PRETORIUS Z A, et al. The top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(4): 414-430. doi: 10.1111/j.1364-3703.2011.00783.x
[7] SUTTON B C. The Coelomycetes[M]. Surrey: Commonwealth Mycological Institute, 1980.
[8] SUTTON B C. The genus Glomerella and its anamorph Colletotrichum[M]//BAILEY J A, JEGER M J. Colletotrichum: Biology, pathology and control. Wallingford: CAB International, 1992: 1-26.
[9] CAI L, HYDE K D, TAYLOR P W J, et al. A polyphasic approach for studying Colletotrichum[J]. Fungal Diversity, 2009, 39: 183-204.
[10] CANNON P F, DAMM U, JOHNSTON P R, et al. Colletotrichum: Current status and future directions[J]. Studies in Mycology, 2012, 73: 181-213. doi: 10.3114/sim0014
[11] LIU F, MA Z Y, HOU L W, et al. Updating species diversity of Colletotrichum, with a phylogenomic overview[J]. Studies in Mycology, 2022, 101: 1-56. doi: 10.3114/sim.2022.101.01
[12] SHIVAS R G, TAN Y P. A taxonomic re-assessment of Colletotrichum acutatum, introducing C. fioriniae comb. et. stat. nov. and C. simmondsii sp. nov.[J]. Fungal Diversity, 2009, 39(111): e122.
[13] WEIR B S, JOHNSTON P R, DAMM U. The Colletotrichum gloeosporioides species complex[J]. Studies in Mycology, 2012, 73: 115-180. doi: 10.3114/sim0011
[14] 何宁, 江立群, 司徒俊键, 等. 荔枝炭疽病菌的种类鉴定[C]//中国菌物学会. 中国菌物学会2015年学术年会论文摘要集. 上海, 2015. [15] SHIVAS R G, TAN Y P, EDWARDS J, et al. Colletotrichum species in Australia[J]. Australasian Plant Pathology, 2016, 45(5): 447-464. doi: 10.1007/s13313-016-0443-2
[16] 凌金锋. 荔枝病果相关的四属菌物鉴定及分子系统发育分析[D]. 广州: 华南农业大学, 2019. [17] LING J F, PENG A T, JIANG Z D, et al. First report of anthracnose fruit rot caused by Colletotrichum fioriniae on litchi in China[J]. Plant Disease, 2021, 105(4): 1225-1225
[18] LING J F, SONG X B, XI P G, et al. Identification of Colletotrichum siamense causing litchi pepper spot disease in mainland China[J]. Plant Pathology, 2019, 68(8): 1533-1542. doi: 10.1111/ppa.13075
[19] 李少卡, 赵亚, 王祥和, 等. 海南荔枝炭疽病病原菌鉴定及遗传多样性分析[J]. 农业生物技术学报, 2021, 29(4): 673-687. [20] HUANG R, SUN W X, GUO T X, et al. Morphological and pathological characterization of Colletotrichum species causing anthracnose of litchi leaves in Guangxi, China[J]. Journal of Phytopathology, 2023, 171: 609-619. doi: 10.1111/jph.13218
[21] CAO X, LI F, XU H, et al. Characterization of Colletotrichum species infecting Litchi in Hainan, China[J]. Journal of Fungi (Basel, Switzerland), 2023, 9(11): 1042.
[22] ANDERSON J M, COATES L M, AITKEN E A, et al. The pathogenic diversity and host range of Colletotrichum spp. causing pepper spot and anthracnose of lychee (Litchi chinensis) in Australia[J]. Plant Pathology, 2024, 73(6): 1334-1348.
[23] 刘爱媛, 陈维信, 李欣允. 荔枝炭疽病菌生物学特性的研究[J]. 植物病理学报, 2003, 33(4): 313-316. doi: 10.3321/j.issn:0412-0914.2003.04.006 [24] 张新春, 彭元科, 王家保. 不同来源荔枝胶孢炭疽菌生物学特性研究[J]. 中国果树, 2015(3): 27-31. [25] CHUDASAMA K S, MONPARA J K, THAKER V S. Identification and characterization of pectin lyase gene as a virulence factor in Colletotrichum gloeosporioides[J]. Physiological and Molecular Plant Pathology, 2021, 116: 101706. doi: 10.1016/j.pmpp.2021.101706
[26] O'CONNELL R J, BAILEY J A, RICHMOND D V. Cytology and physiology of infection of Phaseolus vulgaris by Colletotrichum lindemuthianum[J]. Physiological Plant Pathology, 1985, 27(1): 75-98. doi: 10.1016/0048-4059(85)90058-X
[27] HWANG C S, FLAISHMAN M A, KOLATTUKUDY P E. Cloning of a gene expressed during appressorium formation by Colletotrichum gloeosporioides and a marked decrease in virulence by disruption of this gene[J]. The Plant Cell, 1995, 7(2): 183-193.
[28] HWANG C S, KOLATTUKUDY P E. Isolation and characterization of genes expressed uniquely during appressorium formation by Colletotrichum gloeosporioides conidia induced by the host surface wax[J]. Molecular and General Genetics MGG, 1995, 247(3): 282-294. doi: 10.1007/BF00293196
[29] ASAKURA M, OKUNO T, TAKANO Y. Multiple contributions of peroxisomal metabolic function to fungal pathogenicity in Colletotrichum lagenarium[J]. Applied and Environmental Microbiology, 2006, 72(9): 6345-6354. doi: 10.1128/AEM.00988-06
[30] TAKANO Y, KOMEDA K, KOJIMA K, et al. Proper regulation of cyclic AMP-dependent protein kinase is required for growth, conidiation, and appressorium function in the anthracnose fungus Colletotrichum lagenarium[J]. Molecular Plant-Microbe Interactions, 2001, 14(10): 1149-1157. doi: 10.1094/MPMI.2001.14.10.1149
[31] KIM Y K, WANG Y, LIU Z M, et al. Identification of a hard surface contact-induced gene in Colletotrichum gloeosporioides conidia as a sterol glycosyl transferase, a novel fungal virulence factor[J]. Plant Journal, 2002, 30(2): 177-187. doi: 10.1046/j.1365-313X.2002.01284.x
[32] DICKMAN M B, PATIL S S, KOLATTUKUDY P E. Purification, characterization and rôle in infection of an extracellular cutinolytic enzyme from Colletotrichum gloeosporioides Penz. on Carica papaya L.[J]. Physiological Plant Pathology, 1982, 20(3): 333-347. doi: 10.1016/0048-4059(82)90058-3
[33] TAKANO Y, KUBO Y, SHIMIZU K, et al. Structural analysis of PKS1, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium[J]. Molecular and General Genetics MGG, 1995, 249(2): 162-167. doi: 10.1007/BF00290362
[34] PARISOT D, DUFRESNE M, VENEAULT C, et al. Clap1, a gene encoding a copper-transporting ATPase involved in the process of infection by the phytopathogenic fungus Colletotrichum lindemuthianum[J]. Molecular Genetics and Genomics, 2002, 268(2): 139-151. doi: 10.1007/s00438-002-0744-8
[35] KUBO Y, TAKANO Y, ENDO N, et al. Cloning and structural analysis of the melanin biosynthesis gene SCD1 encoding scytalone dehydratase in Colletotrichum lagenarium[J]. Genes, 1996, 62(12): 4340-4344.
[36] WU J Y, JI Z R, WANG N, et al. Identification of conidiogenesis-associated genes in Colletotrichum gloeosporioides by Agrobacterium tumefaciens-mediated transformation[J]. Current Microbiology, 2016, 73(6): 802-810. doi: 10.1007/s00284-016-1131-8
[37] PERPETUA N S, KUBO Y, YASUDA N, et al. Cloning and characterization of a melanin biosynthetic THR1 reductase gene essential for appressorial penetration of Colletotrichum lagenarium[J]. RSC Medicinal Chemistry, 1996, 9(5): 323-329.
[38] LIU Z M, KOLATTUKUDY P E. Identification of a gene product induced by hard-surface contact of Colletotrichum gloeosporioides conidia as a ubiquitin-conjugating enzyme by yeast complementation[J]. International Journal of Molecular Sciences, 1998, 180(14): 3592-3597.
[39] LIN S Y, OKUDA S, IKEDA K, et al. LAC2 encoding a secreted laccase is involved in appressorial melanization and conidial pigmentation in Colletotrichum orbiculare[J]. Molecular Plant-Microbe Interactions, 2012, 25(12): 1552-1561. doi: 10.1094/MPMI-05-12-0131-R
[40] KIM Y K, LI D, KOLATTUKUDY P E. Induction of Ca2+ -calmodulin signaling by hardsurface contact primes Colletotrichum gloeosporioides conidia to germinate and form appressoria[J]. Journal of Bacteriology, 1998, 180(19): 5144-5150. doi: 10.1128/JB.180.19.5144-5150.1998
[41] VENEAULT-FOURREY C, PARISOT D, GOURGUES M, et al. The tetraspanin gene ClPLS1 is essential for appressorium-mediated penetration of the fungal pathogen Colletotrichum lindemuthianum[J]. Fungal Genetics and Biology, 2005, 42(4): 306-318. doi: 10.1016/j.fgb.2005.01.009
[42] ASAKURA M, NINOMIYA S, SUGIMOTO M, et al. Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare[J]. The Plant Cell, 2009, 21(4): 1291-1304. doi: 10.1105/tpc.108.060996
[43] DUFRESNE M, BAILEY J A, DRON M, et al. Clk1, a serine/threonine protein kinase-encoding gene, is involved in pathogenicity of Colletotrichum lindemuthianum on common bean[J]. BMC Cancer, 1998, 11(2): 99-108.
[44] KIMURA A, TAKANO Y, FURUSAWA I, et al. Peroxisomal metabolic function is required for appressorium-mediated plant infection by Colletotrichum lagenarium[J]. Plant Cell, 2001, 13(8): 1945-1957. doi: 10.1105/TPC.010084
[45] TAKANO Y, KIKUCHI T, KUBO Y, et al. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis[J]. Molecular Plant-Microbe Interactions, 2000, 13(4): 374-383. doi: 10.1094/MPMI.2000.13.4.374
[46] KIM Y K, KAWANO T, LI D, et al. A mitogen-activated protein kinase kinase required for induction of cytokinesis and appressorium formation by host signals in the conidia of Colletotrichum gloeosporioides[J]. Plant Cell, 2000, 12: 1331-1343. doi: 10.1105/tpc.12.8.1331
[47] YANG Z, DICKMAN M B. Colletotrichum trifolii mutants disrupted in the catalytic subunit of cAMP-dependent protein kinase are nonpathogenic[J]. Europace, 1999, 12(5): 430-439.
[48] PRIYATNO T P, ABU BAKAR F D, KAMARUDDIN N, et al. Inactivation of the catalytic subunit of cAMP-dependent protein kinase A causes delayed appressorium formation and reduced pathogenicity of Colletotrichum gloeosporioides[J]. The Scientific World Journal, 2012, 2012: 545784.
[49] DUFRESNE M, PERFECT S, PELLIER A L, et al. A GAL4-like protein is involved in the switch between biotrophic and necrotrophic phases of the infection process of Colletotrichum lindemuthianum on common bean[J]. Plant Cell, 2000, 12(9): 1579-1589. doi: 10.1105/tpc.12.9.1579
[50] TSUJI G, FUJII S, TSUGE S, et al. The Colletotrichum lagenariu Ste12-like gene CST1 is essential for appressorium penetration[J]. Molecular Plant-Microbe Interactions, 2003, 16(4): 315-325. doi: 10.1094/MPMI.2003.16.4.315
[51] WONG SAK HOI J, HERBERT C, BACHA N, et al. Regulation and role of a STE12-like transcription factor from the plant pathogen Colletotrichum lindemuthianum[J]. Molecular Microbiology, 2007, 64(1): 68-82. doi: 10.1111/j.1365-2958.2007.05639.x
[52] TSUJI G, KENMOCHI Y, TAKANO Y, et al. Novel fungal transcriptional activators, Cmr1p of Colletotrichum lagenarium and pig1p of Magnaporthe grisea, contain Cys2His2 zinc finger and Zn(II)2Cys6 binuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner[J]. Molecular Microbiology, 2000, 38(5): 940-954. doi: 10.1046/j.1365-2958.2000.02181.x
[53] LI J R, JIN S M, HSIANG T, et al. A novel actin-related protein gene of Colletotrichum gloeosporioides f. sp. malvae shows altered expression corresponding with spore production[J]. FEMS Microbiology Letters, 2001, 197(2): 209-214. doi: 10.1111/j.1574-6968.2001.tb10605.x
[54] YOU B J, CHOQUER M, CHUNG K R. The Colletotrichum acutatum gene encoding a putative pH-responsive transcription regulator is a key virulence determinant during fungal pathogenesis on Citrus[J]. Molecular Plant-Microbe Interactions, 2007, 20(9): 1149-1160. doi: 10.1094/MPMI-20-9-1149
[55] WATTAD C, DINOOR A, PRUSKY D. Purification of pectate lyase produced by Colletotrichum gloeosporioides and its inhibition by epicatechin: A possible factor involved in the resistance of unripe avocado fruits to anthracnose[J]. Journal of Microbiology & Biology Education, 1994, 7(2): 293-297.
[56] YAKOBY N, FREEMAN S, DINOOR A, et al. Expression of pectate lyase from Colletotrichum gloesosporioides in C. magna promotes pathogenicity[J]. Molecular Plant-Microbe Interactions, 2000, 13(8): 887-891. doi: 10.1094/MPMI.2000.13.8.887
[57] WATTAD C, FREEMAN S, DINOOR A, et al. A nonpathogenic mutant of Colletotrichum magna is deficient in extracellular secretion of pectate lyase[J]. Molecular Plant-Microbe Interactions Journal, 1995, 8(4): 621-626. doi: 10.1094/MPMI-8-0621
[58] YAKOBY N, BENO-MOUALEM D, KEEN N T, et al. Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit-fungus interaction[J]. Molecular Plant-Microbe Interactions, 2001, 14(8): 988-995. doi: 10.1094/MPMI.2001.14.8.988
[59] CNOSSEN-FASSONI A, BAZZOLLI D M S, BROMMONSCHENKEL S H, et al. The pectate lyase encoded by the pecCl1 gene is an important determinant for the aggressiveness of Colletotrichum lindemuthianum[J]. Journal of Microbiology, 2013, 51(4): 461-470. doi: 10.1007/s12275-013-3078-9
[60] BEN-DANIEL B H, BAR-ZVI D, TSROR LAHKIM L. Pectate lyase affects pathogenicity in natural isolates of Colletotrichum coccodes and in pelA gene-disrupted and gene-overexpressing mutant lines[J]. Molecular Plant Pathology, 2012, 13(2): 187-197. doi: 10.1111/j.1364-3703.2011.00740.x
[61] BOWEN J K, TEMPLETON M D, SHARROCK K R, et al. Gene inactivation in the plant pathogen Glomerella cingulata: Three strategies for the disruption of the pectin lyase gene pnIA[J]. Molecular and General Genetics MGG, 1995, 246(2): 196-205. doi: 10.1007/BF00294682
[62] ZHU W, ZHOU M, XIONG Z, et al. The cAMP-PKA signaling pathway regulates pathogenicity, hyphal growth, appressorial formation, conidiation, and stress tolerance in Colletotrichum higginsianum[J]. Frontiers in Microbiology, 2017, 8: 1416. doi: 10.3389/fmicb.2017.01416
[63] WEI W, XIONG Y, ZHU W, et al. Colletotrichum higginsianum mitogen-activated protein kinase ChMK1: Role in growth, cell wall integrity, colony melanization, and pathogenicity[J]. Frontiers in Microbiology, 2016, 7: 1212.
[64] TALHINHAS P, BARONCELLI R. Colletotrichum species and complexes: Geographic distribution, host range and conservation status[J]. Fungal Diversity, 2021, 110(1): 109-198. doi: 10.1007/s13225-021-00491-9
[65] O’CONNELL R J, THON M R, HACQUARD S, et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses[J]. Nature Genetics, 2012, 44: 1060-1065. doi: 10.1038/ng.2372
[66] DOYLE V P, OUDEMANS P V, REHNER S A, et al. Habitat and host indicate lineage identity in Colletotrichum gloeosporioides s. l. from wild and agricultural landscapes in North America[J]. PLoS One, 2013, 8(5): e62394. doi: 10.1371/journal.pone.0062394
[67] 李亿坤. 荔枝炭疽病发生及防治研究[J]. 植物保护, 1992, 18(6): 15-16. [68] 唐照磊. 广西荔枝炭疽病的发生及其病原菌的研究[D]. 南宁: 广西大学, 2004. [69] 宋云连, 罗心平, 章勇, 等. 云南荔枝主要病虫害发生规律[J]. 中国农学通报, 2022, 38(28): 114-122. doi: 10.11924/j.issn.1000-6850.casb2022-0455 [70] 王松, 谢银燕, 张成彬, 等. 荔枝病虫害及其防治研究进展[J]. 江苏农业科学, 2019, 47(17): 120-124. [71] 凌金锋, 习平根, 潘汝谦, 等. 荔枝密闭园和间伐园主要病害发生情况比较[J]. 植物保护, 2017, 43(2): 172-176. doi: 10.3969/j.issn.0529-1542.2017.02.030 [72] 广东省农业农村厅. 关于发布2024年广东省农业主导品种主推技术的通知[EB/OL]. [2024-02-21](2024-04-02). https://dara.gd.gov.cn/tzgg2272/content/post_4380849.html. [73] 凌金锋, 彭埃天, 宋晓兵, 等. 新型杀菌剂氯氟醚菌唑及氯氟醚菌唑·吡唑醚菌酯对荔枝麻点病的田间药效评价[C]//中国植物保护学会. 病虫防护与生物安全: 中国植物保护学会2021年学术年会论文集. 北京: 中国农业科学技术出版社, 2021. [74] 凌金锋, 彭埃天, 姜子德, 等. 荔枝麻点病田间防治药剂筛选及评价[J]. 植物保护, 2021, 47(4): 250-257. [75] 农业农村部农药检定所. 农药登记数据 [DB/OL]. [2024-05-21](2024-06-01). http://www.chinapesticide.org.cn/zwb/dataCenter?hash=reg-info. [76] 凌金锋, 彭埃天, 宋晓兵, 等. 烯酰吗啉与咪鲜胺混配对荔枝霜疫霉病菌和炭疽病菌的联合作用研究[J]. 广东农业科学, 2010, 37(8): 146-148. doi: 10.3969/j.issn.1004-874X.2010.08.059 [77] 董丁铭. 荔枝炭疽病菌对3种杀菌剂的抗药性研究[D]. 广州: 华南农业大学, 2017. [78] 谷会, 陈维信, 刘爱媛, 等. 防治荔枝炭疽病药效试验[J]. 中国南方果树, 2006(4): 44-46. doi: 10.3969/j.issn.1007-1431.2006.01.024 [79] 温书恒, 支胡钰, 杨春燕, 等. 四种抑菌剂对荔枝采后病原菌的毒力测定[J]. 中国热带农业, 2009(5): 55-57. doi: 10.3969/j.issn.1673-0658.2009.05.020 [80] 周灵灵, 高海燕, 李标, 等. R−多糖对荔枝炭疽病菌的抑制作用研究[J]. 中国食品学报, 2011, 11(7): 61-66. doi: 10.3969/j.issn.1009-7848.2011.07.011 [81] 黄庶识, 黄曦, 许兰兰, 等. 四株抗荔枝病原菌的芽孢杆菌的分离鉴定[J]. 生物技术通报, 2010(12): 217-221. [82] 黄庶识, 黄曦, 张荣灿, 等. 枯草芽胞杆菌对离体荔枝果实霜疫霉病、炭疽病的防治效果[J]. 植物保护学报, 2011, 38(3): 247-252. [83] 黄曦, 张荣灿, 王何健, 等. 枯草芽孢杆菌ON-6菌株抑制荔枝炭疽菌活性物质的初步研究[J]. 中国农学通报, 2011, 27(13): 188-193. [84] 黄曦, 张荣灿, 庄军莲, 等. 一株抗荔枝病原菌的枯草芽孢杆菌的分离鉴定及其发酵条件的初步研究[J]. 广西科学, 2011, 18(4): 396-401. doi: 10.3969/j.issn.1005-9164.2011.04.019 [85] WU S, ZHEN C, WANG K, et al. Effects of Bacillus subtilis CF-3 VOCs combined with heat treatment on the control of Monilinia fructicola in peaches and Colletotrichum gloeosporioides in Litchi fruit[J]. Journal of Food Science, 2019, 84(12): 3418-3428. doi: 10.1111/1750-3841.14949
[86] SHI X C, WANG S Y, DUAN X C, et al. Biocontrol strategies for the management of Colletotrichum species in postharvest fruits[J]. Crop Protection, 2021, 141: 105454. doi: 10.1016/j.cropro.2020.105454
[87] ZHAO P Y, LI P Z, WU S Y, et al. Volatile organic compounds (VOCs) from Bacillus subtilis CF-3 reduce anthracnose and elicit active defense responses in harvested Litchi fruits[J]. AMB Express, 2019, 9(1): 119. doi: 10.1186/s13568-019-0841-2
[88] WU Y, LIN H, LIN Y, et al. Effects of biocontrol bacteria Bacillus amyloliquefaciens LY-1 culture broth on quality attributes and storability of harvested Litchi fruit[J]. Postharvest Biology and Technology, 2017, 132: 81-87. doi: 10.1016/j.postharvbio.2017.05.021
[89] 孔祥宇. 8种生防制剂对荔枝主要病害及果实品质的影响[D]. 广州: 华南农业大学, 2018. [90] CUI G, YIN K, LIN N, et al. Burkholderia gladioli CGB10: A novel strain biocontrolling the sugarcane smut disease[J]. Microorganisms, 2020, 8(12): 1943. doi: 10.3390/microorganisms8121943
[91] 许兰兰, 黄曦, 李昆志, 等. 海洋真菌的筛选及其对离体荔枝果霜霉病和炭疽病的防效[J]. 中国生物防治学报, 2011, 27(2): 214-220. [92] ZHIMO V Y, BHUTIA D D, SAHA J. Biological control of post-harvest fruit diseases using antagonistic yeasts in India[J]. Journal of Plant Pathology, 2016, 98(2): 275-283.
[93] 蔚慧, 杨林华, 李志民. 绿色木霉代谢产物对黑曲霉和荔枝炭疽抑菌机理的研究[J]. 安徽农业科学, 2009, 37(31): 15144-15145. doi: 10.3969/j.issn.0517-6611.2009.31.087 [94] 陈兴龙, 潘汝谦, 盖云鹏, 等. 31种植物甲醇提取物对荔枝霜疫霉菌和炭疽病菌的抑菌活性测定[J]. 广东农业科学, 2012, 39(3): 1-3. doi: 10.3969/j.issn.1004-874X.2012.03.001 [95] 胡珊, 黄皓, 罗诗, 等. 4种植物精油对荔枝主要病害抑制作用研究[J]. 中国南方果树, 2015, 44(5): 63-65. [96] 岳淑丽. 桉叶精油微胶囊的制备及其在荔枝、樱桃番茄保鲜中的应用研究[D]. 广州: 华南农业大学, 2017. [97] YU X, CHEN J, ZHONG J, et al. Antifungal efficacy of LEDs against major postharvest pathogens of litchi fruit in vitro and in vivo[J]. Food Control, 2023, 154: 110019. doi: 10.1016/j.foodcont.2023.110019
[98] AHMED J, ALI M, SHEIKH H M, et al. Biocontrol of fruit rot of Litchi chinensis using zinc oxide nanoparticles synthesized in Azadirachta indica[J]. Micromachines, 2022, 13(9): 1461. doi: 10.3390/mi13091461
[99] BUI V C, LE T T, NGUYEN T H, et al. Curcumin-removed turmeric oleoresin nano-emulsion as a novel botanical fungicide to control anthracnose (Colletotrichum gloeosporioides) in litchi[J]. Green Processing and Synthesis, 2021, 10(1): 729-741. doi: 10.1515/gps-2021-0071
[100] 李芳, 张蕾, 林祺英, 等. 荔枝炭疽病室内抗病评价体系的建立[J]. 植物病理学报, 2023, 53(3): 455-462. -
期刊类型引用(17)
1. 侯天元,汤冬梅,张丽萍,周巧红,吴振斌,武俊梅. 抗生素对人工湿地处理水产养殖尾水的影响及其缓解途径. 水生生物学报. 2025(04): 61-71 . 百度学术
2. 黄丽,高磊,吴松,郝其睿,李晨辉,汤施展,白淑艳,陈中祥,杜宁宁,覃东立,王鹏. 地西泮在模拟养殖环境中的含量变化及累积特征. 南方水产科学. 2024(02): 38-47 . 百度学术
3. 陈进,余忠花,王亚娟,胡闪闪,高礼,陶红. 不同植物对多西环素污染的胁迫响应及其修复潜力研究. 环境工程. 2024(04): 250-257 . 百度学术
4. 杨佩汶,林毅,林华,肖玲,甘淑萍,王义安. 不同构型人工湿地-微生物燃料电池对废水中对氯苯酚的净化效果及产电性能的影响. 环境工程学报. 2023(02): 507-516 . 百度学术
5. 史沉鱼,黄港平. 土霉素胁迫对黄瓜幼苗生理特性的影响. 北方园艺. 2023(06): 1-11 . 百度学术
6. 秦玉春,邹涛,张璇,王永强,国晓春,刘晓晖,卢少勇. 氧氟沙星胁迫下5种湿地植物及其根系微生物群落的差异性响应. 环境工程技术学报. 2023(03): 1079-1087 . 百度学术
7. 袁孝康,付绿倩,陈华林,周江敏,刘欣聪,邓仕槐. 水产养殖中抗生素污染治理研究进展. 环境监测管理与技术. 2023(04): 1-6 . 百度学术
8. 荣渝虹,孙仕仙,张发明,李良,李荣彪,罗超,郑毅. 香根草对水体中磺胺嘧啶单一及联合污染的去除动态研究. 西南林业大学学报(自然科学). 2023(06): 79-90 . 百度学术
9. 黄伟杰,刘学智,唐红亮,汪义杰,陈军. 植物修复在抗生素污染治理中的应用研究进展. 生态科学. 2022(01): 222-229 . 百度学术
10. 付雨,剧泽佳,陈慧,赵鑫宇,宋圆梦,王广志,张璐璐,崔建升. 白洋淀喹诺酮类抗生素在底栖动物中的生物富集特征. 中国环境科学. 2022(02): 878-888 . 百度学术
11. 胡劲召,张璇,王永强,徐佳敏,卢洪斌,叶长兵,刘晓晖,陈中兵,卢少勇. 磺胺甲恶唑胁迫下人工湿地植物与根际微生物的响应. 环境工程技术学报. 2022(05): 1474-1483 . 百度学术
12. 周海东,黄丽萍,陈晓萌,李丹妍,李昕,崔锦裕. 人工生态系统对城市河流中抗生素和ARGs的去除. 环境科学. 2021(02): 850-859 . 百度学术
13. 刘昭君,林华,王义安,覃辉,Kong CHHUON. 磷肥种类对李氏禾富集铜、铬的影响及其生理响应. 生态环境学报. 2021(02): 412-419 . 百度学术
14. 付雨,剧泽佳,付耀萱,田沛龙,张璐璐,赵鑫宇,陈慧,崔建升. 白洋淀优势水生植物中喹诺酮类抗生素的生物富集特征及其与环境因子相关性研究. 环境科学学报. 2021(09): 3620-3630 . 百度学术
15. 谌和平,邹逸凡,张露荷,纪荣平. 人工湿地基质及其生物膜对生活污水中污染物去除效果的研究. 广东化工. 2021(22): 13-15 . 百度学术
16. 杜实之. 环境中抗生素的残留、健康风险与治理技术综述. 环境科学与技术. 2021(09): 37-48 . 百度学术
17. 李梦月,张某,鲁武峰,兰明先,易璟,李成学,吴国星. 紫茎泽兰对四环素的吸收特性. 生物安全学报. 2020(04): 302-305 . 百度学术
其他类型引用(15)