崔琼, 刘勇, 徐顺来. 猪舍环境的多参数无模型自适应控制算法设计[J]. 华南农业大学学报, 2024, 45(5): 702-708. DOI: 10.7671/j.issn.1001-411X.202404013
    引用本文: 崔琼, 刘勇, 徐顺来. 猪舍环境的多参数无模型自适应控制算法设计[J]. 华南农业大学学报, 2024, 45(5): 702-708. DOI: 10.7671/j.issn.1001-411X.202404013
    CUI Qiong, LIU Yong, XU Shunlai. Design of multi-parameter model-free adaptive control algorithm for pig house environment[J]. Journal of South China Agricultural University, 2024, 45(5): 702-708. DOI: 10.7671/j.issn.1001-411X.202404013
    Citation: CUI Qiong, LIU Yong, XU Shunlai. Design of multi-parameter model-free adaptive control algorithm for pig house environment[J]. Journal of South China Agricultural University, 2024, 45(5): 702-708. DOI: 10.7671/j.issn.1001-411X.202404013

    猪舍环境的多参数无模型自适应控制算法设计

    Design of multi-parameter model-free adaptive control algorithm for pig house environment

    • 摘要:
      目的 针对猪舍环境控制中场景复杂、多参数控制难以及系统呈现耦合特性的问题,基于无模型自适应控制(Model-free adaptive control, MFAC)算法,设计了适用于猪舍的多参数无模型自适应控制(Multi-parameter model-free adaptive control, MMFAC)算法。
      方法 通过将MFAC算法与用于尺度伸缩变换的权值矩阵相融合,设计MMFAC算法。该算法利用紧格式动态线性化(Compact form dynamic linearization, CFDL)技术和最优化数学方法,进行伪雅可比矩阵(Pseudo-jacobian matrix, PJM)的参数辨识和调控装置的控制量计算。
      结果 仿真试验结果表明,MMFAC算法具备对多参数进行自适应控制的能力,并可通过调整权重矩阵来降低关键参数的误差。真实猪舍环境控制试验结果表明,该算法可根据实时环境参数测量值计算风机控制量,并根据该控制量驱动风机,以保持环境参数在舒适区间范围内的稳定控制。
      结论 MMFAC算法展现出良好的多参数自适应控制能力,能够适应复杂的猪舍环境,有效解决多参数控制难以及系统耦合的问题,在猪舍环境控制中具有较好的应用前景。

       

      Abstract:
      Objective Aiming at the problems of complex scenarios, difficult multi-parameter control and the coupling characteristics of the system in the environmental control of pig house, based on the model-free adaptive control (MFAC) algorithm, a multi-parameter model-free adaptive control (MMFAC) algorithm applicable to pig house was designed.
      Method The MMFAC algorithm was designed by integrating the MFAC algorithm with the weight matrix used for scale scaling transformation. The algorithm utilized the compact form dynamic linearization (CFDL) technique and the optimization mathematical method to identify the parameters of the pseudo-jacobian matrix (PJM) and calculate the control volume of the control device.
      Result The simulation experiment results showed that the MMFAC algorithm had the ability of adaptive control of multiple parameters, and could reduce the error of key parameters by adjusting the weight matrix. The results of real pig house environment control experiment showed that the algorithm could calculate the fan control quantity according to the real-time environmental parameter measurements, and drive the fan according to this control quantity to keep the environmental parameters in the range of the comfort zone for stable control.
      Conclusion The MMFAC algorithm shows good multi-parameter adaptive control ability, can adapt to the complex pig house environment, and effectively solves the problems of difficult multi-parameter control as well as system coupling, which has a good application prospect in pig house environment control.

       

    /

    返回文章
    返回