Design of multi-parameter model-free adaptive control algorithm for pig house environment
-
摘要:目的
针对猪舍环境控制中场景复杂、多参数控制难以及系统呈现耦合特性的问题,基于无模型自适应控制(Model-free adaptive control, MFAC)算法,设计了适用于猪舍的多参数无模型自适应控制(Multi-parameter model-free adaptive control, MMFAC)算法。
方法通过将MFAC算法与用于尺度伸缩变换的权值矩阵相融合,设计MMFAC算法。该算法利用紧格式动态线性化(Compact form dynamic linearization, CFDL)技术和最优化数学方法,进行伪雅可比矩阵(Pseudo-jacobian matrix, PJM)的参数辨识和调控装置的控制量计算。
结果仿真试验结果表明,MMFAC算法具备对多参数进行自适应控制的能力,并可通过调整权重矩阵来降低关键参数的误差。真实猪舍环境控制试验结果表明,该算法可根据实时环境参数测量值计算风机控制量,并根据该控制量驱动风机,以保持环境参数在舒适区间范围内的稳定控制。
结论MMFAC算法展现出良好的多参数自适应控制能力,能够适应复杂的猪舍环境,有效解决多参数控制难以及系统耦合的问题,在猪舍环境控制中具有较好的应用前景。
Abstract:ObjectiveAiming at the problems of complex scenarios, difficult multi-parameter control and the coupling characteristics of the system in the environmental control of pig house, based on the model-free adaptive control (MFAC) algorithm, a multi-parameter model-free adaptive control (MMFAC) algorithm applicable to pig house was designed.
MethodThe MMFAC algorithm was designed by integrating the MFAC algorithm with the weight matrix used for scale scaling transformation. The algorithm utilized the compact form dynamic linearization (CFDL) technique and the optimization mathematical method to identify the parameters of the pseudo-jacobian matrix (PJM) and calculate the control volume of the control device.
ResultThe simulation experiment results showed that the MMFAC algorithm had the ability of adaptive control of multiple parameters, and could reduce the error of key parameters by adjusting the weight matrix. The results of real pig house environment control experiment showed that the algorithm could calculate the fan control quantity according to the real-time environmental parameter measurements, and drive the fan according to this control quantity to keep the environmental parameters in the range of the comfort zone for stable control.
ConclusionThe MMFAC algorithm shows good multi-parameter adaptive control ability, can adapt to the complex pig house environment, and effectively solves the problems of difficult multi-parameter control as well as system coupling, which has a good application prospect in pig house environment control.
-
Keywords:
- Pig house environment /
- Multi-parameter control /
- Adaptive control /
- Coupled system /
- MFAC
-
-
-
[1] 冯建强. 猪舍环境对猪群健康的影响与控制[J]. 四川畜牧兽医, 2023, 50(9): 37-38. [2] 凌东. 猪舍环境影响猪群健康的因素与控制措施[J]. 养殖与饲料, 2023, 22(11): 101-103. [3] 冯建强. 猪舍环境对猪群健康的影响与控制措施[J]. 四川畜牧兽医, 2024, 51(1): 41-42. [4] 彭闯. 阳光猪舍健康养殖模式对猪舍内环境及猪只生长性能的影响[J]. 黑龙江畜牧兽医, 2014(10): 45-46. [5] 兰春杰. 猪舍设计与猪圈环境控制等因素对猪生长发育的影响[J]. 畜牧兽医科技信息, 2014(7): 76. [6] 张海军, 潘广辉. 猪舍环境对猪群健康的影响及调控措施[J]. 农业工程技术, 2023, 43(36): 80-81. [7] 阚盼盼, 程洪丽, 李雪如. 基于模糊PID的仔猪舍温度控制系统[J]. 智慧农业导刊, 2022, 2(19): 18-20. [8] 谢秋菊. 基于模糊理论的猪舍环境适应性评价及调控模型研究[D]. 哈尔滨: 东北农业大学, 2015. [9] 顾俊, 张宇. 模糊控制的应用现状与发展趋势[J]. 化工自动化及仪表, 2017, 44(9): 811-812. [10] 钱东平, 王建新, 隋美丽, 等. 畜禽舍环境温度监控系统模糊控制算法的实现[J]. 农业机械学报, 2005, 36(12): 95-98. [11] 崔和瑞, 李曼, 高峰. 基于模糊控制的畜禽舍环境监控系统的研究[J]. 计算机工程, 2006, 32(21): 224-225. [12] 戴春霞, 赵德安. 基于模糊控制的畜禽舍环境温湿度监控系统[J]. 农机化研究, 2008, 30(2): 169-171. [13] 张新荣. 基于模糊控制的水产养殖环境参数监控系统设计[J]. 安徽农业科学, 2010, 38(26): 14761-14763. [14] WANG W, HOU Z. Model-free adaptive parking control for four-wheel vehicle[C]//2022 13th Asian Control Conference (ASCC). Jeju Island, Korea: IEEE, 2022: 2150-2156.
[15] YUAN D, WANG Y. An unmanned vehicle trajectory tracking method based on improved model-free adaptive control algorithm[C]//2020 9th Data Driven Control and Learning Systems Conference (DDCLS). Liuzhou: IEEE, 2020: 996-1002.
[16] GAO B, CAO R, HOU Z, et al. Model-free adaptive MIMO control algorithm application in polishing robot[C]//2017 6th Data Driven Control and Learning Systems (DDCLS). Chongqing: IEEE, 2017: 135-140.
[17] GUO Y, HOU Z, LIU S, et al. Data-driven model-free adaptive predictive control for a class of MIMO nonlinear discrete-time systems with stability analysis[J]. IEEE Access, 2019, 7: 102852-102866.
[18] ZHU Y, HOU Z. Controller compact form dynamic linearization based model free adaptive control[C]//51st IEEE Conference on Decision and Control (CDC). Maui, Hawaii: IEEE, 2012: 4817-4822.
[19] HOU Z, JIN S. Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems[J]. IEEE Transactions on Neural Networks, 2011, 22(12): 2173-2188.