Design and optimization of swing arm loading and unloading structure of monorail conveyor for hilly orchard and tea garden
-
摘要:目的
针对现有的山地果茶园运输机械功能单一,传统的起重搬运装备难以适用、人工装卸劳动强度大的问题,本文优化设计一种单轨运输机摆臂式装卸结构以满足山地果茶园装卸需求。
方法根据山地果茶园电动单轨运输机的基本参数信息,设计摆臂式装卸方案,装卸装置最大装卸高度为700 mm、最大装卸质量为 200 kg;针对传统摆臂式装卸结构油缸载荷大和负载突变的问题,对传统的摆臂式装卸结构进行动力学与运动学分析,并通过 ADAMS 参数化建模和优化,设计了一种绳索−举升臂联动的装卸结构;利用基于精英策略的快速非支配排序遗传算法(Non-dominated sorting genetic algorithms Ⅱ,NSGA-Ⅱ)进行结构尺寸的多目标优化;最后,进行绳索联动装卸结构的动力学仿真,试制样机并进行载质量和摆动试验测试。
结果ADAMS 参数化建模与优化可以增大装卸范围、降低工作所需的油缸驱动拉力,使传统摆臂式装卸结构的最大驱动力降低了 12.0%;优化后的绳索联动装卸结构理论最大驱动推力为 5 697 N、最大驱动拉力为 9 203 N,比传统的摆臂式装卸结构的理论最大驱动推力降低了 41.2%、最大驱动拉力降低了 10.3%、最大驱动推力变化率降低了 53.0%,避免了油缸负载突变,负载变化曲线更加平稳。仿真和样机试验结果表明,绳索联动装卸结构具有先进性和可行性。
结论本文对摆臂式装卸结构进行设计与优化,提出了一种绳索联动装卸结构,能够满足单轨运输机装卸需求,可以在丘陵山地果茶园生产实践中应用推广。
Abstract:ObjectiveTo solve the problem of single function of existing transportation machinery for hilly orchard and tea garden, and traditional lifting and handling equipment being difficult to apply and mainly relying on high intensity manpower, a swing arm loading and unloading structure for monorail conveyor is designed and optimized to meet the loading and unloading needs in hilly orchard and tea garden.
MethodBased on the basic parameters of the electric monorail conveyor in hilly orchard and tea garden, a swing arm loading and unloading scheme was designed with the maximum loading and unloading height of 700 mm and the maximum loading and unloading mass of 200 kg. The motion and force of traditional swing arm loading and unloading structure were analysed, and a rope lifting arm linkage loading and unloading structure was designed through ADAMS parameterized modelling and optimization. Non-dominated sorting genetic algorithms Ⅱ(NSGA-II) was used for multi-objective optimization of the structural dimension. The dynamic simulation, prototype making, as well as load and swing test of rope linked loading and unloading structure were conducted.
ResultThe ADAMS parameterized modelling and optimization increased the loading and unloading range and reduced the required hydraulic cylinder driving tension for work. The maximum driving force decreased by 12.0% compared with the traditional swing arm loading and unloading structure. The theoretical maximum driving force was
5697 N and the maximum pulling force was 9 206 N after multi-objective optimization. Compared with the traditional swing arm loading and unloading structure, the theoretical maximum driving force reduced by 41.2%, the maximum pulling force reduced by 10.3% and the change rate of the maximum pulling force reduced by 53.0%, which could avoid the sudden change of oil cylinder load and make the load change curve smoother. The results of simulation and prototype tests showed the progressiveness and feasibility of the rope linkage handling structure.ConclusionThe designed and optimized swing arm loading and unloading structure can meet the loading and unloading needs of monorail conveyor in hilly orchard and tea garden, and can be applied and promoted in production practice of hilly and mountainous areas.
-
苦楝Melia azedarach又名翠树、楝树、紫花树、森树等,为楝科楝属落叶乔木,分布于中国、韩国、日本、印度、斯里兰卡、印度尼西亚和澳大利亚等地,欧洲、美洲也有栽培[1].苦楝在我国分布广泛,水平分布为北纬18° ~ 40°,南至海南省崖县,北到河北保定和山西运城、陕西渭南、陇南地区,东至台湾、沿海各省,西到四川、云南保山[2].它生长速度快、木材材质优良、纹理美丽,易加工,可用于家具、建筑、农具、船舶、乐器制作等方面,木材抗白蚁、抗虫蛀、耐腐.苦楝耐烟尘,能大量吸收有毒有害气体,是优良的城市及工矿区绿化树种,也是我国南方四旁绿化常用树种[3-4].苦楝的根、皮、花、果均可入药,也可作为植物源农药[5].遗传多样性是生物多样性的重要组成部分,SRAP(Sequence-related amplified polymorphism,相关序列扩增多态性)结合了AFLP及RAPD各自的优点,方便快速,只需要极少量DNA材料,且不需要预先知道DNA序列信息,即可快速获得大量的信息,试验结果稳定可靠,且再现性较高,重复性较好[6-7].目前为止,国内对于苦楝的遗传多样性分析,鲜见开展过SRAP的研究.本试验采用单因素和正交试验设计从DNA、dNTPs、Mg2+、引物和TaqDNA聚合酶5个组分浓度对苦楝SRAP-PCR反应体系进行优化,旨在寻找一种高效、快速、经济的试验方法,建立适合苦楝的SRAP-PCR反应体系,为进一步应用SRAP技术对苦楝群体遗传多样性、种质资源鉴定等研究提供参考[7].
1. 材料与方法
1.1 材料
苦楝幼叶于2013年7月取自华南农业大学苗圃,随用随采,用于苦楝基因组DNA的提取,采集叶片分别为海南三亚、广东兴宁、广西梧州、福建建瓯、江西南昌、安徽利辛、陕西蒲城、河北邯郸种源.所用正向引物序列为Me19(TGAGTCCAAACCGGTTG)和Me27(TGGGGACAACCCGGCTT),反向引物序列为Em2(GACTGCGTACGAATTTGC)、Em4(GACTGCGTACGAATTTGA)和Em5(GACTGCGTACGAATTAAC).
1.2 主要试剂和仪器
用于SRAP-PCR反应的Taq酶、dNTPs、Mg2+为TaKaRa公司产品,引物由北京华大基因研究中心合成,PCR反应在东胜创新生物技术有限公司的PCR扩增仪上进行,DNA浓度和纯度使用超微量紫外分光光度计(Thermo Nanodrop 2000)检测.
1.3 基因组DNA的提取
苦楝基因组DNA提取参照上海生工生物工程有限公司柱式基因组DNA提取试剂盒说明书进行.所提取的基因组DNA用8 g·L-1琼脂糖凝胶电泳检测品质,并采用超微量紫外分光光度计检测DNA的浓度和纯度,然后将DNA稀释至50 ng·μL-1,置于-20 ℃条件下保存备用.
1.4 PCR扩增
SRAP-PCR反应程序为:94 ℃预变性5 min;94 ℃变性1 min,35 ℃复性1 min,72 ℃延伸1 min,5个循环;94 ℃变性1 min,50 ℃复性1 min,72 ℃延伸1 min,30个循环;72 ℃延伸10 min.扩增产物采用20 g·L-1的琼脂糖凝胶电泳,电泳后在自动凝胶图像分析仪上拍照分析.
1.5 PCR反应体系单因素分析
对影响苦楝SRAP-PCR反应的主要因素(模板DNA、dNTPs、Mg2+、引物和Taq酶)进行单因子试验.对各影响因子分别设置8个梯度处理:模板DNA为0、10、20、30、40、50、60和70 ng;dNTPs为0、0.05、0.10、0.15、0.20、0.25、0.30和0.35 mmol · L-1;Mg2+为0、1.0、1.5、2.0、2.5、3.0、3.5和4.0 mmol·L-1;引物为0、0.16、0.24、0.32、0.40、0.48、0.56和0.64 μmol·L-1;Taq DNA聚合酶为0、0.50、0.75、1.00、1.25、1.50、1.75和2.00 U.
1.6 PCR反应体系的正交试验
在对影响苦楝SRAP-PCR反应的模板DNA、dNTPs、Mg2+、引物和Taq酶进行单因子试验后采用L16(45)正交试验设计,共16个处理,每个处理设2个重复,各因素水平见表 1.根据电泳条带的多少、清晰度及背景颜色进行打分.最优的得5分,最差的得1分,并计算每个因素在不同水平下的平均得分[8].
表 1 SRAP-PCR正交试验设计L 16(45)及试验结果Table 1. L 16(45) Orthogonal designs and results of SRAP-PCR reaction2. 结果与分析
2.1 单因素试验分析
以SRAP-PCR反应产物电泳得到的条带数目较多且清晰为筛选原则,对反应体系中起主要作用的5个因素进行单因素浓度梯度筛选试验[9-12],每个因素设置8个浓度梯度.试验结果表明:在25 μL反应体系中,模板DNA为25 ~ 40 ng、dNTPs为0.125 ~ 0.200 mmol·L-1、Mg2+为1.75 ~ 2.25 mmol·L-1、引物为0.40 ~ 0.52 μmol·L-1、Taq DNA聚合酶为0.50 ~ 1.25 U时扩增效果好,条带较多且清晰,故将其选为后续正交试验的适宜浓度范围.
2.2 苦楝SRAP-PCR正交反应体系的优化
以上述单因素试验确定的各因素适宜浓度范围为基础,采用L 16(45)正交设计对SRAP-PCR反应体系进行优化(表 1),并根据电泳条带的多少、清晰度及背景颜色(图 1)对16个处理进行打分,打分结果如表 1所示,从2次的得分来看,重复间差异不大,试验的一致性较好,其中处理5、处理7、处理8和处理9效果较好,评分均为4分,而处理15效果不好,评分仅为1.0分.从图 2可见,模板DNA 30 ng、dNTPs 0.125 mmol·L-1、Mg2+ 2.25 mmol·L-1、引物0.48 μmol·L-1、Taq DNA聚合酶0.75 U、反应总体积25 μL时得分较高,实现最佳扩增,确定为最优组合.
2.3 苦楝SRAP-PCR反应体系稳定性的检测
为了验证体系的准确性,以来自海南三亚、广东兴宁、广西梧州、福建建瓯、江西南昌、安徽利辛、陕西蒲城、河北邯郸的8个苦楝种源DNA为模板,选取引物Me27/Em2、Me27/Em4进行SRAP-PCR验证,其结果如图 3所示,每个种源对每个引物均有清晰的条带,且不同种源间条带有差异.由此可见,本试验建立的SRAP-PCR体系稳定可靠,适用于苦楝后续的SRAP分析.
3. 结论
本试验建立并优化了适应苦楝SRAP-PCR的反应体系,前期对苦楝模板DNA、Mg2+、引物和Taq酶进行单因子试验,研究发现,SRAP对苦楝DNA浓度的要求不高,有一个较宽的浓度适宜范围,在25 μL体系中,模板DNA为10 ~ 70 ng时都扩增出了较清晰、带型基本相同的谱带;dNTPs设计的8个浓度梯度中,0.1 ~ 0.2 mmol·L-1范围内能扩增出清晰谱带,且条带基本相同,浓度低于0.1 mmol·L-1时,扩增条带弥散,高于0.2 mmol·L-1时,出现条带丢失的现象;Mg2+为2.00 mmol·L-1左右时扩增条带较清晰且数量多;引物介于0.48 ~ 0.64 μmol·L-1之间均能产生较为清晰的条带,且带型基本上保持一致,条带数并没有随着浓度的增加而增加;Taq DNA聚合酶用量在0.50 ~ 2.0 U范围内均可以得到清晰的带型,对其用量要求不高.进一步对苦楝SRAP-PCR的反应体系进行正交试验,并根据电泳条带的多少、清晰度及背景颜色对16个处理进行打分,从2次的得分来看,重复间差异不大,试验的一致性较好,其中处理5、处理7、处理8和处理9效果较好,评分均为4.0分,而处理15效果不好,评分仅为1.0分.根据得分可知,在25 μL反应体系中,当模板DNA 30 ng、dNTPs 0.125 mmol·L-1、Mg2+ 2.25 mmol·L-1、引物0.48 μmol·L-1、Taq DNA聚合酶0.75 U时,实现最佳扩增,确定为最优组合.以来自海南三亚、广东兴宁、广西梧州、福建建瓯、江西南昌、安徽利辛、陕西蒲城、河北邯郸的8个苦楝种源DNA为模板,选取引物Me27/Em2、Me27/Em4进行SRAP-PCR反应体系稳定性验证,结果表明,筛选体系能很好地满足苦楝基因组SRAP-PCR扩增的要求且不同种源间条带有差异.
-
表 1 设计变量对驱动力(F)的敏感度
Table 1 Sensitivity of design variables to driving force (F)
序号
No.变量
Variable最大推力敏感度
Sensitivity of
the max. thrust最大拉力敏感度
Sensitivity of
the max. tension1 DV_AX 5.582 2.700 2 DV_AY 61.379 32.866 3 DV_CX −29.330 −14.862 4 DV_CY −295.160 −254.710 5 DV_DX 0 −12.062 6 DV_DY −25.644 15.763 7 DV_BC −80.462 23.032 8 DV_CBD 701.140 374.030 表 2 优化前后设计变量与目标函数值
Table 2 Design variable and objective function value before and after optimization
优化
OptimizationDV_BC DV_CBD DV_AY 目标函数值/N
Objective function value前 Before 140.000 35.000 100.000 11 802 后 After 145.350 37.073 101.310 10 387 表 3 优化前后参数与优化目标值对比
Table 3 3 Comparison of parameters and objective object values before and after optimization
结构1)
Structure优化
OptimizationL1/mm L2/mm L3/mm β/(°) α1/(°) R/(°) r/(°) f1/N f2/[N·(°)−1] f3/N Ⅰ 前 Before 640 100.00 140.00 35.00 199.47 / / 8440 872 11499 后 After 640 101.31 145.35 37.07 199.47 / / 9694 1168 10263 Ⅱ 前 Before 640 101.31 145.35 37.07 183.70 50 30 12357 2149 7983 后 After 642 40.00 150.00 35.00 183.12 53 30 5697 549 9203 1) Ⅰ:摆臂式结构,Ⅱ:绳索联动结构。
1) Ⅰ: Swing arm structure, Ⅱ: Rope linkage structure.表 4 不同总装载质量的装卸时间
Table 4 The loading or unloading time with different total mass
t/s 项目 Item 0 kg 50 kg 100 kg 150 kg 200 kg 吊卸 Unloading 18.69 18.54 18.00 16.94 16.69 吊装 Loading 19.94 19.59 19.42 19.15 19.07 -
[1] 邱海兰, 邓涵韵, 廖文梅. 农村经济转型的国际经验比较、规律及政策启示[J]. 世界农业, 2023(8): 13-25. [2] 吴伟斌, 韩重阳, 梁荣轩, 等. 基于轮毂电机驱动的山地林果茶园轮式运输车设计与试验[J]. 华中农业大学学报, 2021, 40(3): 286-294. [3] 陈猛, 张衍林, 李善军, 等. 山地果园手扶式单履带运输车设计与试验[J]. 华中农业大学学报, 2019, 38(1): 125-132. [4] 李冲冲. 丘陵果园多功能履带运输车的设计与试验[D]. 南京: 南京农业大学, 2018. [5] 张建莉, 岳丹丹, 吴伟斌, 等. 苗圃田间自走式电动双轨运输机设计与试验[J]. 华中农业大学学报, 2020, 39(6): 113-120. [6] 程方平, 庹洪章, 易文裕, 等. 山地单轨电动遥控运输机设计与试验[J]. 中国农机化学报, 2022, 43(10): 107-112. [7] 李善军, 邢军军, 张衍林, 等. 7YGS-45型自走式双轨道山地果园运输机[J]. 农业机械学报, 2011, 42(8): 85-88. [8] 王乐宁, 侯加林, 李今成, 等. 牵引式方草捆捡拾堆垛机的设计与研究[J]. 农机化研究, 2018, 40(12): 96-100. doi: 10.3969/j.issn.1003-188X.2018.12.018 [9] BABKOV A, VARAVIN V. Rationale for vehicle parameters for the transportation of straw and hay[J]. BIO Web of Conferences, 2021, 37: 37. doi: 10.1051/bioconf/20213700037
[10] 吴伟斌, 冯运琳, 朱余清, 等. 山地果园轮式运输机自装卸装置的设计与分析[J]. 华中农业大学学报, 2016, 35(4): 113-120. [11] 张成. 山地果园轮式运输机升降自卸集成平台的设计与试验[D]. 广州: 华南农业大学, 2018. [12] 胡文武, 吴帆, 蒋蘋, 等. 果园电动双轨运输机启停控制的研究与试验[J]. 河南农业大学学报, 2021, 55(1): 73-79. [13] 陈卫灵, 陈中武, 岳丹丹, 等. 丘陵山地农业索轨运输机械研究进展与优化措施[J]. 南方农机, 2022, 53(17): 13-16. doi: 10.3969/j.issn.1672-3872.2022.17.003 [14] 聂阳文, 胡星, 闫磊. 基于ADAMS的液压挖掘机工作装置优化分析[J]. 计算机仿真, 2019, 36(11): 300-304. doi: 10.3969/j.issn.1006-9348.2019.11.067 [15] 赵敏, 杨波, 李伟. 液压冲击抑制方法研究现状与展望[J]. 中国农机化学报, 2023, 44(9): 123-130. [16] KUMAR A, MAJI K. Selection of process parameters for near-net shape deposition in wire arc additive manufacturing by genetic algorithm[J]. Journal of Materials Engineering and Performance, 2020, 29(5): 3334-3352.
[17] DEV S, SRIVASTAVA R. Experimental investigation and optimization of FDM process parameters for material and mechanical strength[J]. Materials Today: Proceedings, 2020, 26: 1995-1999. doi: 10.1016/j.matpr.2020.02.435
[18] 夏瑞泽, 黄海鸿, 魏邦福, 等. 基于风道系统模块化建模的翅片管蒸发器结构优化[J]. 真空科学与技术学报, 2022, 42(8): 592-600. [19] KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: Past, present, and future[J]. Multimedia Tools and Applications, 2021, 80(5): 8091-8126. doi: 10.1007/s11042-020-10139-6
[20] ZHAO X, LI J, SUN S, et al. Toward structure optimization for the mobile vehicle system based on multiconstraints[J]. Robotic Intelligence and Automation, 2023, 43(1): 75-84. doi: 10.1108/RIA-08-2022-0213
[21] 章培, 唐友刚, 李焱, 等. 基于多目标遗传算法的海上铰接式风力机塔架结构参数优化[J]. 太阳能学报, 2023, 44(8): 460-466. [22] 李海同, 吴崇友, 沐森林, 等. 基于ANSYS-ADAMS的立式油菜割晒机铺放角形成机理[J]. 农业工程学报, 2020, 36(14): 96-105. doi: 10.11975/j.issn.1002-6819.2020.14.012 [23] 朱惠斌, 吴宪, 白丽珍, 等. 基于EDEM-ADAMS仿真的稻茬地双轴破茬免耕装置研制[J]. 农业工程学报, 2022, 38(19): 10-22. doi: 10.11975/j.issn.1002-6819.2022.19.002 [24] 周剑青, 屈福政, 祝德强, 等. 索道用钢丝绳轴向弹性模量有限元仿真研究[J]. 机械设计与制造, 2024(2): 94-104. [25] 陈松阳, 欧阳联格, 张梁, 等. 螺旋式臂架系统固定支座结构优化设计[J]. 现代制造工程, 2022(8): 101-108. -
期刊类型引用(0)
其他类型引用(4)