广东省肇庆市高要区耕地土壤理化性质和微生物特征的空间异质性及综合质量评价

    Spatial heterogeneity of physicochemical property and microbial characteristic and comprehensive quality assessment of farmland soils in Gaoyao District, Zhaoqing City, Guangdong Province

    • 摘要:
      目的 探究县域尺度下耕地土壤理化性质和微生物特征的空间异质性,以及这些因素在土壤综合质量评价中的应用,为耕地可持续利用提供理论支撑。
      方法 采集广东省肇庆市高要区47个监控单元耕地表层土壤样品,结合地统计学和ArcGIS相关技术,分析pH,黏粒、有机质、全氮、碱解氮和全磷含量等土壤理化性质,以及土壤呼吸、微生物量和真菌生物量/细菌生物量等土壤微生物特征的空间异质性,运用主成分分析法、相关性分析法和土壤质量综合指数(GISQ)法,阐明不同因素对耕地土壤综合质量的影响。
      结果 土壤pH,黏粒、有机质、可溶性有机碳、全氮、碱解氮和全磷含量的块金系数介于25%~75%,属于中等空间自相关性,受结构因素和随机因素共同影响;土壤微生物特征指标中,土壤呼吸的块金系数为29.4%,属于中等空间自相关性,但土壤微生物总量以及真菌、放线菌、细菌生物量的块金系数均大于75%,空间自相关性弱,受人类活动等随机因素影响大,空间结构性差。土壤微生物是高要区耕地土壤质量分化的主要驱动因素,特别是土壤微生物总量以及细菌、真菌和放线菌生物量;土壤有机质、全氮和碱解氮含量等理化性质对耕地土壤质量也有较大影响,且有机质、全氮和碱解氮含量呈显著正相关(P<0.05)。高要区耕地土壤质量整体处于良好水平,空间格局呈现为:北部丘陵区>东部平原区>中部平原区>南部丘陵区。
      结论 在县域尺度下,土壤理化性质空间结构相对稳定,土壤呼吸是适宜进行微生物空间变异分析的指标,土壤微生物量及结构在县域尺度内存在明显的空间异质性;土壤理化性质和微生物特征指标共同应用于耕地土壤综合质量评估能更加全面地反映耕地土壤质量的变化。

       

      Abstract:
      Objective To examine the spatial heterogeneity of soil physicochemical property and microbial characteristic at the county scale and their application in soil comprehensive quality assessment, and offer a theoretical foundation for sustainable use of cultivated land.
      Method Surface soil samples of farmland from 47 monitoring units in Gaoyao District, Zhaoqing City, Gunagdong Province were collected. The spatial heterogeneity of soil physicochemical properties such as pH, the contents of clay, organic matter, total nitrogen, alkali-hydrolyzed nitrogen and total phosphorus, as well as soil microbial characteristics including soil respiration, mircrobial biomass, and fungi biomass/bacteria biomass were analyzed combining geostatistics and ArcGIS-related techniques. By employing principal component analysis, correlation analysis and general indicator of soil quality (GISQ) method, we elucidated the influence of different factors on the comprehensive quality of farmland.
      Result The nugget coefficients of soil pH, as well as clay, organic matter, dissolved organic carbon, total nitrogen, alkali-hydrolyzed nitrogen, total phosphorus contents ranged from 25% to 75%, indicating moderate spatial autocorrelation, and was affected by both structural and random factors. Among the soil microbial characteristic indicators, the nugget coefficient of soil respiration was 29.4%, indicating moderate spatial autocorrelation, but the nugget coefficients of the total soil microbial biomass, as well as fungi, actinomycetes, bacteria biomass were all greater than 75%, indicating weak spatial autocorrelation and poor spatial structure, and influenced by random factors such as human activities. Soil microorganisms were the primary driving factors of soil quality differentiation of farmland in Gaoyao District, especially the total soil mricrobial biomass, as well as bacterial, fungi, actinomycete biomass. Physicochemical properties such as soil organic matter, total and alkali-hydrolyzed nitrogen contents also had considerable impact on farmland soil quality. Additionally, organic matter, total and alkali-hydrolyzed nitrogen contents were significantly positively correlated (P<0.05). The soil quality of farmland in Gaoyao District was generally in a good level, the spatial pattern was presented as northern hilly area > eastern plain area > central plain area > southern hilly area.
      Conclusion At the county scale, the spatial structure of soil physicochemical properties is relatively stable, and soil respiration is a suitable indicator for analyzing microbial spatial variability. Soil microbial biomass and structure exhibit significant spatial heterogeneity at the county scale. The combined application of soil physicochemical property and microbial characteristic indicators in soil quality evaluation can more comprehensively reflect the changes in the farmland quality.

       

    /

    返回文章
    返回