• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

不同放养密度稻虾综合种养模式的水质评估及经济效益评价

胡译然, 杜林森, 李奎, 李峰, 王华

胡译然, 杜林森, 李奎, 等. 不同放养密度稻虾综合种养模式的水质评估及经济效益评价[J]. 华南农业大学学报, 2024, 45(6): 918-928. DOI: 10.7671/j.issn.1001-411X.202403024
引用本文: 胡译然, 杜林森, 李奎, 等. 不同放养密度稻虾综合种养模式的水质评估及经济效益评价[J]. 华南农业大学学报, 2024, 45(6): 918-928. DOI: 10.7671/j.issn.1001-411X.202403024
HU Yiran, DU Linsen, LI Kui, et al. Water quality assessment and economic benefit evaluation of integrated rice-red crayfish cultivation system under different stocking densities[J]. Journal of South China Agricultural University, 2024, 45(6): 918-928. DOI: 10.7671/j.issn.1001-411X.202403024
Citation: HU Yiran, DU Linsen, LI Kui, et al. Water quality assessment and economic benefit evaluation of integrated rice-red crayfish cultivation system under different stocking densities[J]. Journal of South China Agricultural University, 2024, 45(6): 918-928. DOI: 10.7671/j.issn.1001-411X.202403024

不同放养密度稻虾综合种养模式的水质评估及经济效益评价

基金项目: 国家重点研发计划(2021YFD1700804);湖南省水利厅项目(XSKJ2022068-32);湖南省重点研发计划(2021NK2059);国家自然科学基金(42377319);湖南省自然科学基金(2023JJ30308);长沙市自然科学基金(kq2208078);湖南省水产产业技术体系项目(HARS-07)
详细信息
    作者简介:

    胡译然,硕士研究生,主要从事农业面源污染研究,E-mail: huyiran@stu.hunau.edu.cn

    通讯作者:

    王 华,教授,博士,主要从事农业生态和环境生态研究,E-mail: wangchina926@hunau.edu.cn

  • 中图分类号: S511.32;S966.12;X824

Water quality assessment and economic benefit evaluation of integrated rice-red crayfish cultivation system under different stocking densities

  • 摘要:
    目的 

    比较不同放养密度稻虾综合种养模式与传统水稻单作模式的水体环境质量及经济效益,探索洞庭湖区稻虾种养的科学模式。

    方法 

    采用小区试验的方法,共设置3个处理:放养密度为300 kg·hm−2的低密度稻虾处理、放养密度为375 kg·hm−2的高密度稻虾处理和水稻单作处理。分别在水稻不同生长时期进行水样采集和理化性质分析,采用综合水质指数评价法对3种模式进行水体质量评价,同时比较不同模式的经济效益。

    结果 

    溶解性总固体含量、pH、NH4+−N含量、化学需氧量和溶解氧含量这5项水体理化指标是田间水质变化的主要影响因素。在成熟期,相较于低密度稻虾处理虾沟水体,高密度稻虾处理虾沟水体总N含量显著提升10.5%(P<0.05),总P含量上升3.6%,化学需氧量显著提升26.2%(P<0.05)。在水稻成熟期,低密度稻虾处理水体质量指数达到0.72,显著高于高密度稻虾处理(P<0.05)。成本和收益计算结果显示,稻虾综合种养模式的经济效益较水稻单作模式提升6~9倍,且低密度稻虾处理的经济效益是高密度稻虾处理的1.47倍。

    结论 

    在稻虾综合种养模式中选择合适的虾养殖密度,可有效降低农业面源污染、提高稻田经济效益和环境效益,具有较好的推广潜力。以上研究结果为洞庭湖区农业面源污染防治措施制定提供了数据支撑。

    Abstract:
    Objective 

    To compare the water environment quality and economic benefits of rice-red crayfish integrated cultivation model under different stocking densities and traditional rice monocropping model, and explore the scientific model of rice-red crayfish cultivation in Dongting Lake area.

    Method 

    Using the method of plot experiment, three treatments were set up: Low density rice-red crayfish treatment with stocking density of 300 kg·hm−2, high density rice-red crayfish treatment with stocking density of 375 kg·hm−2 and rice monocropping treatment. Water samples were collected and their physico-chemical properties were analyzed at different growth stages of rice. Comprehensive water quality index evaluation method was used to evaluate the water quality of three models, and the economic benefits of different models were compared.

    Result 

    Total dissolved solid content, pH, NH4+-N content, chemical oxygen demand, and dissolved oxygen content were the primary five factors affecting water quality changes. At ripening stage, compared to the ditch water of low density rice-red cayfish theatment, the ditch water of high density rice-red cayfish treatment showed increases of total N content by 10.5% (P<0.05), total P content by 3.6%, and chemical oxygen demand by 26.2% (P<0.05). At rice ripening stage, the water quality index of the low density rice-red cayfish treatment reached 0.72, significantly higher than that of high density rice-red cayfish treatment (P<0.05). The cost and benefit calculations showed that the integrated rice-crayfish model’s economic benefits were 6−9 times higher than that of rice monocropping model, and low density rice-red cayfish’s economic benefits were 1.47 times of high density rice-red cayfish treatment.

    Conclusion 

    The suitable breeding density of red crayfish can effectively reduce the pollution of agricultural non-point sources, significantly increase the economic and envrionment benefits of rice fields, and have a good popularization potential. These findings provide a data support for formulating measures to prevent agricultural non-point source pollution in the Dongting Lake region.

  • 图  1   水体理化指标在不同处理和水稻各生长时期的变化

    RCL:低密度稻虾模式田面水体,RCL-G:低密度稻虾模式虾沟水体,RCH:高密度稻虾模式田面水体,RCH-G:高密度稻虾模式虾沟水体,RM:水稻单作模式田面水体;P1:分蘖期,P2:拔节期,P3:孕穗期,P4:扬花期,P5:灌浆期,P6:成熟期;各小图中柱子上方的不同小写字母表示相同生长时期不同处理间差异显著(P<0.05,Duncan’s法)。

    Figure  1.   Physico-chemical indicator changes of water under different treatments and in different growth periods of rice

    RCL: Surface water of low density rice-red crayfish model, RCL-G: Ditch water of low density rice-red crayfish model, RCH: Surface water of high density rice-red crayfish model, RCH-G: Ditch water of high density rice-red crayfish model, RM: Surface water of rice monocropping model; P1: Tillering stage, P2: Jointing stage, P3: Booting stage, P4: Flowering stage, P5: Filling stage, P6: Ripening stage; Different lowercase letters above the columns in each figure indicate significant differences among different treatments in the same growth period (P<0.05, Duncan’s method).

    图  2   水体各指标间的相关性分析

    1:pH,2:溶解氧含量,3:电导率,4:溶解性总固体含量,5:总N含量,6:总P含量,7:NH4+−N含量,8:NO3-−N含量,9:化学需氧量;“*”表示在P<0.05水平显著相关(Pearson法)。

    Figure  2.   Correlation analysis among all water indexes

    1: pH, 2: Dissolved oxygen content, 3: Electrical conductivity, 4: Total dissolved solid content, 5: Total N content, 6: Total P content, 7: NH4+-N content,8: NO3-N content, 9: Chemical oxygen demand; “*” indicates significant correlation at P<0.05 (Pearson method).

    图  3   不同处理以及水稻不同生长时期的水体质量分析

    RCL:低密度稻虾模式田面水体,RCL-G:低密度稻虾模式虾沟水体,RCH:高密度稻虾模式田面水体,RCH-G:高密度稻虾模式虾沟水体,RM:水稻单作模式田面水体;P1:分蘖期,P2:拔节期,P3:孕穗期,P4:扬花期,P5:灌浆期,P6:成熟期;柱子上方的不同小写字母表示相同生长时期不同处理间差异显著(P<0.05,Duncan’s法)。

    Figure  3.   Analysis of water quality under different treatments and in different growth periods of rice

    RCL: Surface water of low density rice-red crayfish model, RCL-G: Ditch water of low density rice-red crayfish model, RCH: Surface water of high density rice-red crayfish model, RCH-G: Ditch water of high density rice-red crayfish model, RM: Surface water of rice monocropping model; P1: Tillering stage, P2: Jointing stage, P3: Booting stage, P4: Flowering stage, P5: Filling stage, P6: Ripening stage; Different lowercase letters above the columns indicate significant differences among different treatments in the same growth period (P<0.05, Duncan’s method).

    表  1   试验地土壤基本理化性质

    Table  1   Basic physical-chemical properties of the tested soil

    处理
    Treatment
    pH w/(g·kg−1) w/(mg·kg−1)
    总N
    Total N
    总P
    Total P
    总K
    Total K
    有机质
    Organic matter
    速效P
    Available P
    速效K
    Available K
    稻虾
    Rice-red crayfish
    6.02±0.03 0.97±0.07 0.58±0.02 5.69±0.27 27.50±2.24 2.71±0.76 43.94±2.89
    水稻单作
    Rice monocropping
    6.01±0.02 0.98±0.06 0.59±0.01 5.49±0.24 29.80±4.31 2.23±0.50 36.65±2.66
    下载: 导出CSV

    表  2   水体指标的主成分分析结果

    Table  2   Principal component analysis results of water indexes

    指标1)
    Index
    主成分 Principal component 范数值
    Norm value
    公因子方差
    Communality
    1 −0.361 0.553 −0.175 0.527 6.331 0.744
    2 −0.061 −0.257 0.330 0.775 7.328 0.780
    3 0.939 0.158 0.014 0.148 5.233 0.930
    4 0.945 0.138 0.080 0.143 5.262 0.939
    5 −0.649 0.487 0.278 0.019 5.254 0.736
    6 0.271 0.602 0.191 −0.287 5.219 0.554
    7 0.204 −0.042 0.787 0.009 6.265 0.663
    8 −0.036 −0.811 −0.059 0.002 5.568 0.663
    9 0.252 0.147 −0.657 0.205 5.686 0.559
    特征值 Eigenvalue 2.511 1.696 1.314 1.046
    占比/% Percent 27.903 18.847 14.599 11.619
    累积占比/% Cumulative percent 27.903 46.749 61.348 72.967
     1) 1:pH,2:溶解氧含量,3:电导率,4:溶解性总固体含量,5:总N含量,6:总P含量,7:NH4+−N含量,8:NO3-−N含量,9:化学需氧量。
     1) 1: pH, 2: Dissolved oxygen content, 3: Electrical conductivity, 4: Total dissolved solid content, 5: Total N content, 6: Total P content, 7: NH4+-N content,8: NO3--N content, 9: Chemical oxygen demand.
    下载: 导出CSV

    表  3   最小数据集指标的公因子方差和权重

    Table  3   Communality and weight of indicators in minimal data set

    指标
    Index
    公因子方差
    Communality
    权重
    Weight
    溶解性总固体含量
    Total dissolved solid content
    0.939 0.255
    pH 0.744 0.202
    NH4+−N含量
    NH4+-N content
    0.663 0.180
    化学需氧量
    Chemical oxygen demand
    0.559 0.152
    溶解氧含量
    Dissolved oxygen content
    0.780 0.212
    下载: 导出CSV

    表  4   3种处理的水稻产量与产值1)

    Table  4   Rice yield and output value in three treatments

    处理
    Treatment
    有效穗数/(104·hm−2)
    Number of
    productive ears
    每穗总粒数
    Total number of
    grains per panicle
    结实率/%
    Setting
    percentage
    千粒质量/g
    Thousand-seed
    weight
    产量/
    (t·hm−2)
    Yield
    产值/(元·hm−2)
    Output
    value
    LRC 212.2±2.7b 119.6±3.4a 80.1±0.9b 25.6±0.5b 5.21±0.03b 18 235±96b
    HRC 206.2±2.9c 108.3±5.2b 80.3±0.4b 24.3±0.4c 4.35±0.01c 15 225±82c
    R 230.6±4.4a 121.9±2.9a 85.1±0.3a 28.7±0.4a 6.57±0.20a 22 987±94a
     1)LRC:低密度稻虾,HRC:高密度稻虾,R:水稻单作;水稻收购价格为3.5元·kg−1,水稻收购价格不考虑稻虾米溢价;同列数据后的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)。
     1)LRC: Low density rice-red crayfish, HRC: High density rice-red crayfish, R: Rice monocropping; The rice procurement price is 3.5 yuan·kg−1, and its purchase price does not take into account the premium of rice-red crayfish; Different lowercase letters in the same column indicate significant differences among different treatments (P<0.05, Duncan’s method).
    下载: 导出CSV

    表  5   2种放养密度稻虾复合模式中红螯螯虾产量指标1)

    Table  5   Production index of red crayfish in rice-red crayfish integrated systems of two stocking densities

    处理
    Treatment
    产量/(kg·hm−2)
    Production
    产出投入比
    Output-input ratio
    存活率/%
    Survival rate
    LRC 923±8a 1.93±0.10a 79.3±0.2a
    HRC 752±8b 1.36±0.10b 51.8±0.3b
     1)LRC:低密度稻虾,HRC:高密度稻虾;同列数据后的不同小写字母表示处理间差异显著(P<0.05,t检验)。
     1)LRC: Low density rice-red crayfish, HRC: High density rice-red crayfish; Different lowercase letters in the same column indicate significant differences between two treatments (P<0.05, t-test).
    下载: 导出CSV

    表  6   2种放养密度稻虾复合模式中红螯螯虾养殖产量及产值1)

    Table  6   Red crayfish production and output value in rice-red crayfish integrated systems of two stocking densities

    处理
    Treatment
    产量/(kg·hm−2) Production 产量占比/% Production proportion 产值/
    (元·hm−2)
    Output
    value
    小青
    Small
    green
    中青
    Medium
    green
    大青
    Large
    green
    炮头
    Cannon
    head
    小青
    Small
    green
    中青
    Medium
    green
    大青
    Large
    green
    炮头
    Cannon
    head
    LRC 34.5±2.6a 412.5±2.5a 270.0±3.5b 205.5±4.3a 3.7 44.7 29.3 22.3 90 575±102a
    HRC 31.5±3.5a 282.0±1.7b 310.5±4.1a 127.5±2.8b 4.2 37.5 41.3 17.0 73 356±139b
     1) LRC:低密度稻虾,HRC:高密度稻虾;小青、中青、大青和炮头售价分别为64、85、100和128元·kg−1;同列数据后的不同小写字母表示处理间差异显著(P<0.05,t检验)。
     1) LRC: Low density rice-red crayfish, HRC: High density rice-red crayfish; Small green is priced at 64 yuan·kg−1, medium green 85 yuan·kg−1, large green 100 yuan·kg−1, cannon head 128 yuan kg−1; Different lowercase letters in the same column indicate significant differences between two treatments (P<0.05, t-test).
    下载: 导出CSV

    表  7   3种处理的经济效益对比1)

    Table  7   Comparison of economic benefits of three treatments

    处理
    Treatment
    秧苗成本/
    (元·hm−2)
    Seedling
    cost
    化肥成本/
    (元·hm−2)
    Fertilizer
    cost
    饲料成本/
    (元·hm−2)
    Feed
    cost
    虾苗成本/
    (元·hm−2)
    Shrimp seed
    cost
    人工成本/
    (元·hm−2)
    Labor
    cost
    田地租金/
    (元·hm−2)
    Land
    rent
    水稻产值/
    (元·hm−2)
    Rice
    output
    虾产值/
    (元·hm−2)
    Red crayfish
    output
    收益/
    (元·hm−2)
    Profit
    LRC 500 2 920 3 578 9 000 10 140 9 000 18 235 90 575 73 672±198a
    HRC 500 2 920 4 155 12 000 10 140 9 000 15 225 73 356 49 866±221b
    R 500 3 504 3 000 9 000 22 987 6 983±94c
     1) LRC:低密度稻虾,HRC:高密度稻虾,R:水稻单作;收益数据后的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)。
     1) LRC: Low density rice-red crayfish, HRC: High density rice-red crayfish, R: Rice monocropping; Different lowercase letters after the profit data indicate significant differences among treatments (P<0.05, Duncan’s method).
    下载: 导出CSV
  • [1] 康绍忠. 藏粮于水 藏水于技: 发展高水效农业 保障国家食物安全[J]. 中国水利, 2022(13): 1-5.
    [2]

    DENG N, GRASSINI P, YANG H, et al. Closing yield gaps for rice self-sufficiency in China[J]. Nature Communications, 2019, 10: 1725. doi: 10.1038/s41467-019-09447-9

    [3] 程敏. 农业面源污染对农村地表水的影响与对策[J]. 化工设计通讯, 2023, 49(12): 185-187.
    [4] 张佳卓. 中国农业面源污染区域差异及其影响因素分析[D]. 昆明: 云南财经大学, 2020.
    [5] 唐建军, 李巍, 吕修涛, 等. 中国稻渔综合种养产业的发展现状与若干思考[J]. 中国稻米, 2020, 26(5): 1-10.
    [6] 万玉霞. 探究稻虾共生高效生态种养模式与效益[J]. 种子科技, 2019, 37(5): 24.
    [7]

    HOU J, STYLES D, CAO Y, et al. The sustainability of rice-crayfish coculture systems: A mini review of evidence from Jianghan Plain in China[J]. Journal of the Science of Food and Agriculture, 2021, 101(9): 3843-3853. doi: 10.1002/jsfa.11019

    [8]

    WU Y, LI Y, NIU L, et al. Nutrient status of integrated rice-crayfish system impacts the microbial nitrogen-transformation processes in paddy fields and rice yields[J]. Science of the Total Environment, 2022, 836: 155706. doi: 10.1016/j.scitotenv.2022.155706

    [9] 黄国林, 曾斌, 李卫东, 等. 湖南环洞庭湖区稻渔综合种养发展模式与优化建议[J]. 湖南农业科学, 2019(12): 59-63.
    [10]

    NIHALANI S, MEERUTY A. Water quality index evaluation for major rivers in Gujarat[J]. Environmental Science and Pollution Research, 2021, 28(45): 63523-63531. doi: 10.1007/s11356-020-10509-5

    [11]

    SUTADIAN A D, MUTTIL N, YILMAZ A G, et al. Development of river water quality indices: A review[J]. Environmental Monitoring and Assessment, 2015, 188(1): 58.

    [12] 魏征. 盐胁迫对不同水稻品种生理特性和产量的影响[D]. 长沙: 湖南农业大学, 2023.
    [13] 瞿梦洁, 韩玉成, 万智鹏, 等. 稻虾共作水域沉积物有机磷农药残留特征及其对磷循环驱动机制[J]. 农业环境科学学报, 2023, 42(2): 434-442.
    [14] 韩光明, 吴雷明, 张家宏, 等. 稻虾共作模式下不同投饲率对稻、虾生长及氮磷利用的影响[J]. 扬州大学学报(农业与生命科学版), 2022, 43(5): 10-17.
    [15]

    LIU K W, ZHU J Q, LIU K Q, et al. Assessment of precipitation suitable degree from integrated rice-crayfish farming systems in Jianghan Plain of China[J]. Journal of Agrometeorology, 2022, 24(2): 123-132.

    [16] 李进. 水环境理化因子对红螯螯虾繁殖性能和幼体发育的影响研究[D]. 青岛: 中国海洋大学, 2009.
    [17]

    LI T, ZHANG B, ZHU C, et al. Effects of an ex situ shrimp-rice aquaponic system on the water quality of aquaculture ponds in the Pearl River estuary, China[J]. Aquaculture, 2021, 545: 737179. doi: 10.1016/j.aquaculture.2021.737179

    [18]

    NAYAK P K, NAYAK A K, PANDA B B, et al. Ecological mechanism and diversity in rice based integrated farming system[J]. Ecological Indicators, 2018, 91: 359-375. doi: 10.1016/j.ecolind.2018.04.025

    [19] 王世会, 赵志刚, 罗亮, 等. 放养密度对寒区稻−扣蟹共作模式中河蟹生长及水质的影响[J]. 水产学杂志, 2023, 36(2): 100-108.
    [20] 舒斌, 李军涛, 张秀霞, 等. 环境因子对克氏原螯虾Procambarus clarkii免疫指标影响的研究进展[J]. 水产学杂志, 2020, 33(4): 75-80.
    [21]

    LI Y F, WU T Y, WANG S D, et al. Developing integrated rice-animal farming based on climate and farmers choices[J]. Agricultural Systems, 2023, 204: 103554. doi: 10.1016/j.agsy.2022.103554

    [22]

    BASHIR M A, WANG H, SUN W, et al. The implementation of rice-crab co-culture system to ensure cleaner rice and farm production[J]. Journal of Cleaner Production, 2021, 316: 128284. doi: 10.1016/j.jclepro.2021.128284

    [23] 李志福, 吴永红, 刘雪梅, 等. 基于稻虾共作系统水稻收割后水体水质及沉积物重金属风险评估[J]. 华东师范大学学报(自然科学版), 2024(1): 122-33.
    [24]

    FARZADFAR S, KNIGHT J D, CONGREVES K A. Soil organic nitrogen: An overlooked but potentially significant contribution to crop nutrition[J]. Plant and Soil, 2021, 462(1): 7-23.

    [25]

    AKHTAR N, ISHAK M I S, BHAWANI S A, et al. Various natural and anthropogenic factors responsible for water quality degradation: A review[J]. Water, 2021, 13(19): 2660. doi: 10.3390/w13192660

    [26] 倪明理. 投食对稻虾共作生态系统氮素利用的影响[D]. 武汉: 华中农业大学, 2022.
    [27] 侯应霞, 苏应兵. 稻田小龙虾生态养殖模式的效益比较[J]. 养殖与饲料, 2024, 23(1): 13-19.
    [28]

    LI F, FENG J, ZHOU X, et al. Effect of rice-fish/shrimp co-culture on sediment resuspension and associated nutrients release in intensive aquaculture ponds[J]. Archives of Agronomy and Soil Science, 2020, 66(7): 971-982. doi: 10.1080/03650340.2019.1649395

    [29] 徐若诗, 逄勇, 罗缙, 等. 基于WQI的南水北调东线江苏段水质评价及时空分布特征[J]. 环境科学, 2024, 45(9): 5227-5234.
    [30] 富天乙, 邹志红, 王晓静. 基于多元统计和水质标识指数的辽阳太子河水质评价研究[J]. 环境科学学报, 2014, 34(2): 473-480.
    [31] 曹阳阳. 改进层次分析法在地表水质评价中的应用[J]. 水利科技与经济, 2023, 29(9): 41-46.
    [32] 陈华, 张倩, 王照丽, 等. 基于主成分分析与聚类分析的水质综合评价研究[J]. 科技创新与应用, 2023, 13(26): 88-92.
    [33]

    MA Z, LI H, YE Z, et al. Application of modified water quality index (WQI) in the assessment of coastal water quality in main aquaculture areas of Dalian, China[J]. Marine Pollution Bulletin, 2020, 157: 111285. doi: 10.1016/j.marpolbul.2020.111285

    [34] 梁宇辉. “双水双绿”稻虾种养模式水质变化和养分收支研究[D]. 武汉: 华中农业大学, 2022.
    [35] 管卫兵, 刘凯, 石伟, 等. 稻渔综合种养的科学范式[J]. 生态学报, 2020, 40(16): 5451-5464.
    [36] 寇祥明, 韩光明, 吴雷明, 等. 虾苗密度对稻虾共作模式下稻虾生长及氮磷利用的影响[J]. 扬州大学学报(农业与生命科学版), 2020, 41(2): 22-27.
    [37] 王晨, 胡亮亮, 唐建军, 等. 稻鱼种养型农场的特征与效应分析[J]. 农业现代化研究, 2018, 39(5): 875-882.
图(3)  /  表(7)
计量
  • 文章访问数:  604
  • HTML全文浏览量:  18
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-20
  • 网络出版日期:  2024-09-17
  • 发布日期:  2024-09-19
  • 刊出日期:  2024-11-09

目录

    /

    返回文章
    返回