Calibration of contact parameters of ‘Luli’ apple for simulation based on discrete element
-
摘要:目的
构建基于离散元法的苹果颗粒模型,并精确标定其仿真接触参数。
方法采用球形颗粒组成的方式构建‘鲁丽’苹果离散元模型,通过对比分析确定最合适的球形颗粒半径。采用试验与仿真相结合的方法,确定恢复系数和摩擦系数等接触参数。通过方差分析评估苹果接触部位、果实质量和材料类型对接触参数的影响。调整仿真参数以复现不同试验条件,结合数据拟合得到参数方程,并进行验证。
结果苹果的接触部位对其恢复系数的影响不显著。确定了颗粒半径为2 mm的苹果离散元模型,并以此为准,标定了苹果与特高密度和高密度泡棉的恢复系数、静摩擦系数、滚动摩擦系数分别为0.61和0.47、0.46和0.61、
0.0166 和0.0288 ,而苹果相互之间的对应参数分别为0.65、0.42和0.032 0。通过无底圆筒提升试验验证了标定参数的有效性。结论成功构建了苹果离散元模型,研究可为振动收获中接近承接或采后处理装置的设计优化提供理论依据。
Abstract:ObjectiveThe aim of this study was to construct a discrete element model of apples and precisely calibrate the corresponding contact parameters.
MethodThe discrete element model of ‘Luli’ apples was constructed using a spherical particle bonding method, and the optimal particle radius was identified through comparative analysis. A combined method of experimental testing and simulation was adopted to determine the contact parameters, such as the restitution coefficient and friction coefficients. Analysis of variance (ANOVA) was employed to evaluate the effects of collision zone, fruit mass, and foam type on the contact parameters. Various test conditions were simulated to obtain data, which were then used to fit parameter equations. The parameter equations were subsequently verified.
ResultThe collision zone had no significant effect on the coefficient of restitution. A discrete element model witha 2 mm particle radius was established. The calibrated restitution coefficients, static and rolling friction coefficients between the apple particle models and the super-high and high-density foams were 0.61 and 0.47, 0.46 and 0.61,
0.0166 and0.0288 , respectively. The corresponding values for interactions between apple particle models were 0.65, 0.42 and 0.032 0. The effectiveness of the calibrated parameters was verified through a bottomless cylinder lifting experiment.ConclusionThe discrete element model of apple is successfully constructed. This study can provide a theoretical basis for the design and optimization of close-range catching mechanisms in apple vibration harvesting or post-harvest processing devices.
-
Keywords:
- Mechanics /
- Discrete element method /
- Apple particle model /
- Contact parameter /
- Virtual calibration
-
普通大蓟马Megalurothrips usitatus又名豆大蓟马、豆花蓟马,隶属于缨翅目蓟马科大蓟马属,主要分布于澳大利亚、马来西亚、斯里兰卡、菲律宾、斐济、印度、日本等[1-3],在我国海南、台湾、广东、广西、湖北、贵州、陕西等地也均有发生为害[4-5]。据报道,该虫有28种寄主,其中16种为豆科植物,目前它已成为危害华南地区豆科作物的主要害虫[6-9],田间调查和室内试验均表明豇豆为其嗜好寄主[10-11]。普通大蓟马主要以锉吸式口器取食豇豆幼嫩组织的汁液,可造成叶片皱缩、生长点萎缩、豆荚痂疤等,严重影响豇豆品质[12-13]。此外,该虫体积小、发生量大、隐秘性强,大部分时间都躲在花中取食,从豇豆苗期至采收期均可为害[14-15],以上特点均增加了农户的防治难度。当其为害严重时,农户只能增加施药频率和施药量,这也导致该虫对多种常用化学农药产生了严重的抗药性[16-17]。
目前关于普通大蓟马的研究主要集中在生物学特性[18]及综合防治技术[19-20]等层面,随着抗药性的不断发展与研究的不断深入,从分子层面解析普通大蓟马的抗药性机制和寄主选择机制等以寻求新型绿色防控方法势在必行,室内种群的大规模饲养是展开这些研究的基础。化蛹基质作为影响昆虫种群规模的关键因子,韩云等[21]曾指出普通大蓟马在含水量(w)为15%的砂壤土中羽化率显著高于砂土、壤土和黏土,但不适用于室内大规模饲养,因为实际应用中,存在土壤类型无法明确区分、配制砂壤土会增加人工饲养的工作量等问题。土壤以外的其他基质对普通大蓟马化蛹的适合度鲜见研究报道。
本研究以普通大蓟马为试验对象,室内观测其在沙子、蛭石和厨房用纸3种基质及无基质条件下的羽化规律,分析该虫对不同化蛹基质的适合度,以期为普通大蓟马的室内大规模饲养提供基础资料,为该虫的综合治理提供理论依据。
1. 材料与方法
1.1 供试材料
普通大蓟马于2017年采自广东省广州市增城区朱村豇豆田,采回后在RXZ-500C型智能人工气候箱(宁波江南仪器厂)内用豇豆豆荚饲养,饲养条件为温度(26±6) ℃,光照周期12 h光∶12 h暗,相对湿度(70±5)%。室内饲养多代后,选取发育一致的老熟2龄若虫(以体色变为橙红色为标准)进行室内试验。
供试基质包括沙子、蛭石、锯末和厨房用纸,并以无基质作为空白对照。试验前将沙子、蛭石和锯末置于DHG-9140型电热恒温鼓风干燥箱(上海精宏实验设备有限公司)中105 ℃恒温烘烤6 h备用。
1.2 试验方法
首先称取过筛烘干后的沙子50 g 3组,分别加入2.5、3.5和4.5 mL蒸馏水,充分混匀,配制成含水量(w)分别为5%、7%和9%的沙子化蛹基质;称取过筛烘干后的蛭石10 g 3组,分别加入10.0、12.5和15.0 mL蒸馏水,充分混匀,配制成含水量(w)分别为20%、25%和30%的蛭石化蛹基质;称取过筛烘干后的蛭石10 g 3组,分别加入12.5、15.0和17.5 mL蒸馏水,充分混匀,配制成含水量(w)分别为25%、30%和35%的锯末化蛹基质。将以上基质分别转移至350 mL玻璃组培瓶内,基质深度均为5 cm,将厨房用纸对折成合适大小后平铺在组培瓶底部作为基质。在所有基质上放置纱网,再加入1根新鲜的豇豆豆荚(长度约4~5 cm),分别接入50头普通大蓟马老熟2龄若虫,用250目纱布封口后置于人工气候箱中饲养,每日观察并记录成虫羽化数量。每个处理设6次重复。设置不加入任何化蛹基质的空白对照。
含水量的测定方法按以下公式[22]进行:
含水量=实际含水质量/烘干后基质质量×100%。
1.3 数据分析
运用SPSS 24.0软件进行试验数据处理分析,不同基质及含水量对普通大蓟马羽化率、蛹历期和性比(雄性∶雌性)的影响采用单因素方差分析,并运用Duncan’s法检验差异显著性。
2. 结果与分析
2.1 不同基质对普通大蓟马羽化率、蛹历期和性比的影响
普通大蓟马在不同基质中的羽化率、蛹历期和性比具有显著差异(图1)。由图1A可知,普通大蓟马在厨房用纸中的羽化率显著高于其他基质,为54.33%,其次为含水量5%(w)的沙子,羽化率为44.67%;锯末最不适宜于普通大蓟马羽化,在含水量(w)为25%、30%、35%的锯末中普通大蓟马的羽化率分别为10.33%、5.33%、16.67%,显著低于空白对照与其他基质。
图 1 不同基质对普通大蓟马羽化率、发育历期和性比(雄性∶雌性)的影响1~3分别为含水量(w)为5%、7%和1%的沙子,4~6分别为含水量(w)为20%、25%和30%的蛭石,7~9分别为含水量(w)为25%、30%和35%锯末,10:厨房用纸,11:无基质;各图中的不同小写字母表示差异显著(P<0.05,Duncan’s法)Figure 1. Effects of different substrates on eclosion rate, pupa developmental period and male-female ratio of Megalurothrips usitatus1: Sand with 5% moisture, 2: Sand with 7% moisture, 3: Sand with 10% moisture, 4: Vermiculite with 20% moisture, 5: Vermiculite with 25% moisture, 6: Vermiculite with 30% moisture, 7: Sawdust with 25% moisture, 8: Sawdust with 30% moisture, 9: Sawdust with 35% moisture, 10: Kitchen paper, 11: No substrate; Different lowercase leters in the same figure indicated significant difference among different substrate (P<0.05, Duncan’s method)由图1B可知,普通大蓟马在含水量5%(w)的沙子中蛹的发育历期最短,为5.29 d,其次为含水量7%(w)的沙子,为6.01 d,在其他基质中的蛹期则无显著差异,在6.14~7.16 d。
由图1C可知,普通大蓟马在含水量30%(w)的蛭石中性比最高,为0.60,含水量10%(w)的沙子和30%(w)的蛭石性比相对较低,分别为0.12和0.06,在其他基质中性比无显著差异。
2.2 不同基质条件下普通大蓟马的羽化情况
由表1数据可知,沙子含水量(w)为5%时普通大蓟马羽化最早,始于第2天;其次为蛭石,羽化始于第4天,其他条件下羽化均始于第3天;以锯末为基质时羽化最晚,始于第5天。沙子含水量(w)为5%和厨房用纸条件下,羽化高峰出现在第5天,羽化率分别为21%和22.67%;次高峰在第6天,羽化率分别为14.33%和21%。沙子含水量(w)为9%、锯末以及空白对照下羽化高峰出现在第7天,其他条件下羽化高峰均出现在第6天。不同基质类型及含水量条件下,普通大蓟马的羽化均结束于第8天或第9天,与不同基质培养条件下普通大蓟马蛹期之间的差异相对应。
表 1 不同基质对普通大蓟马逐日羽化率的影响1)Table 1. Effects of differents substrates on daily eclosion rate of Megalurothrips usitatus% t/d 沙子含水量(w) Water content in sand 蛭石含水量(w) Water content in vermiculite 5% 7% 9% 20% 25% 30% 1 0 0 0 0 0 0 2 1.67±0.42c 0 0 0 0 0 3 1.00±1.68c 0 0 0 0 0 4 1.33±0.67c 5.33±0.33c 0.33±0.33b 0 0 0 5 21.00±3.82a 5.33±2.17b 2.67±1.91b 3.00±2.30bc 10.33±3.48ab 0.33±0.33b 6 14.33±4.66b 17.33±1.76a 2.67±1.91b 11.67±2.09a 14.67±3.33a 7.67±2.22a 7 2.33±0.80c 5.00±0.85b 8.67±1.84a 6.33±2.28b 7.67±1.74bc 6.67±1.52a 8 0.67±0.42c 0.67±0.67c 0.67±0.42b 4.00±1.35bc 4.00±1.37cd 1.67±0.94b 9 0 0 0.33±0.33b 0.67±0.42b 0 0.67±0.42b 10 0 0 0 0 0 0 3. 讨论与结论
化蛹基质的类型对普通大蓟马化蛹具有一定影响,本研究发现锯末和蛭石不适宜于普通大蓟马化蛹,锯末和蛭石不同含水量条件下大蓟马的羽化率都显著低于空白对照。有研究指出土壤中砂土含量低于30%时,蓟马若虫不能化蛹[23],蓟马在砂壤土中的羽化率也显著高于砂土、黏土、壤土等单一土壤[21]。
化蛹基质的含水量对普通大蓟马化蛹具有显著影响,本研究发现当沙子含水量(w)为5%时,羽化率仅次于厨房用纸,高达44.67%,与孟国玲等[23]关于豆带蓟马Taenithripsglycines在含水量(w)为5.7%时羽化率最高(43.63%)的报道相对一致。韩云等[21]研究发现普通大蓟马在含水量(w)为15%的砂壤土中羽化率最高,为52.08%,而土壤含水量(w)5%时羽化率仅为6.67%。这与本研究结果不符,究其原因可能是不同类型的基质吸水力与保水力不同,导致在相同的绝对含水量下湿度有差异。此外,有研究曾指出高含水量不利于蓟马化蛹[24],这与本研究结果相一致,沙子含水量(w)5%时的羽化率显著高于含水量(w)7%和10%。
在本研究中,成虫性比普遍低于1∶1,含水量(w)30%的蛭石羽化性比最高,为0.6,含水量(w)30%锯末最低,为0.06,其他处理的性比无显著差异,为0.12~0.48。张念台[8]和谭柯[24]在田间调查的结果也显示其成虫性比低于1∶1,后代总是偏于雌性,谭柯[24]则表示后代偏雌性可能是蓟马暴发的原因之一。这与本研究结果相一致,后代偏于雌性。
本研究发现普通大蓟马在厨房用纸中的羽化率最高,蛹发育历期与其他基质相比无明显差异,且以厨房用纸为化蛹基质时,可以清楚地观察到普通大蓟马蛹期的形态特征变化,可以随时根据试验需求收集不同时期的若虫或成虫。虽然沙子含水量(w)5%时蛹发育历期最短且羽化率也较高,但蓟马一旦入土化蛹便无法继续观察形态或收集虫体。因此,本试验条件下,厨房用纸是最适合室内普通大蓟马大量饲养的化蛹基质。
-
表 1 不同质量的苹果在不同泡棉上的水平滚动距离及滚动摩擦系数
Table 1 Horizontal rolling distance and rolling friction coefficient of apples with different weights on different foams
苹果质量/g
Apple weight泡棉类型
Foam type水平滚动距离/mm
Horizonal rolling distance滚动摩擦系数
Rolling friction coefficient<170 高密度 High density 533.32±30.77 0.0289 ±0.0010 特高密度 Ultra-high density 1071.80 ±35.600.0167 ±0.0040 170~190 高密度 High density 524.54±37.24 0.0290 ±0.0010 特高密度 Ultra-high density 1071.80 ±40.800.0167 ±0.0005 >190 高密度 High density 533.35±42.00 0.0289 ±0.0010 特高密度 Ultra-high density 1043.90 ±22.900.0170 ±0.0003 表 2 不同质量苹果间的静摩擦系数
Table 2 Static friction coefficients between apples with different weights
苹果质量/g
Apple weight临界倾角/(°)
Critical tilt angle静摩擦系数
Static friction coefficient< 170 22.48±0.80 0.41±0.02 170~190 21.66±0.39 0.40±0.01 >190 22.5±0.32 0.41±0.01 -
[1] ZHANG Z, IGATHINATHANE C, LI J, et al. Technology progress in mechanical harvest of fresh market apples[J]. Computers and Electronics in Agriculture, 2020, 175: 105606 doi: 10.1016/j.compag.2020.105606
[2] 文恩杨, 李玉华, 牛子孺, 等. 蒜种颗粒离散元模型参数标定[J]. 农机化研究, 2021, 43(5): 160-167. doi: 10.3969/j.issn.1003-188X.2021.05.028 [3] SCHEFFLER O C, COETZEE C J, OPARA U L, et al. A discrete element model (DEM) for predicting apple damage during handling[J]. Biosystems Engineering, 2018, 172: 29-48. doi: 10.1016/j.biosystemseng.2018.05.015
[4] ZHAO H, HUANG Y, LIU Z, et al. Applications of discrete element method in the research of agricultural machinery: A review[J]. Agriculture, 2021, 11(5): 425. doi: 10.3390/agriculture11050425
[5] 徐泳, 李艳洁, 李红艳, 等. 离散元法在农业机械化中应用评述[J]. 农机化研究, 2004(5): 26-30. doi: 10.3969/j.issn.1003-188X.2004.05.008 [6] KAFASHAN J, WIACEK J, RAMON H, et al. Modelling and simulation of fruit drop tests by discrete element method[J]. Biosystems Engineering, 2021, 212: 228-240. doi: 10.1016/j.biosystemseng.2021.08.007
[7] 侯占峰, 戴念祖, 陈智, 等. 冰草种子物性参数测定与离散元仿真参数标定[J]. 农业工程学报, 2020, 36(24): 46-54. doi: 10.11975/j.issn.1002-6819.2020.24.006 [8] FANG W, WANG X, HAN D, et al. Review of material parameter calibration method[J]. Agriculture, 2022, 12(5): 706. doi: 10.3390/agriculture12050706
[9] 张国忠, 陈立明, 刘浩蓬, 等. 荸荠离散元仿真参数标定与试验[J]. 农业工程学报, 2022, 38(11): 41-50. doi: 10.11975/j.issn.1002-6819.2022.11.005 [10] 牛智有, 孔宪锐, 沈柏胜, 等. 颗粒饲料破损离散元仿真参数标定[J]. 农业机械学报, 2022, 53(7): 132-140. doi: 10.6041/j.issn.1000-1298.2022.07.013 [11] 王宪良, 胡红, 王庆杰, 等. 基于离散元的土壤模型参数标定方法[J]. 农业机械学报, 2017, 48(12): 78-85. doi: 10.6041/j.issn.1000-1298.2017.12.009 [12] 贾富国, 韩燕龙, 刘扬, 等. 稻谷颗粒物料堆积角模拟预测方法[J]. 农业工程学报, 2014, 30(11): 254-260. doi: 10.3969/j.issn.1002-6819.2014.11.031 [13] 王云霞, 梁志杰, 张东兴, 等. 基于离散元的玉米种子颗粒模型种间接触参数标定[J]. 农业工程学报, 2016, 32(22): 36-42. doi: 10.11975/j.issn.1002-6819.2016.22.005 [14] YAN D, YU J, WANG Y, et al. A review of the application of discrete element method in agricultural engineering: A case study of soybean[J]. Processes, 2022, 10(7): 1305. doi: 10.3390/pr10071305
[15] 任甲辉, 武涛, 刘庆庭, 等. 蔗段离散元仿真建模方法与参数标定[J]. 华南农业大学学报, 2022, 43(3): 124-132. doi: 10.7671/j.issn.1001-411X.202108015 [16] LI C, LI Z, WANG T, et al. Parameter optimization of column-comb harvesting of litchi based on the EDEM[J]. Scientia Horticulturae, 2023, 321: 112216. doi: 10.1016/j.scienta.2023.112216
[17] FAN G, WANG S, SHI W, et al. Simulation parameter calibration and test of typical pear varieties based on discrete element method[J]. Agronomy, 2022, 12(7): 1720. doi: 10.3390/agronomy12071720
[18] 马云海. 农业物料学[M]. 北京: 化学工业出版社, 2015. [19] FU H, YANG J, DU W, et al. Determination of coefficient of restitution of fresh market apples caused by fruit-to-fruit collisions with a sliding method[J]. Biosystems Engineering, 2022, 224: 183-196. doi: 10.1016/j.biosystemseng.2022.10.010
[20] 哈尔滨工业大学理论力学教研室. 理论力学 II[M]. 北京: 高等教育出版社, 2016. [21] FU H, HE L, MA S, et al. ‘Jazz’ apple impact bruise responses to different cushioning materials[J]. Transactions of the ASABE, 2017, 60(2): 327-336. doi: 10.13031/trans.11946
[22] 刘文政, 何进, 李洪文, 等. 基于离散元的微型马铃薯仿真参数标定[J]. 农业机械学报, 2018, 49(5): 125-135. doi: 10.6041/j.issn.1000-1298.2018.05.014 [23] PANG W, STUDMAN C J, WARD G T. Bruising damage in apple-to-apple impact[J]. Journal of Agricultural Engineering Research, 1992, 52: 229-240. doi: 10.1016/0021-8634(92)80063-X
[24] 吴孟宸, 丛锦玲, 闫琴, 等. 花生种子颗粒离散元仿真参数标定与试验[J]. 农业工程学报, 2020, 36(23): 30-38. doi: 10.11975/j.issn.1002-6819.2020.23.004 [25] 李勤良. 颗粒堆积性质和散状物料转载过程的DEM仿真研究[D]. 沈阳: 东北大学, 2010. [26] SCHEFFLER O C, COETZEE C J, OPARA U L. A discrete element model (DEM) for predicting apple damage during handling[J]. Biosystems Engineering, 2018, 172: 29-48. doi: 10.1016/j.biosystemseng.2018.05.015
-
期刊类型引用(11)
1. 刘琅,李文秀,于凯波,吴鹍伦,周行,褚晶,吴朝晖. 控释肥与不同农药联合施用对水稻生长发育、产量和氮素利用率的影响. 江苏农业科学. 2025(02): 68-74 . 百度学术
2. 何意林,沈彤,田天,李国利. 植物源农药5%香芹酚水剂的急性毒性初步研究. 毒理学杂志. 2024(01): 85-87 . 百度学术
3. 张月,宋明丹,塔林葛娃,李月梅. 有机无机肥配施对春小麦产量、养分吸收及土壤矿质氮残留的影响. 江苏农业科学. 2024(17): 80-88 . 百度学术
4. 张一帆,何瑞银,段庆飞,徐勇. 基于CFD-DEM的排肥用波纹管结构优化设计与试验. 浙江农业学报. 2023(01): 191-201 . 百度学术
5. 赵欢欢,付建涛,安玉兴,卢颖林,陈立君,孙东磊. 我国药肥研究现状及前景分析. 热带农业科学. 2023(02): 97-102 . 百度学术
6. 李文秀,吴鹍伦,刘琅,周行,褚晶,吴朝晖. 不同药肥处理对杂交早稻潭两优83生长发育及产量的影响. 杂交水稻. 2023(06): 127-134 . 百度学术
7. 仲凤翔,梅爱中,钱爱林,崔劲松,王春兰. 25%甲氧·茚虫威SC等药剂防治稻纵卷叶螟药效试验. 福建稻麦科技. 2022(01): 31-33 . 百度学术
8. 李文秀,周行,刘琅,吴朝晖. 稻作生产中水、肥、药高效利用及对水稻的影响研究进展. 河南农业科学. 2022(06): 1-12 . 百度学术
9. 邓家欣,韦继光,於虹,姜燕琴,曾其龙,刘红军,蒋佳峰. 不同施肥处理对高丛越橘幼苗生长和生理指标及土壤理化性质的影响. 植物资源与环境学报. 2021(02): 28-34 . 百度学术
10. 王辉. 水稻施肥中多种复合肥的肥效对比试验. 农业开发与装备. 2021(06): 153-154 . 百度学术
11. 于洋,侯新月,袁安丽,高月. 寒区水稻水肥管理技术研究进展. 水利科学与寒区工程. 2021(05): 78-81 . 百度学术
其他类型引用(4)