Interaction mechanism between OsCdc48 and Pik1-H4, and its regulation on rice blast disease resistance
-
摘要:目的
探究Pik1-H4与细胞周期蛋白OsCdc48的互作机制,明确其在稻瘟病抗性中的作用。
方法首先,分别利用酵母双杂交试验和荧光素酶互补试验验证Pik1-H4与OsCdc48的相互作用;然后,通过RT-qPCR分析OsCdc48在稻瘟病菌侵染后的表达情况及组织表达特异性;其次,分析OsCdc48的序列保守性、蛋白结构域、系统进化关系、蛋白质三维结构预测及其亚细胞定位;最后,利用CRISPR/Cas9创制OsCdc48突变体,并对其进行稻瘟病抗性鉴定和病程相关基因表达分析。
结果证实了Pik1-H4与OsCdc48的互作,且OsCdc48受稻瘟病菌侵染诱导表达。OsCdc48在各组织中均有表达,其编码蛋白定位于细胞核与细胞质。OsCdc48在不同物种中序列保守,与玉米和高粱的亲缘关系最近,预测会形成同源六聚体。OsCdc48功能缺失突变体ko-oscdc48病程相关基因上调表达,对稻瘟病抗性增强。
结论本研究为深入揭示OsCdc48与NLR蛋白Pik1-H4调控稻瘟病抗性的机制及水稻抗病育种提供了理论基础。
Abstract:ObjectiveTo investigate the interaction mechanism between Pik1-H4 and cell division cycle protein OsCdc48, clarify its role in rice blast disease resistance.
MethodFirstly, the interactions between Pik1-H4 and OsCdc48 were verified using yeast two-hybrid and luciferase complementation assays. Then, the expression patterns of OsCdc48 after infection of Magnaporthe oryzae and its tissue-specific expression were analyzed by RT-qPCR. Next, the determination of OsCdc48’s sequence conservation, protein domains, phylogenetic relationships, protein 3D structure prediction and subcellular localization were performed. Finally, OsCdc48 mutant was created using CRISPR/Cas9 technology, the resistance identification of transgenic mutant to rice blast disease and expression analysis of pathogenesis-related genes were also conducted.
ResultThe interactions between Pik1-H4 and OsCdc48 were confirmed, and OsCdc48 was induced by rice blast fungus infection. OsCdc48 was expressed in all tissues and was localized to the nucleus and cytoplasm. The sequence of OsCdc48 was conserved across different species, with the closest phylogenetic relationship to maize and sorghum, and it might form homologous hexamers. The OsCdc48 loss-of-function mutant ko-oscdc48 up-regulated the expression of disease-related genes and enhanced the resistance to rice blast disease.
ConclusionThis study lays a theoretical basis for further elucidating the mechanism of OsCdc48 and NLR protein Pik1-H4 regulating blast disease resistance and rice disease-resistant breeding.
-
Keywords:
- Oryza sativa L. /
- Rice blast disease /
- Magnaporthe oryzae /
- Pik1-H4 /
- OsCdc48
-
草地贪夜蛾Spodoptera frugiperda是鳞翅目夜蛾科贪夜蛾属的一种杂食性害虫,主要取食玉米、甘蔗和高粱等农作物,严重时可造成农作物大面积减产,对我国粮食生产安全造成极大危害[1-2]。生物防治是农业绿色发展的重要组成部分,杆状病毒杀虫剂因不会造成环境污染,已应用于部分鳞翅目害虫的防治[3]。其中,苜蓿银纹夜蛾核型多角体病毒(Autographa californica multiple nucleopolyhedrovirus,AcMNPV)由于感染的宿主范围较广,常被用作以草地贪夜蛾为代表的鳞翅目害虫的生物防治剂。杆状病毒表达系统的常用细胞系为草地贪夜蛾Sf9细胞,因此,本研究选择Sf9细胞系作为主要研究对象。
外泌体(Exosome)属于细胞外囊泡(Extracellular vesicles)的一种,直径30~150 nm[4-6]。外泌体的来源为多囊泡胞内体(Multivesicular body),通过其与细胞质膜的融合而释放到细胞外环境中[7-8]。外泌体最早被认为是运输代谢废物的细胞囊泡,但是随着研究的深入,根据不同细胞外环境和细胞来源,外泌体又被认为一般携带膜蛋白、细胞质蛋白、细胞核蛋白、细胞外基质蛋白、代谢产物以及核酸等[9-11]。随着相关研究发现外泌体可以在细胞之间转移microRNA(miRNA)[12],科研学者对该领域产生极大兴趣并进行深入研究。miRNA是一类主要由内源基因转录的长度为19~25 nt的非编码单链小分子RNA,在细胞内具有多种重要的调节作用,首个被报道的miRNA是在秀丽隐杆线虫中被发现的[13-14]。近年来,部分研究已揭示了昆虫编码的miRNAs在杆状病毒感染中所发挥的功能。例如,家蚕编码的miR-8能够靶向BmNPV的早期基因,在敲降bmo-miR-8后,宿主内的病毒载量显著提高[15];过表达bmo-miR-2819能够显著下调其靶基因BmNPV ie-1的表达,从而抑制BmNPV的复制[16];sfr-miR-34-5p能靶向病毒基因odv-e66、ac-78和ie-2,从而影响病毒粒子的产生[17];Zhang等[18]分别转染miRNA模拟物(mimic)于Sf9细胞中,包括mse-miR-317、bmo-miR-6497-5p、novel-miR-153、sfr-miR-10494-3p和bmo-miR-275-3p,其能够分别抑制凋亡通路基因p53、AIF1-1、Eiger-2,转录因子Eip74EF和Toll通路基因Cactus的表达,从而促进AcMNPV在Sf9细胞中的增殖。但是有关昆虫细胞外泌体miRNAs通过胞间信息传递来调控杆状病毒增殖的研究相对较少。因此,本研究使用超速离心纯化、透射电镜观察、高通量测序以及分子生物学等试验手段,研究草地贪夜蛾Sf9细胞外泌体miRNAs在AcMNPV感染中所发挥的功能。
1. 材料与方法
1.1 试验材料
增强型绿色荧光基因eGFP、含有Tn7转座位点的杆状病毒转移载体pFBDM、大肠埃希菌Escherichia coli Top 10菌株、含有AcMNPV bacmid的AcSw106菌株和昆虫细胞Sf9均由华南农业大学分子病毒实验室保存。
限制性内切酶购自NEB公司;PrimeSTAR Max DNA、rTaq聚合酶、DNA marker、NucleoZOL、反转录试剂盒RT reagent kit with gDNA Eraser等购自TaKaRa公司;荧光定量试剂iTaq Universal SYBR® Green Supermix购自Bio-Rad公司;TRIzol试剂购自Invitrogen公司;DNA凝胶回收试剂盒、质粒提取试剂盒购自AXYGEN公司;RNA提取试剂盒购自飞捷公司;fugene HD转染试剂购自Promega公司;SYBR Green Pro Taq HS、miRNA cDNA第一链合成试剂盒购自艾科瑞生物公司,血清、Grace细胞培养基购自Gibco公司。
本研究所用引物如表1所示,miRNA 3′和U6 qPCR引物由miRNA cDNA第一链合成试剂盒提供。
表 1 本研究所用引物Table 1. Primers used in this study引物名称
Primer name引物序列(5′→3′)
Primer sequenceeGFP-Xma I-F AAACCCGGGATGGTGAGCAAGGGCGAGGA eGFP-Kpn I-R AAAGGTACCTTACTTGTACAGCTCGTCCATG novel-27614-qPCR-F GCGGACAATGGTGGCAA novel-30340-qPCR-F GCGTTAGGGAACCGAAGAAA novel-20036-qPCR-F CGAAAAGTCGGTGTGGCTGA novel-6941-qPCR-F CGCGAGCTAAGTCGAAATTTGTA sfr-miR-1a-3p-qPCR-F GCGCGTGGAATGTAAAGAAGT novel-3944-qPCR-F GCGCCATCCCTCACATGAT sfr-miR-10498-5p-qPCR-F CGCGTTGGTCAACGTTCAA novel-1523-qPCR-F CGCGGTCAGGTTGGCC novel-1841-qPCR-F CGCGGATGCGTCGAGTAG novel-37024-qPCR-F GCGCAGCCGAAACTGAAAT novel-4546-qPCR-F GCGCGCTCGTATATTAATTCTC vp39-qPCR-F TGATGCAAGCCGAACAGCTA vp39-qPCR-R GTGTTCGGGTTTGTGGTGTC Sf-GAPDH-qPCR-F TTGCTAACGTCTCGGTCGTC Sf-GAPDH-qPCR-R ATGACACGACCTGTTCCTCG 1.2 试验方法
1.2.1 Sf9细胞的培养
Sf9细胞培养采用含10%(φ)血清的Grace细胞培养基。细胞培养瓶中Sf9细胞密度为80%~90%时,弃除80%培养基,补4 mL培养基,用无菌玻璃吹管将贴壁细胞吹下,弃75%的细胞悬液,补加4 mL培养基,于28 ℃静置培养。
1.2.2 重组杆状病毒AcMNPV-eGFP的构建
使用带酶切位点的引物将eGFP基因进行PCR扩增,用DNA凝胶回收试剂盒将PCR产物纯化、回收后,使用酶切酶连将eGFP片段插入到转移载体pFBDM中。提取阳性质粒,将其转化到含有AcMNPV bacmid的AcSw106菌株中,利用Tn7转座子,在转座酶的作用下完成重组菌AcSw106-eGFP的构建。转座完成后,将菌液均匀涂布于含有对应抗生素的大肠埃希菌LB固体培养基平板上培养,挑取单克隆菌落,进行菌液PCR鉴定;取平板上未长菌落的部分为阴性对照,eGFP基因片段为阳性对照。
利用Bac-to-Bac系统让重组菌株侵染Sf9细胞,侵染后AcMNPV-eGFP bacmid被释放至细胞并表达,于72 h后通过倒置荧光显微镜观察细胞孔内荧光情况,若有绿色荧光则表明获得P0代重组杆状病毒AcMNPV-eGFP。收取该孔细胞培养上清液,传代3次后获得稳定的重组杆状病毒AcMNPV-eGFP。
1.2.3 Sf9细胞外泌体超离纯化
收集AcMNPV感染与未感染Sf9细胞培养72 h的细胞上清液,转移至3 mL 10%(w)蔗糖溶液垫底的344058超速离心管中,超速离心管配平后转移至SW28Ti转子,小心将转子置入超速离心机,18 000 r/min 离心1 h,弃上清液,用RNase-free的PBS缓冲液悬浮;沉淀悬浮后转移至10%、20%、30%、40%、50%(w)的不连续质量分数梯度蔗糖溶液上层,4 ℃条件下于19 000 r/min超速离心4 h;离心后取外泌体所在条带,吸入新超速离心管并稀释,4 ℃条件下于18 000 r/min离心1 h,弃上清液,用RNase-free的PBS缓冲液悬浮,收集后于4 ℃保存备用。
1.2.4 外泌体透射电镜观察
选用0.075 mm孔径碳涂层铜网作为载网,铜网预先经辉光放电处理以增强碳膜的亲水性,增强与样品的结合能力;吸取纯化后外泌体1 μL,用PBS缓冲液稀释10倍,然后将样品滴在干燥的洁净载玻片上,将预处理的铜网悬浮在样品液滴上2 min;去除多余样品,在载玻片上准备1%(w)乙酸铀溶液,并将铜网悬浮在液滴上负染色45 s左右;去除多余染色液,将铜网放置在干燥箱中干燥2 h后于华南农业大学测试中心观察。使用ImageJ软件和纳米颗粒跟踪分析技术对纯化产物进行颗粒直径分析。
1.2.5 RNA提取及cDNA合成
细胞sRNA提取:收集感染AcMNPV-eGFP的Sf9细胞样品并转移至1.5 mL RNase-free EP管中,加入500 μL NucleoZOL裂解样品,加入200 μL RNase-free ddH2O剧烈摇晃15 s,室温静置5 min;随后室温下于12 000 r/min 离心15 min,离心结束后吸取500 μL上清液于另一新的1.5 mL RNase-free EP管中,按照1∶1的体积比加入异丙醇溶液,静置10 min;室温下于12 000 r/min 离心10 min,弃上清液,用预冷的RNase-free ddH2O稀释沉淀,用70%(φ)乙醇溶液重复清洗沉淀3次,于7 500 r/min离心5 min,弃上清液,加入50 μL RNase-free ddH2O稀释沉淀,即获得样品sRNA。参照miRNA cDNA第一链合成试剂盒说明书进行反转录,得到cDNA。
细胞mRNA提取:收集感染AcMNPV-eGFP的Sf9细胞样品并转移至1.5 mL RNase-free EP管中,室温下于500 r/min离心5 min沉淀细胞,弃上清液,加入500 μL PBS缓冲液将细胞清洗3遍,每孔加入100 μL TRIzol裂解液将细胞悬浮;按照飞捷总RNA极速抽提试剂盒说明书进行抽提;参照反转录试剂盒RT reagent kit with gDNA Eraser进行反转录,得到cDNA。
1.2.6 外泌体sRNA测序
提取感染AcMNPV组与未感染组的Sf细胞外泌体sRNA(每组3个重复样本),送至爱基百客公司进行测序分析。首先进行数据预处理,去除低质量碱基,获得clean sRNA序列;通过长度分布统计、公共序列统计等去除非miRNA序列;随后统计已知miRNA和新miRNA的表达量,并以校正后的P<0.05和| log2(Fold change) |>1为指标筛选差异表达基因;预测靶基因,并对靶基因进行KEGG分析。
1.2.7 细胞转染
选择状态良好的Sf9细胞均匀铺入12孔板中,每孔使用1 μL的fugene HD转染试剂,转染2 μg的sfr-miR-1a-3p mimic,8 h后加入AcMNPV(MOI = 1)感染细胞1 h后弃上清液,并用PBS缓冲液清洗孔内细胞3次,加入1 mL含10%(φ)血清的Grace细胞培养基,于28 ℃静置培养。收集AcMNPV感染12、24 h后的细胞样品,通过qPCR检测过表达sfr-miR-1a-3p后AcMNPV的增殖情况。
1.2.8 qPCR检验
qPCR所用仪器为CFX 96荧光定量PCR仪(Bio-Rad,美国),反应条件为两步法。检测miRNA:荧光定量酶为SYBR Green Pro Taq HS,U6为内参基因;检测mRNA:荧光定量酶为iTaq Universal SYBR® Green Supermix,GAPDH为内参基因。miRNA和mRNA的表达量均用2−ΔΔCt计算,所有结果均在进行3次独立试验后,使用GraphPad Prism 9进行统计比较,结果以平均值±标准误表示。
2. 结果与分析
2.1 重组杆状病毒AcMNPV-eGFP的构建
PCR鉴定结果(图1)表明,重组菌AcSw106-eGFP被成功构建。利用重组菌AcSw106-eGFP侵染Sf9细胞,3~5 d后通过倒置荧光显微镜检测到绿色荧光(图2);表明重组杆状病毒AcMNPV-eGFP被成功构建。
2.2 Sf9细胞外泌体纯化与鉴定
AcMNPV-eGFP(MOI=1)感染Sf9细胞72 h(图3A)后,收集细胞培养上清液。随后按照10%、20%、30%、40%、50%(w)不连续蔗糖质量分数梯度进行Sf9细胞外泌体的超速离心,离心结束后观察到在30%、40%蔗糖条带之间有聚集条带(图3B)。收集条带,去蔗糖处理后进行透射电镜负染观察。由结果(图3C)看出,纯化后细胞外囊泡的直径大多分布在30~150 nm,相比于未感染组,Sf9细胞在感染AcMNPV后外泌体数量明显增多,表明病毒感染细胞可促进细胞外泌体的分泌。
图 3 Sf9细胞外泌体的纯化A:Sf9细胞和被AcMNPV感染Sf9细胞荧光检测,B:通过蔗糖质量分数梯度离心纯化细胞外泌体,C:纯化产物的透射电镜观察。Figure 3. Purification of exosomes from Sf9 cellsA: Fluorescence detection of Sf9 cells and Sf9 cells infected by AcMNPV, B: Purification of exosomes by sucrose mass fraction gradient centrifugation, C: Transmission electron microscopy observation of purified product.为进一步鉴定纯化后的细胞外囊泡,通过ImageJ软件分析透射电镜图像,以及采用纳米颗粒跟踪分析技术分析细胞外囊泡直径的分布情况。结果(图4)表明,纯化的细胞外囊泡直径大多分布在30~150 nm,与外泌体直径大小一致,表明成功纯化感染和未感染AcMNPV的Sf9细胞外泌体。
2.3 Sf9细胞外泌体sRNA高通量测序分析
对感染病毒组与未感染病毒组的细胞外泌体(每组3个重复样本)进行sRNA高通量测序分析,在AcMNPV感染Sf9细胞72 h后,外泌体miRNA中共产生11个差异表达的miRNAs,其中,有5个上调(novel-27614、novel-30340、novel-20036、novel-6941、sfr-miR-1a-3p),以及6个下调(novel-3944、sfr-miR-10498-5p、novel-1523、novel-1841、novel-37024、novel-4546)。
得到差异表达miRNA后,根据miRNA与其靶基因的对应关系,对每组差异表达miRNA的靶基因的集合进行KEGG通路富集分析。结果表明,潜在靶基因富集的KEGG通路包括Tight junction通路、cAMP信号通路、PI3K-Akt信号通路、癌症通路、人乳头瘤病毒(Human papilloma virus,HPV)感染通路;这说明外泌体miRNA可能通过调控靶基因的表达影响AcMNPV与宿主细胞Sf9之间的相互作用。
2.4 qPCR验证Sf9细胞外泌体miRNA的差异表达
对高通量测序得到的11个差异表达的miRNAs进行qPCR验证,分别提取AcMNPV-eGFP(MOI = 1)感染Sf9细胞72 h细胞样品及正常Sf9细胞样品(CK)总RNA,并通过miRNA cDNA第一链合成试剂盒在miRNA 3′末端加polyA尾进行反转录。经过验证,与CK相比,有8个miRNAs转录水平与测序结果趋势一致,其中2个上调(novel-27614、sfr-miR-1a-3p),6个下调(novel-3944、sfr-miR-10498-5p、novel-1523、novel-1841、novel-37024、novel-4546)(图5)。
图 5 AcMNPV-eGFP感染Sf9细胞后外泌体差异表达miRNA的验证“**”“***”“****”分别表示在P<0.01、P<0.001和P<0.000 1水平差异显著(t检验)。Figure 5. Validation of differentially expressed miRNA in exosomes of Sf9 cells infected by AcMNPV-eGFP“**” “***” and “****” indicate significant differences at P<0.01, P<0.001 and P<0.000 1 respectively (t test).2.5 sfr-miR-1a-3p对AcMNPV增殖的影响
综合分析,最终选择在感染AcMNPV后上调的miRNA sfr-miR-1a-3p作为后续试验研究对象。根据sfr-miR-1a-3p成熟序列(uggaauguaaagaaguauggag)合成其mimic,由于单链不稳定易降解,所以合成的mimic为双链RNA,mimic和阴性对照由吉玛公司负责合成。随后将sfr-miR-1a-3p mimic转染至Sf9细胞中,并通过qPCR检测其转录水平。结果(图6A)表明,在转染8、20、32 h后sfr-miR-1a-3p均过量表达,并且在8 h时表达量最高,20 h后表达趋于稳定。
图 6 sfr-miR-1a-3p对AcMNPV增殖的影响A:sfr-miR-1a-3p 过表达分析,B:vp39在过表达sfr-miR-1a-3p的Sf9细胞中的表达量分析;“**”和“****”分别表示在P<0.01和P<0.000 1水平差异显著(t检验)。Figure 6. Effect of sfr-miR-1a-3p on proliferation of AcMNPVA: Overexpression analysis of sfr-miR-1a-3p, B: Analysis of vp39 expression in Sf9 cells overexpressing sfr-miR-1a-3p; “**” and “****” indicate significant differences at P<0.01 and P<0.000 1 respectively (t test).为了检测sfr-miR-1a-3p对AcMNPV增殖的影响,在转染sfr-miR-1a-3p mimic 8 h后添加AcMNPV-eGFP重组病毒,检测病毒基因vp39在感染12和24 h后的表达情况。结果(图6B)表明,在病毒感染24 h时,sfr-miR-1a-3p显著促进vp39表达,说明sfr-miR-1a-3p能够促进AcMNPV的增殖。
3. 讨论与结论
本研究通过不连续蔗糖质量分数梯度超速离心,成功纯化Sf9细胞外泌体;同时通过透射电镜负染观察,发现在感染AcMNPV后,Sf9细胞分泌的外泌体明显比未感染组多。研究发现,EBV感染被CD63调控,EBV编码的LMP1蛋白能够刺激多种细胞的外泌体分泌量增加[19]。HD11、DF-1和Hela细胞感染NDV后 ,外泌体分泌量明显增加,且随着病毒剂量的提高而增加,具有一定的病毒剂量依赖性[20]。以上研究说明宿主被病毒感染后,可能会大量分泌外泌体,使其发挥细胞间通信功能,以影响病毒在体内的复制。
本研究中Sf9细胞在感染AcMNPV后,高通量测序分析预测外泌体miRNA共产生11个差异表达miRNAs;通过qPCR验证,有8个miRNAs的转录水平与测序结果趋势一致,其中2个上调、6个下调。通过预测miRNA靶基因和KEGG富集分析,发现潜在的靶基因主要富集在Tight junction通路、cAMP信号通路、PI3K-Akt信号通路、癌症通路和HPV信号通路。cAMP是第一个被识别的第二信使,其主要效用是通过活化cAMP依赖的蛋白激酶A系统(Protein kinase A system)使下游靶蛋白磷酸化,激活下游NF-κB等信号通路,在细胞生长、代谢以及凋亡等生物过程中发挥重要作用[21]。在昆虫细胞中,Imd和Toll通路是典型的NF-kB依赖性通路,参与昆虫先天免疫途径,通过激活下游抗菌肽基因转录对抗外来病原体[22-23]。PI3K-Akt信号通路在细胞生存、凋亡、增殖、分化和代谢调控中起重要作用,并且磷酸化的Akt在调节许多细胞过程相关的下游信号通路中起核心作用[24-26]。有研究发现AcMNPV感染Sf9细胞能显著促进Akt的磷酸化,同时使用PI3K抑制剂LY294002抑制PI3K-Akt信号通路能显著降低病毒产量[27]。
miRNA在宿主和病毒相互作用中起关键作用,一些miRNA能够直接靶向病毒基因调控病毒增殖。有研究发现,敲降家蚕miR-274-3p、上调其靶基因BmCPV NS5的表达,能够促进BmCPV复制[28]。埃及伊蚊miR-2b通过调控泛素相关修饰物以调节CHIKV在宿主内的复制[29]。miRNA还可通过靶向调控宿主的免疫系统来影响病毒增殖。Zhang等[18]证明sfr-miR-10494-3p、bmo-miR-6497-5p等miRNA通过抑制昆虫天然免疫通路的关键基因,促进AcMNPV在Sf9细胞中的增殖。Bmo-miR-277-5p靶向家蚕Dnmt 2基因,抑制其表达,从而影响病毒在宿主体内的复制[30]。
本研究证明sfr-miR-1a-3p能够促进AcMNPV在Sf9细胞中的增殖,结合KEGG富集分析结果,sfr-miR-1a-3p可能通过调控昆虫天然免疫系统促进病毒增殖;研究结果为昆虫外泌体传递miRNA以调控病毒增殖的机制研究提供了重要的理论依据。
-
图 3 稻瘟病菌侵染过程中OsCdc48的表达分析
图中数据是3次独立试验的平均值±标准差,各图中柱子上方的不同小写字母表示在P < 0.05水平差异显著(单因素方差分析)。
Figure 3. Analysis of OsCdc48 expression during infection with Magnaporthe oryzae
Data presented in two figures are means ± standard deviations of three independent experiments, different lowercase letters above the columns in each figure indicate significant differences at P < 0.05 (One-way ANOVA).
图 6 OsCdc48在水稻各组织中的相对表达量
图中数据是3次独立试验的平均值±标准差,柱子上方的不同小写字母表示在P < 0.05水平差异显著(单因素方差分析)。
Figure 6. Relative expression of OsCdc48 in various rice tissues
Data presented in figure are means ± standard deviations of three independent experiments, different lowercase letters above the columns indicate significant differences at P < 0.05 (One-way ANOVA).
图 10 接种GUY11和GDYJ7后ko-oscdc48与野生型Pik-H4 NIL的病斑长度
图中数据为平均值±标准差,n > 6,**表示突变体与野生型在P < 0.01水平差异显著(t检验)。
Figure 10. Lesion length of ko-oscdc48 compared to the wild type Pik-H4 NIL after inoculation with GUY11 and GDYJ7
Data presented in two figures are means ± standard deviations, n > 6, ** indicates significant differences between the mutant and wild type at P < 0.01 level (t test).
图 11 接种GUY11和GDYJ7后ko-oscdc48与野生型Pik-H4 NIL病程相关基因的表达
图中数据是3次独立试验的平均值±标准差,*和***分别表示在P < 0.05和P < 0.001水平差异显著(t检验)。
Figure 11. Expression of disease-related genes in ko-oscdc48 compared to the wild type Pik-H4 NIL after inoculation with GUY11 and GDYJ7
Data presented in three figures are means ± standard deviations of three independent experiments, * and *** indicate significant differences at P < 0.05 and P < 0.001 levels respectively (t test).
表 1 本研究用到的引物
Table 1 Primers used in this study
名称
Name正向序列(5′→3′)
Forward sequence反向序列(5′→3′)
Reverse sequenceOsCdc48-target TAGGTCTCCTTATGGACCCCC GTTTTAGAGCTAGAA CGGGTCTCAATAAAGCAGTATTGCACCAGCCGGGAA OsCdc48-test AGACCTTTTCCTTGTTAGGGG AGCTTTGAGCCCATCCATAAG OsActin TGTATGCCAGTGGTCGTACCA CCAGCAAGGTCGAGACGAA OsCdc48-qPCR GAATGCTCTTGCCAAATACACC TCCTCCGCTTCTCCATCTCG PR10 CGCCGCAAGTCATGTCCTA GCTTCGTCTCCGTCGAGTGT OsPAL1 AGGAGCTCGGCTGCGTATT ATGCCGAGGAACACCTTGTT PR1a GGAAGTACGGCGAGAACATC TGGTCGTACCACTGCTTCTC OsCdc48-AAA2-CLuc agaacacgggggacgagctcATGTCCAAAGGTGTTCTGTT atcgagtacgcggaccggccATCAGGCAGAGGAATGTAGA OsCdc48-AAA1-CLuc agaacacgggggacgagctcCCTCCAAAGGGCATACTGCTT atcgagtacgcggaccggccCATCAGGAACACCAATGTCAA AD-OsCdc48-AAA2 taccagattacgctcatatgATGTCCAAAGGTGTTCTGTT gctcgagctcgatggatcccCATCAGGAACACCAATGTCAA AD-OsCdc48-AAA1 taccagattacgctcatatgCCTCCAAAGGGCATACTGCTT gctcgagctcgatggatcccTTTAGGCTTGAAGGTAAGCC Pik1 H4-NLuc ggacgagctcggtacccATGGAGGCGGCTGCCATG gtacgagatctggtcgacGCTAGTAGTTTCTGTTTGAATTTCAAT BD-Pik1 H4 gaggaggacctgcatATGATGGAGGCGGCTGCCATG gcaggtcgacggatccctaGCTAGTAGTTTCTGTTTGAATTTCAAT -
[1] BIRLA D S, MALIK K, SAINGER M, et al. Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.)[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(11): 2455-2481. doi: 10.1080/10408398.2015.1084992
[2] MISHRA R, JOSHI R K, ZHAO K J. Genome editing in rice: Recent advances, challenges, and future implications[J]. Frontiers in Plant Science, 2018, 9: 1361. doi: 10.3389/fpls.2018.01361
[3] LIU W, WANG G. Plant innate immunity in rice: A defense against pathogen infection[J]. National Science Review, 2016, 3(3): 295-308. doi: 10.1093/nsr/nww015
[4] BOUTROT F, ZIPFEL C. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance[J]. Annual Review of Phytopathology, 2017, 55: 257-286. doi: 10.1146/annurev-phyto-080614-120106
[5] NGOU B P M, DING P T, JONES J D G. Thirty years of resistance: Zig-zag through the plant immune system[J]. The Plant Cell, 2022, 34(5): 1447-1478. doi: 10.1093/plcell/koac041
[6] BOLLER T, FELIX G. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors[J]. Annual Review of Plant Biology, 2009, 60: 379-406. doi: 10.1146/annurev.arplant.57.032905.105346
[7] JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329. doi: 10.1038/nature05286
[8] SPOEL S H, DONG X. How do plants achieve immunity? Defence without specialized immune cells[J]. Nature Reviews Immunology, 2012, 12(2): 89-100. doi: 10.1038/nri3141
[9] 刘文德, 代玉立, 邵小龙, 等. 我国主要农作物病害灾变机制与综合防控研究进展: 2018年—2022年[J]. 植物保护, 2023, 49(5): 1-31. [10] 闫影, 王凯, 周锋利, 等. 长三角地区粳稻种质的稻瘟病抗性基因鉴定及其抗性评价[J]. 核农学报, 2022, 36(1): 14-23. [11] BÈGUE H, JEANDROZ S, BLANCHARD C, et al. Structure and functions of the chaperone-like p97/CDC48 in plants[J]. Biochimica et Biophysica Acta-General Subjects, 2017, 1861(1): 3053-3060. doi: 10.1016/j.bbagen.2016.10.001
[12] STOLZ A, HILT W, BUCHBERGER A, et al. Cdc48: A power machine in protein degradation[J]. Trends in Biochemical Sciences, 2011, 36(10): 515-523. doi: 10.1016/j.tibs.2011.06.001
[13] RIENTIES I M, VINK J, BORST J W, et al. The Arabidopsis SERK1 protein interacts with the AAA-ATPase AtCDC48, the 14-3-3 protein GF14λ and the PP2C phosphatase KAPP[J]. Planta, 2005, 221(3): 394-405. doi: 10.1007/s00425-004-1447-7
[14] HU H, XIONG L, YANG Y. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection[J]. Planta, 2005, 222(1): 107-117. doi: 10.1007/s00425-005-1534-4
[15] COPELAND C, WOLOSHEN V, HUANG Y, et al. AtCDC48A is involved in the turnover of an NLR immune receptor[J]. The Plant Journal, 2016, 88(2): 294-305. doi: 10.1111/tpj.13251
[16] SHI L, ZHANG X, SHI Y, et al. OsCDC48/48E complex is required for plant survival in rice (Oryza sativa L.)[J]. Plant Molecular Biology, 2019, 100(1/2): 163-179.
[17] LI W, WANG K, CHERN M, et al. Sclerenchyma cell thickening through enhanced lignification induced by OsMYB30 prevents fungal penetration of rice leaves[J]. New Phytologist, 2020, 226(6): 1850-1863. doi: 10.1111/nph.16505
[18] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
[19] 刘维, 刘浩, 董双玉, 等. 水稻叶鞘原生质体转化体系的构建及Pik-H4和AvrPik-H4蛋白的瞬时表达[J]. 中国农业科学, 2017, 50(23): 4575-4584. doi: 10.3864/j.issn.0578-1752.2017.23.010 [20] 林春姿, 黄其伟, 侯艳, 等. 水稻多胺氧化酶基因(OsPAO4) CRISPR/Cas9编辑突变体的创制[J]. 广东农业科学, 2023, 50(3): 1-10. [21] LIU W, LIU J, NING Y, et al. Recent progress in understanding PAMP- and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae[J]. Molecular Plant, 2013, 6(3): 605-620. doi: 10.1093/mp/sst015
[22] JOSHI R K, NAYAK S. Perspectives of genomic diversification and molecular recombination towards R-gene evolution in plants[J]. Physiology and Molecular Biology of Plants, 2013, 19(1): 1-9. doi: 10.1007/s12298-012-0138-2
[23] ZHAI K, LIANG D, LI H, et al. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity[J]. Nature, 2022, 601(7892): 245-251. doi: 10.1038/s41586-021-04219-2
[24] WANG J, WANG R, FANG H, et al. Two VOZ transcription factors link an E3 ligase and an NLR immune receptor to modulate immunity in rice[J]. Molecular Plant, 2021, 14(2): 253-266. doi: 10.1016/j.molp.2020.11.005
[25] XIAO N, WU Y, ZHANG X, et al. Pijx confers broad-spectrum seedling and panicle blast resistance by promoting the degradation of ATP β subunit and OsRbohC-mediated ROS burst in rice[J]. Molecular Plant, 2023, 16(11): 1832-1846. doi: 10.1016/j.molp.2023.10.001
[26] XIE Y, WANG Y, YU X, et al. SH3P2, an SH3 domain-containing protein that interacts with both Pib and AvrPib, suppresses effector-triggered, Pib-mediated immunity in rice[J]. Molecular Plant, 2022, 15(12): 1931-1946. doi: 10.1016/j.molp.2022.10.022
[27] LIU H, DONG S, SUN D, et al. CONSTANS-like 9 (OsCOL9) interacts with receptor for activated C-kinase 1(OsRACK1) to regulate blast resistance through salicylic acid and ethylene signaling pathways[J]. PLoS One, 2016, 11(11): e0166249. doi: 10.1371/journal.pone.0166249
[28] LIU H, DONG S, GU F, et al. NBS-LRR protein Pik-H4 interacts with OsBIHD1 to balance rice blast resistance and growth by coordinating ethylene-brassinosteroid pathway[J]. Frontiers in Plant Science, 2017, 8: 127. doi: 10.3389/fpls.2017.00127
[29] JABS T, TSCHÖPE M, COLLING C, et al. Elicitor-stimulated ion fluxes and O2− from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(9): 4800-4805.
[30] FRIEDMAN A R, BAKER B J. The evolution of resistance genes in multi-protein plant resistance systems[J]. Current Opinion in Genetics & Development, 2007, 17(6): 493-499.
[31] DANGL J L, JONES J D G. Plant pathogens and integrated defence responses to infection[J]. Nature, 2001, 411(6839): 826-833. doi: 10.1038/35081161
[32] BENDAHMANE A, KANYUKA K, BAULCOMBE D C. The Rx gene from potato controls separate virus resistance and cell death responses[J]. The Plant Cell, 1999, 11(5): 781-792. doi: 10.1105/tpc.11.5.781
[33] ZHANG X, GASSMANN W. RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames[J]. The Plant Cell, 2003, 15(10): 2333-2342. doi: 10.1105/tpc.013474
[34] ZHOU F, MOSHER S, TIAN M, et al. The Arabidopsis gain-of-function mutant ssi4 requires RAR1 and SGT1b differentially for defense activation and morphological alterations[J]. Molecular Plant-Microbe Interactions, 2008, 21(1): 40-49. doi: 10.1094/MPMI-21-1-0040
[35] OLDROYD G E D, STASKAWICZ B J. Genetically engineered broad-spectrum disease resistance in tomato[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(17): 10300-10305.
[36] TAO Y, YUAN F, LEISTER R T, et al. Mutational analysis of the Arabidopsis nucleotide binding site-leucine-rich repeat resistance gene RPS2[J]. The Plant Cell, 2000, 12(12): 2541-2554.
[37] XIAO S, BROWN S, PATRICK E, et al. Enhanced transcription of the arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive cell death[J]. The Plant Cell, 2003, 15(1): 33-45. doi: 10.1105/tpc.006940
[38] BOCCARA M, SARAZIN A, THIÉBEAULD O, et al. The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes[J]. PLoS Pathogens, 2014, 10(1): e1003883. doi: 10.1371/journal.ppat.1003883
[39] JOHNSON K, DONG O, HUANG Y, et al. A rolling stone gathers no moss, but resistant plants must gather their MOSes[J]. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77: 259-268. doi: 10.1101/sqb.2013.77.014738
[40] PARKER J, COLEMAN M, SZABÒ V, et al. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6[J]. The Plant Cell, 1997, 9(6): 879-894. doi: 10.1105/tpc.9.6.879
[41] DINESH-KUMAR S P, BAKER B J. Alternatively spliced N resistance gene transcripts: Their possible role in tobacco mosaic virus resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(4): 1908-1913.
[42] HUANG Q N, SHI Y F, ZHANG X B, et al. Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice[J]. Journal of Integrative Plant Biology, 2016, 58(1): 12-28. doi: 10.1111/jipb.12372
[43] BODNAR N O, RAPOPORT T A. Molecular mechanism of substrate processing by the Cdc48 ATPase complex[J]. Cell, 2017, 169(4): 722-735. doi: 10.1016/j.cell.2017.04.020
[44] MEYER H, BUG M, BREMER S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system[J]. Nature Cell Biology, 2012, 14: 117-123. doi: 10.1038/ncb2407
[45] LI J, YUAN J, LI Y, et al. The CDC48 complex mediates ubiquitin-dependent degradation of intra-chloroplast proteins in plants[J]. Cell Reports, 2022, 39(2): 110664. doi: 10.1016/j.celrep.2022.110664
[46] AO K, TONG M, LI L, et al. SCFSNIPER7 controls protein turnover of unfoldase CDC48A to promote plant immunity[J]. New Phytologist, 2021, 229(5): 2795-2811. doi: 10.1111/nph.17071