Interaction mechanism between OsCdc48 and Pik1-H4, and its regulation on rice blast disease resistance
-
摘要:目的
探究Pik1-H4与细胞周期蛋白OsCdc48的互作机制,明确其在稻瘟病抗性中的作用。
方法首先,分别利用酵母双杂交试验和荧光素酶互补试验验证Pik1-H4与OsCdc48的相互作用;然后,通过RT-qPCR分析OsCdc48在稻瘟病菌侵染后的表达情况及组织表达特异性;其次,分析OsCdc48的序列保守性、蛋白结构域、系统进化关系、蛋白质三维结构预测及其亚细胞定位;最后,利用CRISPR/Cas9创制OsCdc48突变体,并对其进行稻瘟病抗性鉴定和病程相关基因表达分析。
结果证实了Pik1-H4与OsCdc48的互作,且OsCdc48受稻瘟病菌侵染诱导表达。OsCdc48在各组织中均有表达,其编码蛋白定位于细胞核与细胞质。OsCdc48在不同物种中序列保守,与玉米和高粱的亲缘关系最近,预测会形成同源六聚体。OsCdc48功能缺失突变体ko-oscdc48病程相关基因上调表达,对稻瘟病抗性增强。
结论本研究为深入揭示OsCdc48与NLR蛋白Pik1-H4调控稻瘟病抗性的机制及水稻抗病育种提供了理论基础。
Abstract:ObjectiveTo investigate the interaction mechanism between Pik1-H4 and cell division cycle protein OsCdc48, clarify its role in rice blast disease resistance.
MethodFirstly, the interactions between Pik1-H4 and OsCdc48 were verified using yeast two-hybrid and luciferase complementation assays. Then, the expression patterns of OsCdc48 after infection of Magnaporthe oryzae and its tissue-specific expression were analyzed by RT-qPCR. Next, the determination of OsCdc48’s sequence conservation, protein domains, phylogenetic relationships, protein 3D structure prediction and subcellular localization were performed. Finally, OsCdc48 mutant was created using CRISPR/Cas9 technology, the resistance identification of transgenic mutant to rice blast disease and expression analysis of pathogenesis-related genes were also conducted.
ResultThe interactions between Pik1-H4 and OsCdc48 were confirmed, and OsCdc48 was induced by rice blast fungus infection. OsCdc48 was expressed in all tissues and was localized to the nucleus and cytoplasm. The sequence of OsCdc48 was conserved across different species, with the closest phylogenetic relationship to maize and sorghum, and it might form homologous hexamers. The OsCdc48 loss-of-function mutant ko-oscdc48 up-regulated the expression of disease-related genes and enhanced the resistance to rice blast disease.
ConclusionThis study lays a theoretical basis for further elucidating the mechanism of OsCdc48 and NLR protein Pik1-H4 regulating blast disease resistance and rice disease-resistant breeding.
-
Keywords:
- Oryza sativa L. /
- Rice blast disease /
- Magnaporthe oryzae /
- Pik1-H4 /
- OsCdc48
-
-
图 3 稻瘟病菌侵染过程中OsCdc48的表达分析
图中数据是3次独立试验的平均值±标准差,各图中柱子上方的不同小写字母表示在P < 0.05水平差异显著(单因素方差分析)。
Figure 3. Analysis of OsCdc48 expression during infection with Magnaporthe oryzae
Data presented in two figures are means ± standard deviations of three independent experiments, different lowercase letters above the columns in each figure indicate significant differences at P < 0.05 (One-way ANOVA).
图 6 OsCdc48在水稻各组织中的相对表达量
图中数据是3次独立试验的平均值±标准差,柱子上方的不同小写字母表示在P < 0.05水平差异显著(单因素方差分析)。
Figure 6. Relative expression of OsCdc48 in various rice tissues
Data presented in figure are means ± standard deviations of three independent experiments, different lowercase letters above the columns indicate significant differences at P < 0.05 (One-way ANOVA).
图 10 接种GUY11和GDYJ7后ko-oscdc48与野生型Pik-H4 NIL的病斑长度
图中数据为平均值±标准差,n > 6,**表示突变体与野生型在P < 0.01水平差异显著(t检验)。
Figure 10. Lesion length of ko-oscdc48 compared to the wild type Pik-H4 NIL after inoculation with GUY11 and GDYJ7
Data presented in two figures are means ± standard deviations, n > 6, ** indicates significant differences between the mutant and wild type at P < 0.01 level (t test).
图 11 接种GUY11和GDYJ7后ko-oscdc48与野生型Pik-H4 NIL病程相关基因的表达
图中数据是3次独立试验的平均值±标准差,*和***分别表示在P < 0.05和P < 0.001水平差异显著(t检验)。
Figure 11. Expression of disease-related genes in ko-oscdc48 compared to the wild type Pik-H4 NIL after inoculation with GUY11 and GDYJ7
Data presented in three figures are means ± standard deviations of three independent experiments, * and *** indicate significant differences at P < 0.05 and P < 0.001 levels respectively (t test).
表 1 本研究用到的引物
Table 1 Primers used in this study
名称
Name正向序列(5′→3′)
Forward sequence反向序列(5′→3′)
Reverse sequenceOsCdc48-target TAGGTCTCCTTATGGACCCCC GTTTTAGAGCTAGAA CGGGTCTCAATAAAGCAGTATTGCACCAGCCGGGAA OsCdc48-test AGACCTTTTCCTTGTTAGGGG AGCTTTGAGCCCATCCATAAG OsActin TGTATGCCAGTGGTCGTACCA CCAGCAAGGTCGAGACGAA OsCdc48-qPCR GAATGCTCTTGCCAAATACACC TCCTCCGCTTCTCCATCTCG PR10 CGCCGCAAGTCATGTCCTA GCTTCGTCTCCGTCGAGTGT OsPAL1 AGGAGCTCGGCTGCGTATT ATGCCGAGGAACACCTTGTT PR1a GGAAGTACGGCGAGAACATC TGGTCGTACCACTGCTTCTC OsCdc48-AAA2-CLuc agaacacgggggacgagctcATGTCCAAAGGTGTTCTGTT atcgagtacgcggaccggccATCAGGCAGAGGAATGTAGA OsCdc48-AAA1-CLuc agaacacgggggacgagctcCCTCCAAAGGGCATACTGCTT atcgagtacgcggaccggccCATCAGGAACACCAATGTCAA AD-OsCdc48-AAA2 taccagattacgctcatatgATGTCCAAAGGTGTTCTGTT gctcgagctcgatggatcccCATCAGGAACACCAATGTCAA AD-OsCdc48-AAA1 taccagattacgctcatatgCCTCCAAAGGGCATACTGCTT gctcgagctcgatggatcccTTTAGGCTTGAAGGTAAGCC Pik1 H4-NLuc ggacgagctcggtacccATGGAGGCGGCTGCCATG gtacgagatctggtcgacGCTAGTAGTTTCTGTTTGAATTTCAAT BD-Pik1 H4 gaggaggacctgcatATGATGGAGGCGGCTGCCATG gcaggtcgacggatccctaGCTAGTAGTTTCTGTTTGAATTTCAAT -
[1] BIRLA D S, MALIK K, SAINGER M, et al. Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.)[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(11): 2455-2481. doi: 10.1080/10408398.2015.1084992
[2] MISHRA R, JOSHI R K, ZHAO K J. Genome editing in rice: Recent advances, challenges, and future implications[J]. Frontiers in Plant Science, 2018, 9: 1361. doi: 10.3389/fpls.2018.01361
[3] LIU W, WANG G. Plant innate immunity in rice: A defense against pathogen infection[J]. National Science Review, 2016, 3(3): 295-308. doi: 10.1093/nsr/nww015
[4] BOUTROT F, ZIPFEL C. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance[J]. Annual Review of Phytopathology, 2017, 55: 257-286. doi: 10.1146/annurev-phyto-080614-120106
[5] NGOU B P M, DING P T, JONES J D G. Thirty years of resistance: Zig-zag through the plant immune system[J]. The Plant Cell, 2022, 34(5): 1447-1478. doi: 10.1093/plcell/koac041
[6] BOLLER T, FELIX G. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors[J]. Annual Review of Plant Biology, 2009, 60: 379-406. doi: 10.1146/annurev.arplant.57.032905.105346
[7] JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329. doi: 10.1038/nature05286
[8] SPOEL S H, DONG X. How do plants achieve immunity? Defence without specialized immune cells[J]. Nature Reviews Immunology, 2012, 12(2): 89-100. doi: 10.1038/nri3141
[9] 刘文德, 代玉立, 邵小龙, 等. 我国主要农作物病害灾变机制与综合防控研究进展: 2018年—2022年[J]. 植物保护, 2023, 49(5): 1-31. [10] 闫影, 王凯, 周锋利, 等. 长三角地区粳稻种质的稻瘟病抗性基因鉴定及其抗性评价[J]. 核农学报, 2022, 36(1): 14-23. [11] BÈGUE H, JEANDROZ S, BLANCHARD C, et al. Structure and functions of the chaperone-like p97/CDC48 in plants[J]. Biochimica et Biophysica Acta-General Subjects, 2017, 1861(1): 3053-3060. doi: 10.1016/j.bbagen.2016.10.001
[12] STOLZ A, HILT W, BUCHBERGER A, et al. Cdc48: A power machine in protein degradation[J]. Trends in Biochemical Sciences, 2011, 36(10): 515-523. doi: 10.1016/j.tibs.2011.06.001
[13] RIENTIES I M, VINK J, BORST J W, et al. The Arabidopsis SERK1 protein interacts with the AAA-ATPase AtCDC48, the 14-3-3 protein GF14λ and the PP2C phosphatase KAPP[J]. Planta, 2005, 221(3): 394-405. doi: 10.1007/s00425-004-1447-7
[14] HU H, XIONG L, YANG Y. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection[J]. Planta, 2005, 222(1): 107-117. doi: 10.1007/s00425-005-1534-4
[15] COPELAND C, WOLOSHEN V, HUANG Y, et al. AtCDC48A is involved in the turnover of an NLR immune receptor[J]. The Plant Journal, 2016, 88(2): 294-305. doi: 10.1111/tpj.13251
[16] SHI L, ZHANG X, SHI Y, et al. OsCDC48/48E complex is required for plant survival in rice (Oryza sativa L.)[J]. Plant Molecular Biology, 2019, 100(1/2): 163-179.
[17] LI W, WANG K, CHERN M, et al. Sclerenchyma cell thickening through enhanced lignification induced by OsMYB30 prevents fungal penetration of rice leaves[J]. New Phytologist, 2020, 226(6): 1850-1863. doi: 10.1111/nph.16505
[18] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
[19] 刘维, 刘浩, 董双玉, 等. 水稻叶鞘原生质体转化体系的构建及Pik-H4和AvrPik-H4蛋白的瞬时表达[J]. 中国农业科学, 2017, 50(23): 4575-4584. doi: 10.3864/j.issn.0578-1752.2017.23.010 [20] 林春姿, 黄其伟, 侯艳, 等. 水稻多胺氧化酶基因(OsPAO4) CRISPR/Cas9编辑突变体的创制[J]. 广东农业科学, 2023, 50(3): 1-10. [21] LIU W, LIU J, NING Y, et al. Recent progress in understanding PAMP- and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae[J]. Molecular Plant, 2013, 6(3): 605-620. doi: 10.1093/mp/sst015
[22] JOSHI R K, NAYAK S. Perspectives of genomic diversification and molecular recombination towards R-gene evolution in plants[J]. Physiology and Molecular Biology of Plants, 2013, 19(1): 1-9. doi: 10.1007/s12298-012-0138-2
[23] ZHAI K, LIANG D, LI H, et al. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity[J]. Nature, 2022, 601(7892): 245-251. doi: 10.1038/s41586-021-04219-2
[24] WANG J, WANG R, FANG H, et al. Two VOZ transcription factors link an E3 ligase and an NLR immune receptor to modulate immunity in rice[J]. Molecular Plant, 2021, 14(2): 253-266. doi: 10.1016/j.molp.2020.11.005
[25] XIAO N, WU Y, ZHANG X, et al. Pijx confers broad-spectrum seedling and panicle blast resistance by promoting the degradation of ATP β subunit and OsRbohC-mediated ROS burst in rice[J]. Molecular Plant, 2023, 16(11): 1832-1846. doi: 10.1016/j.molp.2023.10.001
[26] XIE Y, WANG Y, YU X, et al. SH3P2, an SH3 domain-containing protein that interacts with both Pib and AvrPib, suppresses effector-triggered, Pib-mediated immunity in rice[J]. Molecular Plant, 2022, 15(12): 1931-1946. doi: 10.1016/j.molp.2022.10.022
[27] LIU H, DONG S, SUN D, et al. CONSTANS-like 9 (OsCOL9) interacts with receptor for activated C-kinase 1(OsRACK1) to regulate blast resistance through salicylic acid and ethylene signaling pathways[J]. PLoS One, 2016, 11(11): e0166249. doi: 10.1371/journal.pone.0166249
[28] LIU H, DONG S, GU F, et al. NBS-LRR protein Pik-H4 interacts with OsBIHD1 to balance rice blast resistance and growth by coordinating ethylene-brassinosteroid pathway[J]. Frontiers in Plant Science, 2017, 8: 127. doi: 10.3389/fpls.2017.00127
[29] JABS T, TSCHÖPE M, COLLING C, et al. Elicitor-stimulated ion fluxes and O2− from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(9): 4800-4805.
[30] FRIEDMAN A R, BAKER B J. The evolution of resistance genes in multi-protein plant resistance systems[J]. Current Opinion in Genetics & Development, 2007, 17(6): 493-499.
[31] DANGL J L, JONES J D G. Plant pathogens and integrated defence responses to infection[J]. Nature, 2001, 411(6839): 826-833. doi: 10.1038/35081161
[32] BENDAHMANE A, KANYUKA K, BAULCOMBE D C. The Rx gene from potato controls separate virus resistance and cell death responses[J]. The Plant Cell, 1999, 11(5): 781-792. doi: 10.1105/tpc.11.5.781
[33] ZHANG X, GASSMANN W. RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames[J]. The Plant Cell, 2003, 15(10): 2333-2342. doi: 10.1105/tpc.013474
[34] ZHOU F, MOSHER S, TIAN M, et al. The Arabidopsis gain-of-function mutant ssi4 requires RAR1 and SGT1b differentially for defense activation and morphological alterations[J]. Molecular Plant-Microbe Interactions, 2008, 21(1): 40-49. doi: 10.1094/MPMI-21-1-0040
[35] OLDROYD G E D, STASKAWICZ B J. Genetically engineered broad-spectrum disease resistance in tomato[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(17): 10300-10305.
[36] TAO Y, YUAN F, LEISTER R T, et al. Mutational analysis of the Arabidopsis nucleotide binding site-leucine-rich repeat resistance gene RPS2[J]. The Plant Cell, 2000, 12(12): 2541-2554.
[37] XIAO S, BROWN S, PATRICK E, et al. Enhanced transcription of the arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive cell death[J]. The Plant Cell, 2003, 15(1): 33-45. doi: 10.1105/tpc.006940
[38] BOCCARA M, SARAZIN A, THIÉBEAULD O, et al. The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes[J]. PLoS Pathogens, 2014, 10(1): e1003883. doi: 10.1371/journal.ppat.1003883
[39] JOHNSON K, DONG O, HUANG Y, et al. A rolling stone gathers no moss, but resistant plants must gather their MOSes[J]. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77: 259-268. doi: 10.1101/sqb.2013.77.014738
[40] PARKER J, COLEMAN M, SZABÒ V, et al. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6[J]. The Plant Cell, 1997, 9(6): 879-894. doi: 10.1105/tpc.9.6.879
[41] DINESH-KUMAR S P, BAKER B J. Alternatively spliced N resistance gene transcripts: Their possible role in tobacco mosaic virus resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(4): 1908-1913.
[42] HUANG Q N, SHI Y F, ZHANG X B, et al. Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice[J]. Journal of Integrative Plant Biology, 2016, 58(1): 12-28. doi: 10.1111/jipb.12372
[43] BODNAR N O, RAPOPORT T A. Molecular mechanism of substrate processing by the Cdc48 ATPase complex[J]. Cell, 2017, 169(4): 722-735. doi: 10.1016/j.cell.2017.04.020
[44] MEYER H, BUG M, BREMER S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system[J]. Nature Cell Biology, 2012, 14: 117-123. doi: 10.1038/ncb2407
[45] LI J, YUAN J, LI Y, et al. The CDC48 complex mediates ubiquitin-dependent degradation of intra-chloroplast proteins in plants[J]. Cell Reports, 2022, 39(2): 110664. doi: 10.1016/j.celrep.2022.110664
[46] AO K, TONG M, LI L, et al. SCFSNIPER7 controls protein turnover of unfoldase CDC48A to promote plant immunity[J]. New Phytologist, 2021, 229(5): 2795-2811. doi: 10.1111/nph.17071