• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

甘蔗整秆立式收获集捆装置多刚体动力学仿真与试验

徐凤英, 夏腾飞, 刘庆庭, 邹小平, 陈震, 罗菊川

徐凤英, 夏腾飞, 刘庆庭, 等. 甘蔗整秆立式收获集捆装置多刚体动力学仿真与试验[J]. 华南农业大学学报, 2025, 46(1): 124-132. DOI: 10.7671/j.issn.1001-411X.202401022
引用本文: 徐凤英, 夏腾飞, 刘庆庭, 等. 甘蔗整秆立式收获集捆装置多刚体动力学仿真与试验[J]. 华南农业大学学报, 2025, 46(1): 124-132. DOI: 10.7671/j.issn.1001-411X.202401022
XU Fengying, XIA Tengfei, LIU Qingting, et al. Multi-body dynamics simulation and experiment of pre-baling device for vertical harvesting of whole-stalk sugarcane[J]. Journal of South China Agricultural University, 2025, 46(1): 124-132. DOI: 10.7671/j.issn.1001-411X.202401022
Citation: XU Fengying, XIA Tengfei, LIU Qingting, et al. Multi-body dynamics simulation and experiment of pre-baling device for vertical harvesting of whole-stalk sugarcane[J]. Journal of South China Agricultural University, 2025, 46(1): 124-132. DOI: 10.7671/j.issn.1001-411X.202401022

甘蔗整秆立式收获集捆装置多刚体动力学仿真与试验

基金项目: 国家重点研发计划(2020YFD1000605); 国家糖料产业技术体系建设专项资金(CARS-170402)
详细信息
    作者简介:

    徐凤英,教授,博士,主要从事农业机械装备研究,E-mail: xu_fy@scau.edu.cn

    通讯作者:

    刘庆庭,教授,博士,主要从事甘蔗机械化和作物学研究,E-mail: qingting@scau.edu.cn

  • 中图分类号: S225.53

Multi-body dynamics simulation and experiment of pre-baling device for vertical harvesting of whole-stalk sugarcane

  • 摘要:
    目的 

    解决甘蔗整秆立式收获缺乏集捆装置,导致甘蔗收获机体型大、难于在复杂地形有序集捆问题。

    方法 

    设计了一种用于直立甘蔗整秆立式收获的集捆装置;基于多刚体动力学分析,采用仿真试验和台架试验分别考察了甘蔗整秆在不同控制因素(下转指高度和转速)组合模式下的作业指标与性能(甘蔗质心高度、集捆成功率)。

    结果 

    下转指高度和转速均显著影响甘蔗整秆的集捆成功率(P<0.05),台架试验与仿真试验的结果基本一致。在18个集捆模式中,下转指高度为400 mm、转速为30 r/min模式的集捆成功率100%,集捆过程中甘蔗整秆质心高度呈V型动态,作业安全性最高,推荐作为优选模式。

    结论 

    研制的甘蔗整秆立式集捆装置空间结构紧凑、集捆成功率高,可适应广大丘陵山区复杂地形条件下的甘蔗高效收获;揭示的集捆过程机制对研制甘蔗整秆联合收获机械有广泛的参考价值。

    Abstract:
    Objective 

    This article aims to address the challenges of upright sugarcane harvesting, specifically the lack of bundling mechanisms, which leads to large harvester sizes and difficulties in orderly collecting sugarcane on complex terrain.

    Method 

    A pre-baling device for vertical harvesting of whole-stalk sugarcane growing uprightly was designed. Based on multi-body dynamics analysis, simulation and bench test were used to quantify the pre-baling performance (centroid height of sugarcane and success rate of pre-baling) with different controlling factors (the height and rotational speed of the lower rotating finger).

    Result 

    Both the height and rotational speed of the lower rotating finger significantly affected the success rate of pre-baling (P<0.05), and the results of the bench test were basically consistent with the simulation results. Among the 18 pre-baling modes, the mode with the 400 mm height of the lower rotating finger and 300 r/min rotational speed achieved a 100% pre-baling success rate. During the pre-baling process, the centroid height of sugarcane showed a V-shaped dynamic, and the highest operational safety was achieved. This mode was recommended as the preferred mode.

    Conclusion 

    With a compact structure and high pre-baling success rate, the vertical pre-baling device designed by this study can fill the harvesting requirement of sugarcanes growing on hillside areas with complicated terrain conditions. The pre-baling mechanism explored by this study has wide reference value for design of combined sugarcane harvester.

  • 仔猪初生窝重是出生24 h内全部存活的猪仔体重之和。一般情况下,仔猪初生重越大,仔猪活力越强,抗病力越强[1]。仔猪初生窝重受环境因素的影响较大,尤其是母猪妊娠后期的营养措施[2]。在生产管理较为规范的猪场,仔猪初生窝重则主要受到品种、胎次等因素的影响。有研究表明:仔猪初生重为低遗传力性状,其遗传力在0.10左右[3];对猪繁殖性状的遗传改良,从结合系谱和表型信息的最佳线性无偏预测(Best linear unbiased prediction,BLUP)技术,到结合少数SNP标记信息的标记辅助选择(Marker assisted selection,MAS)技术,再到结合全基因组标记信息的BLUP(Genomic BLUP,GBLUP)技术,选择准确性逐步提高[3]。本研究采用简化基因组测序技术(Genotyping-by-sequencing,GBS)[5]和一步法BLUP(Single-step genomic BLUP,ssGBLUP)技术,对某一大白猪核心群母猪进行基因分型,并分别采用BLUP、GBLUP和ssGBLUP方法,对仔猪初生窝重的遗传估计育种值(Genomic estimated breeding value,GEBV)的选择准确性进行评估;此外,本文对初生窝重的遗传参数进行估计,旨在为仔猪初生窝重的选育提供参考。

    本研究以广东温氏种猪科技有限公司某核心场W64系大白猪为研究对象,并以该场为出生场,选取2010—2019年5月76 710条繁殖性能相关的测定记录,包括产仔数、产活仔数、健仔数、初生窝重、弱仔数、畸形仔数、死胎数和木乃伊数。其中弱差猪数为弱仔数、畸形仔数、死胎数和木乃伊数总和,用其来代表无效仔数,其与健仔数合并构成总产仔数。

    基因分型试验样品来自于该场基础母猪核心群近2年来有繁殖记录的母猪,共2 344头,采集其耳样并用75%(φ)乙醇溶液保存。

    本研究采用的简化基因组分型方法参考文献[5]。该方法采用EcoRI和MspI双内切酶对基因组进行切割,并在两端加上能够对个体识别的标签序列,通过PCR扩增和磁珠纯化,来达到富集目的片段的目的,并采用高通量二代测序技术对目标片段进行双端测序。试验流程依次包括:基因组DNA的提取和质检、基因组稀释定量、GBS文库的构建、文库质控、上机测序和测序数据分析。

    本研究利用Excel剔除缺失值和异常数据,并用Q-Q plot R程序包验证其是否服从正态分布,选取μ±3σ以内的表型数据,结合整理好的数据文件,利用DMUTrace软件追溯群体系谱,并按照DMU软件要求整理为数据文件和系谱文件;同时利用GVCBLUP和BLUPF90软件,分别用GBLUP和ssGBLUP方法计算基因组估计育种值。

    DMU软件是一个全面的集合程序。此软件可用于估计正态分布和非正态分布性状的方差-协方差组分[5]。本研究采用的是AI和EM算法相结合的约束性最大似然(REML)方法估计方差组分。

    方差分析模型为:

    $$ \mathrm{y}=\mathrm{Xb}+{{\mathrm{Z}}_{1}}\mathrm{a}+{{\mathrm{Z}}_{2}}\mathrm{Pe}+\mathrm{e} $$

    式中:y是个体观察值;b是固定效应向量,包括年季效应和胎次效应。a是动物个体加性效应;Pe是永久环境效应;e是残差效应。XZ1Z2分别是baPe的结构矩阵。

    使用DMU软件估计性状间遗传相关性。

    GBLUP模型:与传统的BLUP模型构建原理相似[7],区别在于利用基于SNP信息构建的基因组相关矩阵(G阵)替代常规的基于系谱关系的亲缘关系矩阵(A阵),从而提高GEBV的准确性,其模型如下:

    $$ \begin{align} & \ \ \ \ \ \ \ \ \ \ \ \ \mathrm{y}=\mathrm{I }\!\!\mu\!\!\text{ }+\mathrm{Za}+\mathrm{e}, \\ & \mathrm{a}\tilde{\ }\mathrm{N}(0, \mathrm{G}{{\sigma }^{2}}_{a}), \mathrm{e}\tilde{\ }\mathrm{N}(0, \mathrm{w}{{\sigma }^{2}}_{e}), \\ \end{align} $$

    其中,μ表示反应变量y的平均值;a表示个体的加性遗传效应(即个体育种值);e是残差效应;I为单位矩阵;Za的关联矩阵。G矩阵按照Vanraden提出的方法构建[7];当反应变量为yc时,w=I,本研究通过GVCBLUP软件来利用GBLUP模型。

    一步法GBLUP模型[8]:用H矩阵替代GBLUP中的G矩阵,从而将没有基因型的个体与有基因型的个体放在同一个模型中进行EBV的估计。H矩阵如下:

    $$ \begin{align} & \mathrm{H}=\left[ \begin{matrix} {{G}_{\omega }} & {{G}_{\omega }}A_{11}^{-1}{{A}_{12}} \\ {{A}_{21}}A_{11}^{-1}{{G}_{\omega }} & {{A}_{21}}A_{11}^{-1}{{G}_{\omega }}A_{11}^{-1}{{A}_{12}}+{{A}_{22}}-{{A}_{21}}A_{11}^{-1}{{A}_{12}} \\ \end{matrix} \right]~, \text{ } \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{\mathrm{H}}^{-1}}=\left[ \begin{matrix} G_{\omega }^{-1}-A_{11}^{-1} & 0 \\ 0 & 0 \\ \end{matrix} \right]+{{\mathrm{A}}^{-1}} \\ \end{align} $$

    式中,G为有基因型个体组成的矩阵,A为基于系谱的矩阵。

    根据每个个体GEBV的预测误差的方差(Predictor error variance, PEV),通过下列公式计算出对应的GEBV的理论准确性(Re):

    $$ {{R}_{\text{e}}}=\sqrt{1-{\text{PEV}}/{\sigma _{a}^{2}}\;} $$

    式中,σa2为加性遗传方差。

    初生窝重数据量达到76 710条,平均数为15.76 kg,标准差为4.64 kg,最小值和最大值分别为0.50和40.0 kg,另外根据偏度(-0.18)、峰度(0.54)和Q-Q plot图(图 1),可判断初生窝重基本符合正态分布。

    图  1  初生窝重的Q-Q plot

    初生窝重性状的加性方差、永久环境效应方差分别达到1.414和1.827,残差方差和表型方差分别为14.852和18.093,遗传力为0.08,说明该性状为低遗传力性状,永久环境效应方差占到表型方差的比例为0.10。

    初生窝重与总产仔数、产活仔数和健仔数遗传相关系数分别为0.59、0.68和0.88,为中等偏高的遗传正相关,与弱差猪数遗传相关系数为-0.17,为较低的遗传负相关。

    将出生日期在2016年之后的母猪作为验证样本,共546头母猪。使用传统BLUP、GBLUP和ssGBLUP计算方法,在个体表型缺失的情况下,比较GEBV的准确性,并计算了不同方法下,546头母猪GEBV的秩相关系数。初生窝重的GEBV的准确性在BLUP、GBLUP和ssGBLUP计算方法下分别为0.32、0.36和0.38,相对于BLUP计算方法,GBLUP和ssGBLUP准确性分别提升了11.11%和15.79%。结果表明,ssGBLUP预测初生窝重育种值的准确性最高,ssGBLUP预测的初生窝重估计育种值与BLUP估计育种值秩相关达到0.63,相关性最高。

    本文初生窝重性状记录达76 710条,数据近似服从正态分布,其遗传力估计值均在文献报道范围内[8];此外,遗传相关结果显示,初生窝重与健仔数遗传相关性最高,达到0.88,与相关报道结果较为接近[3]

    国际知名猪育种公司PIC和Norsvin,对出生窝重性状GEBV估计的准确性均进行过评估,其参考群均在1 000头以上,采用ssGBLUP方法的评估准确性为0.26~0.46[10-11]。本研究采用ssGBLUP方法,利用2 344头母猪构成基因组选择参考群,其育种值估计准确性为0.38,处于正常范围。但需要注意的是,基因组选择技术在各育种核心群中应用,其遗传基础、数据采集以及由基因分型方法不同导致标记位点数目和重量的差异,会对估计育种值的准确性和精确性造成较大的影响,实际应用中应具体问题具体分析。

    本研究以出生窝重性状为研究对象,评估了某大白猪核心育种场出生窝重的遗传参数,估计了其与主要繁殖性状的遗传相关性,通过对该性状的选择,能够有效促进性状的遗传改良,尤其是出生健仔数;另外通过构建大白猪基因组选择参考群体,评价了ssGBLUP能够有效提高基因组选择估计育种值的准确性。通过本研究可以发现,基因组选择能够一定程度上提高初生窝重等低遗传力性状的选择准确性,但是如何将此准确性转化为遗传进展,或是提高生产表现,还需要结合和优化实际生产状况,开发更具性价比和准确性的分型方法,或是需要更加灵活、全面和有效的育种方案。总之,本研究为基因组选择的应用奠定了基础,有利于进一步提高繁殖效率。

  • 图  1   甘蔗整秆立式收获−集捆装置结构简图

    1:甘蔗整秆,2:剥叶辊筒,3:切梢器,4:扶蔗器, 5:根切器, 6:拨蔗轮,7:夹持通道,8:打结器,9:立式集捆装置,10:排料器;图中红色框选区域为本文研究的立式集捆装置。

    Figure  1.   Brief structural diagram of the vertical harvesting-pre-baling device for whole-stalk sugarcane

    1: Whole-stalk sugarcane, 2: Stripping rollers, 3: Topper, 4: Pick-up device, 5: Base cutters, 6: Dividers, 7: Clamping feed-train, 8: Knotting device, 9: Vertical pre-baling device, 10: Discharging device; The red boxed area in the figure represents the vertical pre-baling device studied in this article.

    图  2   甘蔗整秆立式收获−集捆作业流程图

    图中红色框区域为立式集捆作业流程。

    Figure  2.   Vertical harvesting-pre-baling process of whole-stalk sugarcane

    The red boxed area in the figure represents the working process of vertical pre-baling.

    图  3   甘蔗整秆立式输送姿态与受力分析

    1:甘蔗整秆,2:上转指,3:下转指,4:基座;ABCO为外力作用于甘蔗的接触点; F1F2F3FfG为作用于甘蔗整秆上的外力;h1h2hs为作用于甘蔗整秆的外力与支撑点间的距离。

    Figure  3.   Posture and force analysis of whole-stalk sugarcane in vertical transport

    1: Whole-stalk sugarcane, 2: Upper rotating finger, 3: Lower rotating finger, 4: Base; A, B, C, O: Contact points of external forces on sugarcane stalk; F1, F2, F3, Ff, G: External forces acting on the sugarcane stalk; h1, h2, h, s: Distances between external forces and support points.

    图  4   甘蔗整秆立式集捆装置的结构组成

    1:上拨指;2:下拨指;3:下转指;4:基座;5:上转指;6:喂入组件;7:集料区;8:打结器;9:转运过渡区;10:压捆打结区;11:送绳机构;Ⅰ:时序控制部件;Ⅱ:转运集拢部件;Ⅲ:打结部件;Ⅳ:喂入部件。

    Figure  4.   Structure diagram of the vertical pre-baling device for whole-stalk sugarcane

    1: Upper bundling finger; 2: Lower bundling finger; 3: Lower rotating finger; 4: Base; 5: Upper rotating finger; 6: Feeding component; 7: Collecting area; 8: Knotting device; 9: Transfer transition area; 10: Baling and knotting area; 11: Rope feeding mechanism; Ⅰ: Sequential control part; Ⅱ: Transfer and pre-baling part; Ⅲ: Knotting part; Ⅳ: Feeding part.

    图  5   不同下转指高度和转速下的甘蔗整秆质心高度动态仿真结果

    Figure  5.   Simulation results of the centroid height dynamic of whole-stalk sugarcane under different heights and rotational speeds of lower rotating finger

    图  6   甘蔗整秆立式集捆装置的台架试验平台

    1:喂入部件;2:甘蔗整秆;3:打结器;4:转运集拢部件;5:时序控制部件; 6:液压站;7:电脑;8:电器控制箱。

    Figure  6.   Bench test platform of the vertical pre-baling device for whole-stalk sugarcane

    1: Feeding part; 2: Whole-stalk sugarcane; 3: Knotting device; 4: Transfer and pre-baling part; 5: Sequential control part; 6: Hydraulic station; 7: Computer; 8: Electrical control box.

    图  7   仿真试验(a)与台架试验(b)对比

    Figure  7.   Comparison of simulation test (a) and bench test (b)

    表  1   不同下转指高度和转速下的仿真集捆成功率

    Table  1   Pre-baling success rates of simulation under different heights and rotational speeds of lower rotating finger %

    下转指高度/mm
    Height of lower rotating finger
    15 r/min 30 r/min 45 r/min
    300 100 100 100
    400 100 100 100
    500 100 100 100
    600 100 80 93
    700 73 80 93
    800 53 46 53
    下载: 导出CSV

    表  2   台架试验不同下转指高度和转速下的集捆成功率1)

    Table  2   Pre-baling success rates under different heights and rotational speeds of lower rotating finger in bench test %

    下转指高度/mm
    Height of lower
    rotating finger
    15 r/min 30 r/min 45 r/min
    300 93±8aA 100±0aA 100±0aA
    400 98±4aA 100±0aA 100±0aA
    500 53±7bcB 55±14bB 91±4aA
    600 57±10bB 48±4bcB 75±10bA
    700 37±8cA 40±6cdA 37±8cA
    800 37±14cA 28±4dA 26±7cA
     1)同列数据后的不同小写字母表示不同下转指高度间差异显著(P<0.05, Duncan’s 法),同行数据后的不同大写字母表示不同转速间差异显著(P<0.05, Duncan’s 法)。
     1)Different lowercase letters of the same column indicate significant differences among different heights of lower rotating finger (P<0.05, Duncan’s method), while different uppercase letters of the same row indicate significant differences among different rotational speeds (P<0.05, Duncan’s method).
    下载: 导出CSV
  • [1] 刘庆庭, 莫建霖, 区颖刚, 等. 我国整秆与切段2种甘蔗收获方式发展历程与前景分析[J]. 甘蔗糖业, 2013(6): 45-55.
    [2]

    MA S, KARKEE M, SCHARF P A, et al. Sugarcane harvester technology: A critical overview[J]. Applied Engineering in Agriculture, 2014, 30: 727-739.

    [3]

    OU Y, WEGENER M, YANG D, et al. Mechanization technology: The key to sugarcane production in China[J]. International Journal of Agricultural and Biological Engineering, 2013, 6(1): 1-27.

    [4]

    LI Y, YANG L. Sugarcane agriculture and sugar industry in China[J]. Sugar Tech, 2015, 17(1): 1-8. doi: 10.1007/s12355-014-0342-1

    [5] 郑小兵. 整杆式甘蔗收获机新的生命力[J]. 农机市场, 2020(11): 26-27.
    [6] 刘庆庭, 区颖刚, 袁纳新. 甘蔗茎在弯曲荷载下的破坏[J]. 农业工程学报, 2004, 20(3): 6-9.
    [7] 王美美. 单芽段甘蔗种植机排种机理与种植均匀性研究[D]. 广州: 华南农业大学, 2014.
    [8] 蒲明辉, 吴江. 基于ADAMS的甘蔗柔性体模型建模研究[J]. 系统仿真学报, 2009, 21(7): 1930-1932.
    [9]

    XIE L, WANG J, CHENG S, et al. Optimization of a whole-stalk operating system after sugarcane base cutting[J]. Transactions of the ASABE, 2019, 62(1): 157-166. doi: 10.13031/trans.12508

    [10]

    MA S, SCHARF P A, ZHANG Q, et al. Effect of cane stool density and stubble height on sugarcane stubble damage in Hawaii fields[J]. Transactions of the ASABE, 2016, 59(3): 813e820.

    [11] 李腾辉, 周德强, 何冯光, 等. 基于遗传算法优化模糊PID的甘蔗收获机切割器控制系统[J]. 华中农业大学学报, 2023, 42(2): 243-250.
    [12] 周绍鹏, 刘庆庭, 杨丹彤, 等. 甘蔗立式夹持输送通道剥叶装置设计与试验[J]. 华南农业大学学报, 2019, 40(3): 117-124.
    [13] 李志红, 区颖刚. 整秆式甘蔗收获机甘蔗铺放运动学分析[J]. 农业工程学报, 2008, 24(11): 103-108.
    [14] 陈连飞, 区颖刚, 李志红, 等. 整秆式甘蔗收割机柔性夹持输送装置[J]. 农机化研究, 2009, 31(1): 71-75.
    [15] 许志伟, 李尚平, 麻芳兰, 等. 不同辊齿对甘蔗收割机辊轮输送影响仿真分析[J]. 农机化研究, 2011, 33(12): 47-50.
    [16] 程绍明, 王俊, 卢志乐, 等. 小型整秆式甘蔗收割机改进设计与试验[J]. 农业工程学报, 2014, 30(4): 12-17.
    [17] 谢卢鑫, 王俊, 程绍明, 等. 整秆式甘蔗收割机剥叶过程仿真分析与试验[J]. 农业工程学报, 2020, 36(18): 56-65. doi: 10.11975/j.issn.1002-6819.2020.18.008
    [18]

    XIE L, WANG J, CHENG S, et al. Optimisation and dynamic simulation of a conveying and top breaking system for whole-stalk sugarcane harvesters[J]. Biosystems Engineering, 2020, 197: 156-169.

    [19]

    LI X, LIN S H, HUANG Q Y, et al. Advances in research of lodging and evaluation in sugarcane[J]. Applied Ecology and Environmental Research, 2019, 17(3): 6095-6105.

    [20]

    LI X, LI X, LIU W, et al. A UAV-based framework for crop lodging assessment[J]. European Journal of Agronomy, 2021, 123: 126201. doi: 10.1016/j.eja.2020.126201

    [21] 安雪斌, 潘尚峰. 多体系统动力学仿真中的接触碰撞模型分析[J]. 计算机仿真, 2008, 25(10): 98-101.
    [22] 闻邦椿. 机械设计手册: 第1卷[M]. 5版. 北京: 机械工业出版社, 2010.
图(7)  /  表(2)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  15
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-15
  • 网络出版日期:  2024-12-10
  • 发布日期:  2024-12-15
  • 刊出日期:  2025-01-09

目录

/

返回文章
返回