Antifungal activity of Mikania micrantha extract against Magnaporthe oxyzae
-
摘要:目的
以入侵物种薇甘菊Mikania micrantha为材料,探究其不同提取物及组分对稻瘟病菌Magnaporthe oxyzae的抑菌活性。
方法以稻瘟病菌为供试病原菌,采用生长速率法对采自云南德宏的薇甘菊提取物进行室内抑菌活性测定,并通过柱层析对提取物的抑菌活性组分进行追踪。
结果在初筛质量浓度为1 mg/mL时,薇甘菊乙酸乙酯萃取物对稻瘟病菌有较好的抑菌活性,抑菌率为49.84%。对薇甘菊乙酸乙酯萃取物的14个柱层析组分进行抑菌活性追踪,组分Fr5、Fr6、Fr12、Fr13抑菌效果显著,在接种后第9天的EC50分别为1.691、2.134、0.865、0.818 mg/mL;4个组分均使菌丝质量减轻,MDA含量升高,菌丝形态畸变。
结论本研究发现薇甘菊提取物对稻瘟病菌有较好的抑菌效果,为综合开发利用薇甘菊提供了新思路,也为稻瘟病菌的绿色防控提供了科学依据。
Abstract:ObjectiveMikania micrantha, an invasive species, was used as a material to investigate the antifungal activity of different extracts and components against Magnaporthe oxyzae.
MethodThe antifungal activity of M. micrantha extract from Dehong of Yunnan Province was determined by growth rate method with M. oxyzae as the test pathogen, and the antifungal active components of the extract were traced by column chromatography.
ResultAt the initial screening mass concentration of 1 mg/mL, M. micrantha ethyl acetate extract showed potent antifungal activity against M. oxyzae, with the inhibition ratio of 49.84%. The antifungal activity tracking of 14 column chromatography components of the ethyl acetate extract showed that the antifungal activities of Fr5, Fr6, Fr12 and Fr13 were significant, EC50 values on day 9 after inoculation were 1.691, 2.134, 0.865 and 0.818 mg/mL, respectively. All the four active components resulted in the reduction of mycelial mass, elevation of MDA content, aberration of mycelial morphology.
ConclusionThis study finds that M. micrantha can significantly inhibit M. oxyzae, which provides a new idea for comprehensive development and utilization of M. micrantha, and also provides a scientific basis for green control of M. oxyzae.
-
Keywords:
- Plant extract /
- Magnaporthe oxyzae /
- Mikania micrantha /
- Growth rate method /
- Antifungal activity
-
-
图 2 不同培养天数时不同质量浓度Fr5、Fr6、Fr12、Fr13对稻瘟病菌的抑菌活性
各小图中相同质量浓度柱子上方的不同小写字母表示不同培养天数间在P<0.05水平差异显著(Duncan’s法)。
Figure 2. Antifungal activity of different mass concentrations of Fr5, Fr6, Fr12 and Fr13 against Magnaporthe oxyzae on different cultivation days
Different lowercase letters on the columns of the same mass concentration in each graph indicate significant differences among different cultivation days at P<0.05 (Duncan’s method).
表 1 培养第9天薇甘菊不同萃取物对稻瘟病菌的抑菌活性
Table 1 Antifungal activity of different Mikania micrantha extracts against Magnaporthe oxyzae at the 9th day of culture
萃取物
Extract抑菌率1)/%
Inhibition ratio95%置信区间
95% Confidence interval阳性对照 Positive control 55.24±0.55a 52.88~57.60 乙酸乙酯 Ethyl acetate 49.84±0.21b 48.93~50.75 正丁醇 l-Butanol 35.95±0.27c 34.77~37.13 石油醚 Petroleum ether 17.54±0.21d 16.63~18.45 1)抑菌率数据后的不同小写字母表示不同萃取物间在P<0.05水平差异显著(Duncan’s法)。
1) Different lowercase letters after the inhibition ratio data indicate significant differences among different extracts at P<0.05 (Duncan’s method).表 2 培养第9天薇甘菊乙酸乙酯萃取物14个组分对稻瘟病菌的抑菌活性1)
Table 2 Antifungal activity of 14 components of Mikania micrantha ethyl acetate extract against Magnaporthe oxyzae at the 9th day of culture
组分
Component菌落直径/mm
Colony diameter抑菌率/%
Inhibition ratio组分
Component菌落直径/mm
Colony diameter抑菌率/%
Inhibition ratio空白对照 Blank control 50.00±0.00a 0.00±0.00n Fr8 36.30±0.12fg 13.57±0.27j Fr1 39.63±0.09c 5.63±0.21l Fr9 34.67±0.26i 17.45±0.62f Fr2 38.87±0.03d 7.46±0.08k Fr10 27.17±0.18j 35.31±0.42e Fr3 40.30±0.12b 4.05±0.27m Fr11 35.57±0.24h 15.32±0.57h Fr4 37.37±0.22e 15.48±0.27g Fr12 24.73±0.12k 41.11±0.29d Fr5 21.27±0.15m 49.37±0.35b Fr13 20.77±0.18n 50.55±0.42a Fr6 23.80±0.17l 43.33±0.41c Fr14 36.23±0.09g 13.73±0.21i Fr7 36.73±0.12f 12.54±0.29i 1)同列数据后的不同小写字母表示不同组分间在P<0.05水平差异显著(Duncan’s法)。
1) Different lowercase letters in the same column indicate significant differences among different components at P<0.05 (Duncan’s method).表 3 不同培养天数4个组分对稻瘟病菌的抑菌毒力
Table 3 Antifungal virulence of four components against Magnaporthe oxyzae on different cultivation days
组分
Componentt培养/d
Cultivation days毒力回归方程1)
Toxicity regression equationR2 EC50/(mg·mL−1) Fr5 3 y=3.397x−0.912 0.999 1.856 5 y=5.055x−0.782 0.982 1.428 7 y=4.136x−0.661 0.985 1.445 9 y=6.339x−1.446 0.990 1.691 Fr6 3 y=4.587x−0.889 0.974 1.563 5 y=5.565x−1.483 0.978 1.847 7 y=6.351x−1.691 0.991 1.846 9 y=7.652x−2.519 0.990 2.134 Fr12 3 y=2.064x+0.994 0.963 0.330 5 y=2.338x+0.582 0.965 0.564 7 y=3.272x+0.647 0.983 0.634 9 y=3.031x+0.191 0.964 0.865 Fr13 3 y=3.461x+1.858 0.992 0.290 5 y=2.182x+1.135 0.968 0.302 7 y=2.137x+0.774 0.966 0.434 9 y=2.683x+0.234 0.981 0.818 1) x:质量浓度对数,y:抑菌率对应的几率。
1) x: Logarithm of mass concentration, y: Corresponding odds of the inhibition ratio.表 4 4种组分处理后稻瘟病菌菌丝干质量
Table 4 Dry mass of Magnaporthe oxyzae mycelia after treatment of four components
组分
Component干质量1)/g
Dry mass95%置信区间
95% Confidence interval空白对照 Blank control 0.209 4±0.003 9a 0.192 8~0.226 1 Fr5 0.040 0±0.000 6b 0.037 2~0.042 8 Fr6 0.037 7±0.000 4b 0.035 9~0.039 4 Fr12 0.027 7±0.000 9c 0.023 9~0.031 4 Fr13 0.018 9±0.000 4d 0.017 4~0.020 5 1)干质量数据后的不同小写字母表示不同组分间在P<0.05水平差异显著(Duncan’s法)。
1) Different lowercase letters after the dry mass data indicate significant differences among different components at P<0.05 (Duncan’s method). -
[1] 商文奇. 水稻稻瘟病防治方法研究进展[J]. 辽宁农业科学, 2021(1): 33-39. [2] 何桢锐, 黄晓彤, 舒灿伟, 等. 稻瘟病菌真菌病毒的研究进展[J]. 热带生物学报, 2021, 12(3): 385-392. [3] 李宁. 短小芽孢杆菌NDY-10对稻瘟病菌的抑菌特性及其全基因组分析[D]. 呼和浩特: 内蒙古大学, 2021. [4] 刘立娜, 王春梅, 王一, 等. 一种抑制稻瘟病菌生长的菌株鉴定[J]. 安徽农业科学, 2021, 49(19): 127-129. [5] 潘洁明, 玉烨, 陈韦唯, 等. 香蕉炭疽菌拮抗菌HSL3-29的分离鉴定及防治效果[J]. 微生物学通报, 2024, 51(3): 898-909. [6] 曾发姣, 周小玲, 汪彬, 等. 迷迭香提取物及其活性成分的抑菌作用研究进展[J]. 湖南农业科学, 2023(7): 110-114. [7] 梁晶, 樊国全, 方涛, 等. 21种药用植物提取物的抑菌活性筛选及其化学成分分析[J]. 天然产物研究与开发, 2023, 35(4): 562-572. [8] 孙正祥, 郑通文, 毛国庆, 等. 稻瘟病生防细菌的筛选及其防效测定[J]. 长江大学学报(自然科学版), 2021, 18(1): 115-121. [9] 杨美华, 康冀川, 雷帮星, 等. 四种稻瘟病生防菌的筛选及其活性评价[J]. 食品工业科技, 2020, 41(9): 102-107. [10] 马秋, 王照国, 杨雪, 等. 薇甘菊叶的化学成分及抑菌活性研究[J]. 天然产物研究与开发, 2020, 32(12): 2061-2065. [11] 高杜娟, 唐善军, 陈友德, 等. 水稻主要病害生物防治的研究进展[J]. 中国农学通报, 2019, 35(26): 140-147. [12] 李志勇, 吴柳君. 薇甘菊的发生现状及防治措施研究[J]. 种子科技, 2023, 41(3): 100-102. [13] 庞海生. 外来有害生物薇甘菊的发生与生物防治分析[J]. 种子科技, 2019, 37(9): 123-124. [14] 王照国. 薇甘菊内酯的提取分离、结构修饰及抑菌活性研究[D]. 贵阳: 贵州医科大学, 2021. [15] 张威, 祁进康, 李晋芳, 等. 薇甘菊化学成分对六种核桃病原真菌的抑菌活性[J]. 湖北农业科学, 2023, 62(5): 66-72. [16] 郝彩琴, 冯俊涛, 张兴. 小花假泽兰提取物抑菌活性研究[J]. 安徽农业科学, 2011, 39(15): 9031-9032. [17] 冯惠玲, 杨长举, 张兴, 等. 薇甘菊对昆虫和病原菌生物活性的初步研究[J]. 中山大学学报(自然科学版), 2004, 43(4): 82-85. [18] 罗建梅, 张兴怡, 伍建榕, 等. 植物提取物对油茶炭疽菌的抑菌活性筛选[J]. 中国生物防治学报, 2022, 38(4): 852-859. [19] 赵成萍, 上官李娜, 张沛然, 等. 不同培养基对黑曲霉菌丝生长影响的研究[J]. 中国酿造, 2019, 38(8): 36-40. [20] 梁琪. 抑制稻瘟病菌植物提取物的筛选及作用机理研究[D]. 哈尔滨: 黑龙江大学, 2021. [21] 丁晓. 钙对香菇菌丝镉吸收影响机制与微生物阻控镉吸附效果研究[D]. 郑州: 河南农业大学, 2021. [22] UDA M N A, HARZANA SHAARI N, SHAMIERA SAID N, et al. Antimicrobial activity of plant extracts from Aloe vera, Citrus hystrix, Sabah snake grass and Zingiber officinale against Pyricularia oryzae that causes rice blast disease in paddy plants[J]. IOP Conference Series: Materials Science and Engineering, 2018, 318: 12009. doi: 10.1088/1757-899x/318/1/012009
[23] QIAO S W, YAO J Y, WANG Q Z, et al. Antifungal effects of amaryllidaceous alkaloids from bulbs of Lycoris spp. against Magnaporthe oryzae[J]. Pest Management Science, 2023, 79(7): 2423-2432. doi: 10.1002/ps.7420
[24] NGO M T, HAN J W, YOON S, et al. Discovery of new triterpenoid saponins isolated from Maesa japonica with antifungal activity against rice blast fungus Magnaporthe oryzae[J]. Journal of Agricultural and Food Chemistry, 2019, 67(27): 7706-7715. doi: 10.1021/acs.jafc.9b02236
[25] DEVKOTA A, SAHU A. Antimicrobial activities and phytochemical screening of leaf extract of Mikania micrantha H. B. K[J]. Journal of Natural History Museum, 2018, 30: 274-286. doi: 10.3126/jnhm.v30i0.27603
[26] 祝木金, 冯俊涛, 冯惠玲, 等. 小花假泽兰提取物对十余种植物病原菌的抑制活性测试[J]. 西北农业学报, 2003, 12(4): 53-55.