Antifungal activity of Mikania micrantha extract against Magnaporthe oxyzae
-
摘要:目的
以入侵物种薇甘菊Mikania micrantha为材料,探究其不同提取物及组分对稻瘟病菌Magnaporthe oxyzae的抑菌活性。
方法以稻瘟病菌为供试病原菌,采用生长速率法对采自云南德宏的薇甘菊提取物进行室内抑菌活性测定,并通过柱层析对提取物的抑菌活性组分进行追踪。
结果在初筛质量浓度为1 mg/mL时,薇甘菊乙酸乙酯萃取物对稻瘟病菌有较好的抑菌活性,抑菌率为49.84%。对薇甘菊乙酸乙酯萃取物的14个柱层析组分进行抑菌活性追踪,组分Fr5、Fr6、Fr12、Fr13抑菌效果显著,在接种后第9天的EC50分别为1.691、2.134、0.865、0.818 mg/mL;4个组分均使菌丝质量减轻,MDA含量升高,菌丝形态畸变。
结论本研究发现薇甘菊提取物对稻瘟病菌有较好的抑菌效果,为综合开发利用薇甘菊提供了新思路,也为稻瘟病菌的绿色防控提供了科学依据。
Abstract:ObjectiveMikania micrantha, an invasive species, was used as a material to investigate the antifungal activity of different extracts and components against Magnaporthe oxyzae.
MethodThe antifungal activity of M. micrantha extract from Dehong of Yunnan Province was determined by growth rate method with M. oxyzae as the test pathogen, and the antifungal active components of the extract were traced by column chromatography.
ResultAt the initial screening mass concentration of 1 mg/mL, M. micrantha ethyl acetate extract showed potent antifungal activity against M. oxyzae, with the inhibition ratio of 49.84%. The antifungal activity tracking of 14 column chromatography components of the ethyl acetate extract showed that the antifungal activities of Fr5, Fr6, Fr12 and Fr13 were significant, EC50 values on day 9 after inoculation were 1.691, 2.134, 0.865 and 0.818 mg/mL, respectively. All the four active components resulted in the reduction of mycelial mass, elevation of MDA content, aberration of mycelial morphology.
ConclusionThis study finds that M. micrantha can significantly inhibit M. oxyzae, which provides a new idea for comprehensive development and utilization of M. micrantha, and also provides a scientific basis for green control of M. oxyzae.
-
Keywords:
- Plant extract /
- Magnaporthe oxyzae /
- Mikania micrantha /
- Growth rate method /
- Antifungal activity
-
猪繁殖与呼吸综合征病毒(Porcine reproductive and respiratory syndrome virus,PRRSV)是单股正链RNA病毒,有囊膜,直径在50~70 nm,全基因组1.5 kb左右[1-3]。PRRSV是猪繁殖与呼吸道综合征(PRRS)的主要病原,PRRS是一种在世界范围内广泛存在的烈性传染病,对全球养猪业造成了重大危害。1987年首次在美国被发现,之后在加拿大及其他北美地区出现。2006年夏季由高致病性猪繁殖与呼吸综合征病毒(Highly Pathogenic PRRSV, HP-PRRSV)引起的“无名高热”综合征,相较2006年之前的毒株可引起仔猪的高发病率与高死亡率,给我国养猪业带来了沉重的经济损失[4-6]。 感染猪通常会产生免疫抑制,从而继发感染其他细菌和病毒。临床表现主要有两方面:一是母猪严重的繁殖障碍,包括流产死胎、木乃伊胎及弱仔;二是各年龄段猪感染后均出现呼吸系统症状,常伴随非特异性的间质性肺炎[7]。
福建地处沿海,生猪产业发展迅速。在全国生猪优势区域布局规划中,福建确定为我国生猪产业的优势区域布局和发展重点区域,在生猪产业中具有生产基础、市场竞争、产品加工等优势,与此同时福建也是我国的生猪主销区之一,养猪业的健康发展对福建省的经济发展起着重要的作用[8]。PRRSV新现毒株与国内经典毒株的重组导致出现新的高致病性PRRSV,这让我国PRRS的防治工作更是雪上加霜[9]。在福建地区陆续有PRRSV新毒株的出现,如NADC30-like和欧洲I型毒株[10-11],尤其NADC30-like毒株,已有研究证明现有商业化蓝耳病疫苗不能对其提供完全保护[12]。近年来福建省陆续出台相关政策,对畜禽养殖要求提高门槛,同时将大力支持可养区生猪养殖场实施标准化改造[13-14]。这种趋势有助于提升猪场生物安全防控能力,对于猪场疫病防控起到一定的促进作用。
中小型养猪场与大型规模化、标准化养猪场相比,因其规模小、设施和管理相对比较落后、生物安全措施较薄弱,往往是疫病高发区。通过有针对性地对福建地区各中小型养猪场进行PRRSV流行病学调查,有助于了解PRRSV在该地区的流行情况,为PRRSV的防控提供借鉴。因PRRSV的GP5蛋白是诱导产生中和抗体的主要结构蛋白,编码GP5蛋白的ORF5基因在一定程度上能反映PRRSV的遗传变异情况,所以本试验主要是以GP5蛋白的流行程度来反映PRRSV的流行情况。
1. 材料与方法
1.1 样品收集
2017年83份疑似感染PRRSV的病料收集于福建龙岩、南平、漳州、福州、宁德等县市各中小型猪场。样品类型包括猪肺脏、淋巴结等,其中龙岩地区收集了12份,南平21份,漳州17份,福州9份,泉州5份,三明15份,宁德4份。将采集的组织样品研磨并于–70 ℃条件下保存,由国家生猪种业工程技术研究中心实验室留存。
1.2 主要试剂
RNA抽提试剂盒购自上海飞捷生物技术有限公司,RNA酶抑制剂、dNTP混合物(2.5 mmol/L)、TaKaRa ExTaq DNA聚合酶、DNA Marker DL 2 000和克隆载体pMD18-T购自TaKaRa公司;DNA凝胶回收试剂盒购自OMEGA公司;感受态细胞大肠埃希菌DH5α购自北京天根生化科技有限公司。
1.3 引物设计与合成
根据 GenBank中收录的JXA1的基因序列(EF112445.1)与国内外流行的PRRSV毒株基因序列的比对结果,设计2套扩增PRRSVORF5基因的引物,引物序列见表 1。
表 1 引物和扩增片段长度Table 1. Primer and amplified fragment length引物名称
Primer name引物序列(5'→3')
Primer sequence长度/bp
LengthORF5-1-F TGAGACCATGAGGTGGGC 726 ORF5-1-R GAAAACGCCAAAAGCACC ORF5-2-F TGCTCCATTTCATGACAC 974 ORF5-2-R GCATCTGGAGGTGATGAAT 1.4 病毒总 RNA 的提取
取–70 ℃保存备用的病料处理上清液,按上海飞捷生物技术有限公司的RNA抽提试剂盒操作说明书提取病毒RNA,用适量RNase free水溶解,–20 ℃条件下保存备用。
1.5 RT-PCR 扩增
以20 μL为反转体系,分别加入制备好的RNA 9.5 μL,5×MLV Buffer 4.0 μL,MLV反转录酶 1.0 μL,dNTPs (2.5 mmol/L) 4.0 μL,RNase Inhibitor (20 U/μL) 0.5 μL,反转录随机引物1.0 μL,混匀后,置于恒温水浴锅中42 ℃反应1 h后获得 cDNA 模板。将cDNA用于 PCR 反应。采用50 μLPCR体系,分别加入TaKaRa Ex -Taq DNA聚合酶25 μL,cDNA模板2 μL,上下游引物(20 pmol/μL)各2 μL,加ddH2O至终体系50 μL。反应参数:95 ℃预变性5 min;94 ℃变性30 s,56 ℃退火30 s,72 ℃延伸30 s (ORF5片段为1 min),共30个循环;最后72 ℃延伸10 min。反应结束后,用10 g/L琼脂糖凝胶电泳观察。
1.6 ORF5基因的克隆和测序
参照DNA Purification Kit说明书回收扩增的目的片段后,于16 ℃将目的基因与pMD18-T载体过夜连接,连接产物转化到 DH5a感受态细胞,37 ℃条件下倒置培养10~16 h,挑菌,经PCR鉴定为阳性的菌液送英潍捷基(上海)贸易有限公司进行序列测定。
1.7 ORF5基因的进化树以及GP5蛋白的氨基酸序列分析
将各片段的测序结果,利用DNAStarLasergne软件进行人工拼接,得到PRRSV ORF5基因序列。从GenBank已上传毒株序列中选择具有代表性的26株PRRSV毒株,其中1株欧洲毒株,7株美国毒株和18株中国毒株。用MEGA6.0软件进行遗传进化树的绘制,用DNA Star 7.0软件进行氨基酸序列相似性的比较。
2. 结果与分析
2.1 2017年福建地区PRRSV样品检测结果
2017年在福建南平、宁德、三明、漳州、福州、泉州、龙岩等地区70个中小规模猪场采集83份疑似蓝耳阳性样品,阳性检出率为73%(置信度为95.0%,置信区间为62.1%~82.2%),在NCBI上比对GP5遗传进化树显示分离毒株仍以JXA1亚群为主,占61%,GM2为代表毒株的分支检出率为17%,出现新的分支占15%,NADC30分支毒株占7%。南平、宁德、三明、福州、龙岩、泉州和漳州市的阳性率分别为26.50%、9.56%、15.47%、11.45%、12.58%、8.38%和17.76%。
2.2 PRRSV GP5氨基酸序列分析
比较不同PRRSV毒株的氨基酸序列,结果如图1所示。GP5各个区域的功能依次为信号肽区1~26 aa、诱导表位[27A(I/V)VLV29]、主要中和表位[37 H(F/L)QLIYNL45]、高变区、转膜区以及细胞表位,毒力相关位点为R13和 R151[15-16]。本试验NADC30为参考毒株亚群,以R13Q为主,其他分离株亚群以R13为主,仅有2株R13H突变,而R151氨基酸位点在各个分离株亚群中不变,以JXA1毒株为参考毒株的第I亚群和第II亚群出现了广泛的位点突变,包括信号肽区(L14S、F16S、 A26T)、诱导表位(L28P、 V29A),高变区1 (S32N、 N33Q)和高变区2 (A28N/K)等突变位点,在细胞表位功能区的突变与其他亚群基本保持一致。GM2亚群大部分毒株与参考毒株相比在主要中和表位发生了H28Y和L29S突变,同时新出现的亚群与其他亚群相比在信号肽区(C10Y、L17S)、诱导表位区(A21V)、高变区1(N23T/A D24S)、主要中和表位(L41S)和高变区2(A57V)等具有特征性的位点,在其他位点仅少数存在氨基酸置换。通过糖基化分析预测,不同亚群糖基化位点也存在着一定的差异,JXA1亚群I有4个糖基化位点,亚群II只有3个,GM2和NADC30据推测也只有3个糖基化位点,新出现的亚群存在4个糖基化位点。
图 1 PRRSV GP5氨基酸序列比对分析结果PS:信号肽;D:诱导表位;PNE:主要中和表位;HVR1、HVR2:高变区;T1、T2:T细胞表位;B:B细胞表位;TM1、TM2、TM3:跨膜区域;黄色高亮部分表示糖基化位点Figure 1. Comparison analysis of amino acid locus variation in PRRSV GP5PS: Peptide signal; D: Decoy epitope; PNE: Principal neutralizing epitope; HVR1, HVR2: Hypervariable region; T1, T2: T cell epitope; B: B cell epitope; TM1, TM2, TM3: Transmembrane regions; Yellow highlighted region refers to glycosylation site2.3 PRRSV ORF5遗传进化分析和基因的相似性
GeneBank上选取PRRSV的参考毒株与2017年测得的序列进行遗传进化分析,结果如图2所示,所有毒株均属于美洲型毒株,与参考毒株划分为不同的亚群,其中以JXA1毒株为代表的高致病性亚群仍为主要检出毒株,并与以往不同的是进化为2个不同的分支。以GM2为代表毒株的分支检出7株,且有新的进化分支形成。有3株分布在NADC30毒株为代表的分支上。经典株 CH-1a、美洲型疫苗株VR2332 和高致病性与经典毒株过渡株亚群未检出。其中共有6株毒株分布于新出现的分支中,与以往国内报道的毒株不同。
ORF5的核苷酸序列分析显示,ORF5的核苷酸序列相似性达80.3%~100.0%,通过遗传进化树可以看到,各分支毒株与其所属分支的代表毒株NADC30、GM2 和JXA1的核苷酸序列相似性分别为92.6%~93.9%、 89.8%~93.0%和 93.4%~99.3%。其中新出现的分支与CH-1a、JXA1和GM2的核苷酸序列相似性分别为91.7%~92.1%、92.4%~93.0%和81.9%~82.2%。在遗传进化树上独立形成分支的毒株 FJNP-LRX-04与以上参考毒株相比核苷酸序列相似性为82.7.%~87.2%,其中相似性最高的参考毒株是JXA1,相似性为87.2%。
3. 讨论与结论
本试验采集了福建地区几个市县PRRSV疑似蓝耳阳性病料,且收集了来源于福建地区中小规模养殖场的病料,所以本次试验覆盖地区广,有一定的代表性。福建地区送检猪场阳性率为73%,根据ORF5基因遗传进化分析显示,福建地区的毒株具有多样性,分布在5个大的分支上,检出以JXA1亚群为主,且分化呈两大分支的形式存在。以GM2为代表的lineage 3分支毒株在多地猪场都有检出,该支系毒株90年代最早出现在中国香港和台湾。有研究表明:GM2毒株在一些猪场长期存在,并且有不断扩大流行的趋势[17-18]。通过临床观察和统计,流行GM2毒株的猪场怀孕母猪流产率在10%左右,仔猪临床表现以高热为主,死亡率在10%~25%之间。以类NADC30为参考毒株的亚群检出率为7%,推测可能类NADC30毒株在福建地区尚未成为流行毒株。
通过遗传进化分析显示,新出现的毒株亚群分支的GP5氨基酸位点出现了一些新的特征,这些氨基酸变化在其他亚群中没有出现,其对毒株的生物学特征的影响需要进一步试验验证。该类型毒株分布于福建部分县市猪场,且没有呈现明显的地域特征。其中检测到FJNP-LRX-04等新毒株与流行参考毒株JXA1 ORF5基因序列相似性为92%~93%,是否会成为流行毒株需要进一步研究。病毒囊膜上的糖基化位点,会屏蔽相关的抗原表位,造成免疫逃逸[19],以JXA1为代表的高致病性毒株存在4个糖基化位点,而新出现的分支亚群也有同样特点,所以可能会出现对现有疫苗免疫逃逸。
本研究通过对福建地区中小规模猪场PRRSV的分子检测及ORF5基因的变异分析,初步了解了福建地区中小规模猪场PRRSV毒株流行情况,并且对引种或跨区域传播引起的风险提供了一定的参考。
-
图 2 不同培养天数时不同质量浓度Fr5、Fr6、Fr12、Fr13对稻瘟病菌的抑菌活性
各小图中相同质量浓度柱子上方的不同小写字母表示不同培养天数间在P<0.05水平差异显著(Duncan’s法)。
Figure 2. Antifungal activity of different mass concentrations of Fr5, Fr6, Fr12 and Fr13 against Magnaporthe oxyzae on different cultivation days
Different lowercase letters on the columns of the same mass concentration in each graph indicate significant differences among different cultivation days at P<0.05 (Duncan’s method).
表 1 培养第9天薇甘菊不同萃取物对稻瘟病菌的抑菌活性
Table 1 Antifungal activity of different Mikania micrantha extracts against Magnaporthe oxyzae at the 9th day of culture
萃取物
Extract抑菌率1)/%
Inhibition ratio95%置信区间
95% Confidence interval阳性对照 Positive control 55.24±0.55a 52.88~57.60 乙酸乙酯 Ethyl acetate 49.84±0.21b 48.93~50.75 正丁醇 l-Butanol 35.95±0.27c 34.77~37.13 石油醚 Petroleum ether 17.54±0.21d 16.63~18.45 1)抑菌率数据后的不同小写字母表示不同萃取物间在P<0.05水平差异显著(Duncan’s法)。
1) Different lowercase letters after the inhibition ratio data indicate significant differences among different extracts at P<0.05 (Duncan’s method).表 2 培养第9天薇甘菊乙酸乙酯萃取物14个组分对稻瘟病菌的抑菌活性1)
Table 2 Antifungal activity of 14 components of Mikania micrantha ethyl acetate extract against Magnaporthe oxyzae at the 9th day of culture
组分
Component菌落直径/mm
Colony diameter抑菌率/%
Inhibition ratio组分
Component菌落直径/mm
Colony diameter抑菌率/%
Inhibition ratio空白对照 Blank control 50.00±0.00a 0.00±0.00n Fr8 36.30±0.12fg 13.57±0.27j Fr1 39.63±0.09c 5.63±0.21l Fr9 34.67±0.26i 17.45±0.62f Fr2 38.87±0.03d 7.46±0.08k Fr10 27.17±0.18j 35.31±0.42e Fr3 40.30±0.12b 4.05±0.27m Fr11 35.57±0.24h 15.32±0.57h Fr4 37.37±0.22e 15.48±0.27g Fr12 24.73±0.12k 41.11±0.29d Fr5 21.27±0.15m 49.37±0.35b Fr13 20.77±0.18n 50.55±0.42a Fr6 23.80±0.17l 43.33±0.41c Fr14 36.23±0.09g 13.73±0.21i Fr7 36.73±0.12f 12.54±0.29i 1)同列数据后的不同小写字母表示不同组分间在P<0.05水平差异显著(Duncan’s法)。
1) Different lowercase letters in the same column indicate significant differences among different components at P<0.05 (Duncan’s method).表 3 不同培养天数4个组分对稻瘟病菌的抑菌毒力
Table 3 Antifungal virulence of four components against Magnaporthe oxyzae on different cultivation days
组分
Componentt培养/d
Cultivation days毒力回归方程1)
Toxicity regression equationR2 EC50/(mg·mL−1) Fr5 3 y=3.397x−0.912 0.999 1.856 5 y=5.055x−0.782 0.982 1.428 7 y=4.136x−0.661 0.985 1.445 9 y=6.339x−1.446 0.990 1.691 Fr6 3 y=4.587x−0.889 0.974 1.563 5 y=5.565x−1.483 0.978 1.847 7 y=6.351x−1.691 0.991 1.846 9 y=7.652x−2.519 0.990 2.134 Fr12 3 y=2.064x+0.994 0.963 0.330 5 y=2.338x+0.582 0.965 0.564 7 y=3.272x+0.647 0.983 0.634 9 y=3.031x+0.191 0.964 0.865 Fr13 3 y=3.461x+1.858 0.992 0.290 5 y=2.182x+1.135 0.968 0.302 7 y=2.137x+0.774 0.966 0.434 9 y=2.683x+0.234 0.981 0.818 1) x:质量浓度对数,y:抑菌率对应的几率。
1) x: Logarithm of mass concentration, y: Corresponding odds of the inhibition ratio.表 4 4种组分处理后稻瘟病菌菌丝干质量
Table 4 Dry mass of Magnaporthe oxyzae mycelia after treatment of four components
组分
Component干质量1)/g
Dry mass95%置信区间
95% Confidence interval空白对照 Blank control 0.209 4±0.003 9a 0.192 8~0.226 1 Fr5 0.040 0±0.000 6b 0.037 2~0.042 8 Fr6 0.037 7±0.000 4b 0.035 9~0.039 4 Fr12 0.027 7±0.000 9c 0.023 9~0.031 4 Fr13 0.018 9±0.000 4d 0.017 4~0.020 5 1)干质量数据后的不同小写字母表示不同组分间在P<0.05水平差异显著(Duncan’s法)。
1) Different lowercase letters after the dry mass data indicate significant differences among different components at P<0.05 (Duncan’s method). -
[1] 商文奇. 水稻稻瘟病防治方法研究进展[J]. 辽宁农业科学, 2021(1): 33-39. [2] 何桢锐, 黄晓彤, 舒灿伟, 等. 稻瘟病菌真菌病毒的研究进展[J]. 热带生物学报, 2021, 12(3): 385-392. [3] 李宁. 短小芽孢杆菌NDY-10对稻瘟病菌的抑菌特性及其全基因组分析[D]. 呼和浩特: 内蒙古大学, 2021. [4] 刘立娜, 王春梅, 王一, 等. 一种抑制稻瘟病菌生长的菌株鉴定[J]. 安徽农业科学, 2021, 49(19): 127-129. [5] 潘洁明, 玉烨, 陈韦唯, 等. 香蕉炭疽菌拮抗菌HSL3-29的分离鉴定及防治效果[J]. 微生物学通报, 2024, 51(3): 898-909. [6] 曾发姣, 周小玲, 汪彬, 等. 迷迭香提取物及其活性成分的抑菌作用研究进展[J]. 湖南农业科学, 2023(7): 110-114. [7] 梁晶, 樊国全, 方涛, 等. 21种药用植物提取物的抑菌活性筛选及其化学成分分析[J]. 天然产物研究与开发, 2023, 35(4): 562-572. [8] 孙正祥, 郑通文, 毛国庆, 等. 稻瘟病生防细菌的筛选及其防效测定[J]. 长江大学学报(自然科学版), 2021, 18(1): 115-121. [9] 杨美华, 康冀川, 雷帮星, 等. 四种稻瘟病生防菌的筛选及其活性评价[J]. 食品工业科技, 2020, 41(9): 102-107. [10] 马秋, 王照国, 杨雪, 等. 薇甘菊叶的化学成分及抑菌活性研究[J]. 天然产物研究与开发, 2020, 32(12): 2061-2065. [11] 高杜娟, 唐善军, 陈友德, 等. 水稻主要病害生物防治的研究进展[J]. 中国农学通报, 2019, 35(26): 140-147. [12] 李志勇, 吴柳君. 薇甘菊的发生现状及防治措施研究[J]. 种子科技, 2023, 41(3): 100-102. [13] 庞海生. 外来有害生物薇甘菊的发生与生物防治分析[J]. 种子科技, 2019, 37(9): 123-124. [14] 王照国. 薇甘菊内酯的提取分离、结构修饰及抑菌活性研究[D]. 贵阳: 贵州医科大学, 2021. [15] 张威, 祁进康, 李晋芳, 等. 薇甘菊化学成分对六种核桃病原真菌的抑菌活性[J]. 湖北农业科学, 2023, 62(5): 66-72. [16] 郝彩琴, 冯俊涛, 张兴. 小花假泽兰提取物抑菌活性研究[J]. 安徽农业科学, 2011, 39(15): 9031-9032. [17] 冯惠玲, 杨长举, 张兴, 等. 薇甘菊对昆虫和病原菌生物活性的初步研究[J]. 中山大学学报(自然科学版), 2004, 43(4): 82-85. [18] 罗建梅, 张兴怡, 伍建榕, 等. 植物提取物对油茶炭疽菌的抑菌活性筛选[J]. 中国生物防治学报, 2022, 38(4): 852-859. [19] 赵成萍, 上官李娜, 张沛然, 等. 不同培养基对黑曲霉菌丝生长影响的研究[J]. 中国酿造, 2019, 38(8): 36-40. [20] 梁琪. 抑制稻瘟病菌植物提取物的筛选及作用机理研究[D]. 哈尔滨: 黑龙江大学, 2021. [21] 丁晓. 钙对香菇菌丝镉吸收影响机制与微生物阻控镉吸附效果研究[D]. 郑州: 河南农业大学, 2021. [22] UDA M N A, HARZANA SHAARI N, SHAMIERA SAID N, et al. Antimicrobial activity of plant extracts from Aloe vera, Citrus hystrix, Sabah snake grass and Zingiber officinale against Pyricularia oryzae that causes rice blast disease in paddy plants[J]. IOP Conference Series: Materials Science and Engineering, 2018, 318: 12009. doi: 10.1088/1757-899x/318/1/012009
[23] QIAO S W, YAO J Y, WANG Q Z, et al. Antifungal effects of amaryllidaceous alkaloids from bulbs of Lycoris spp. against Magnaporthe oryzae[J]. Pest Management Science, 2023, 79(7): 2423-2432. doi: 10.1002/ps.7420
[24] NGO M T, HAN J W, YOON S, et al. Discovery of new triterpenoid saponins isolated from Maesa japonica with antifungal activity against rice blast fungus Magnaporthe oryzae[J]. Journal of Agricultural and Food Chemistry, 2019, 67(27): 7706-7715. doi: 10.1021/acs.jafc.9b02236
[25] DEVKOTA A, SAHU A. Antimicrobial activities and phytochemical screening of leaf extract of Mikania micrantha H. B. K[J]. Journal of Natural History Museum, 2018, 30: 274-286. doi: 10.3126/jnhm.v30i0.27603
[26] 祝木金, 冯俊涛, 冯惠玲, 等. 小花假泽兰提取物对十余种植物病原菌的抑制活性测试[J]. 西北农业学报, 2003, 12(4): 53-55. -
期刊类型引用(4)
1. 戴娜桑. 当前福建省南安市猪繁殖与呼吸综合征病毒的遗传进化分析. 中国兽医卫生. 2025(01): 15-21 . 百度学术
2. 覃珍珍,王志远,文波,潘红丽,凌洪,郑蓉,吴先华. 我国猪繁殖与呼吸综合征病毒ORF5基因变异及全基因组重组分析. 中国猪业. 2024(06): 66-75 . 百度学术
3. 于海丽,陶伟杰,刘佳卉,单虎,杨海燕,张传美. 仔猪PRRSV和PCV2混合感染的诊断及病毒基因型分析. 动物医学进展. 2022(06): 119-124 . 百度学术
4. 张帅,赵云环,刘莹,翟刚,郭禹,刘涛,左玉柱,范京惠. 基于PRRSV ORF5基因TaqMan qPCR检测方法的建立及遗传变异分析. 中国兽医学报. 2022(06): 1122-1130 . 百度学术
其他类型引用(0)