Effect of magnesium nutrition on growth and root system architecture traits of soybean seedlings
-
摘要:目的
镁是植物生长必需的矿质营养元素,研究大豆在不同镁浓度下的苗期生长情况及根系三维构型的动态变化。
方法以磷高效大豆品种‘粤春03-3’为研究对象,营养液培养,设置镁浓度为0、262.5、525.0、787.5和1 050.0 μmol/L,分析苗期大豆的生长发育状况。在此基础上,利用根系三维定量系统对正常镁处理(525.0 μmol/L,对照)及缺镁处理(0 μmol/L)的大豆根系三维构型进行动态定量化分析。
结果与525.0 μmol/L对照相比,0 μmol/L缺镁处理大豆的地上部干质量、根冠比、老叶SPAD、总根长和根系总表面积分别减少89.04%、48.67%、51.42%、93.36%和94.31%。而其他3个镁浓度条件下,大豆生长与对照差异较小。根系三维构型研究发现,与对照相比,随着处理时间的延长,缺镁处理显著降低大豆根系的总根长、总根表面积、根重心、根尖数、凸包体积、最大根宽、最小根宽、最大根深、最大根宽/最大根深,对根系充实度、分根繁茂度和根体积分布的影响较小。
结论本研究明确了大豆对外界镁有效性的适应范围较广,借助优化的根系三维重建技术,阐明缺镁显著降低大豆根系的总根长、根尖数、根重心、最大根宽等,但对根系充实度、分根繁茂度、根体积分布动态变化规律的影响较小。研究结果对大豆镁肥的合理施用和镁营养诊断有一定的指导意义。
Abstract:ObjectiveMagnesium (Mg) is an essential mineral nutrient for plant growth. This study was aimed to investigate the growth and dynamic changes in three-dimensional root system architecture traits of soybean seedlings under different Mg concentrations.
MethodThe phosphorus-efficient soybean genotype ‘Yuechun 03-3’ was selected as the research object, and Mg concentrations were set in hydroponics as 0, 262.5, 525.0, 787.5 and 1 050.0 μmol/L to explore the effect of Mg nutrition on the growth and development of soybean seedlings. Furthermore, the optimized three-dimensional root quantification system was used to analyze the dynamic quantitative changes in the root system architecture traits of soybeans under control Mg treatment (525.0 μmol/L) and Mg deficiency treatment (0 μmol/L).
ResultCompared with the control of 525.0 μmol/L Mg, the soybean shoot dry mass, root-to-shoot ratio, SPAD of old leaves, total root length, and total root surface area under the 0 μmol/L Mg deficiency treatment decreased by 89.04%, 48.67%, 51.42%, 93.36% and 94.31% respectively. Under other three Mg concentration conditions, the growth of soybeans showed relatively small differences compared with the control. The results of three-dimensional root system quantification found that compared with the control Mg treatment, Mg deficiency treatment significantly reduced the total root length, total root surface area, root centroid, number of root tips, convex hull volume, maximum root width, minimum root width, maximum root depth and maximum width/maximum depth of soybean roots with the extension of treatment time. However, it affected root solidity, bushiness and root volume distribution feebly.
ConclusionThis study elucidates the wide adaptability range of soybeans to external Mg availability. By utilizing optimized three-dimensional root reconstruction techniques, it is found that Mg deficiency significantly reduces the total root length, number of root tips, root centroid and maximum root width of soybeans, while it does not significantly affect the dynamic changes in root solidity, bushiness and volume distribution. These findings have certain implications for rational use of Mg fertilizer and Mg nutrition diagnosis in soybeans.
-
Keywords:
- Soybean /
- Magnesium /
- Seedling stage /
- Growth /
- Three-dimensional root quantification /
- Root system architecture
-
-
图 3 不同镁(Mg)浓度处理22 d对大豆生长的影响
各小图柱子上方的不同小写字母表示不同镁浓度间差异显著,小图F中新叶SPAD的显著性差异用不同大写字母表示(P<0.05,Duncan’s法)
Figure 3. Effects of different magnesium (Mg) concentrations on soybean growth after 22 d treatment
Different lowercase letters on the columns in each figure indicate significant differences among different magnesium concentrations, differences in SPAD of young leaves are labeled as different capital letters in figure F (P<0.05, Duncan’s method)
图 4 不同镁(Mg)浓度处理22 d对大豆根系生长的影响
各小图柱子上方的不同小写字母表示不同镁浓度间差异显著(P<0.05,Duncan’s法)
Figure 4. Effects of different magnesium (Mg) concentrations on growth of soybean roots after 22 d treatment
Different lowercase letters on the columns in each figure indicate significant differences among different magnesium concentrations (P<0.05, Duncan’s method)
图 6 镁营养对大豆苗期根系三维构型的影响
“*”和“**”分别表示缺镁处理(0 μmol·L−1)与对照(525.0 μmol·L−1)在P < 0.05和P <0.01水平差异显著(t检验)
Figure 6. Effect of magnesium nutrition on root 3D system architecture of soybean in seedling stage
“*” and “**” indicate significant differences at P < 0.05 and P < 0.01 levels between magnesium dificiency treatment (0 μmol·L−1) and the control (525.0 μmol·L−1) (t test)
-
[1] HERMANS C, BOURGIS F, FAUCHER M, et al. Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves[J]. Planta, 2005, 220(4): 541-549. doi: 10.1007/s00425-004-1376-5
[2] CAKMAK I. Magnesium in crop production, food quality and human health[J]. Plant and Soil, 2013, 368(1/2): 1-4.
[3] MENGUTAY M, CEYLAN Y, KUTMAN U B, et al. Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat[J]. Plant and Soil, 2013, 368(1/2): 57-72.
[4] 李延, 刘星辉, 庄卫民. 植物Mg素营养生理的研究进展[J]. 福建农业大学学报, 2000, 29(1): 74-80. [5] TIAN X Y, HE D D, BAI S, et al. Physiological and molecular advances in magnesium nutrition of plants[J] Plant and Soil, 2021, 468(1/2): 1-17.
[6] 李春俭, 王正, 张福锁. 镁肥在我国主要作物上的提质增效作用[J]. 中国土壤与肥料, 2022(3): 1-6. doi: 10.11838/sfsc.1673-6257.20707 [7] 黄鸿翔, 陈福兴, 徐明岗, 等. 红壤地区土壤镁素状况及镁肥施用技术的研究[J]. 土壤肥料, 2000(5): 19-23. [8] LYNCH J. Root architecture and plant productivity[J]. Plant Physiology, 1995, 109(1): 7-13. doi: 10.1104/pp.109.1.7
[9] BOWMAN D C, DEVITT D A, ENGELKE M C, et al. Root architecture affects nitrate leaching from bentgrass turf[J]. Crop Science, 1998, 38: 1633-1639. doi: 10.2135/cropsci1998.0011183X003800060036x
[10] LI X, ZENG R, LIAO H. Improving crop nutrient efficiency through root architecture modifications[J]. Journal of Integrative Plant Biology, 2016, 58(3): 193-202. doi: 10.1111/jipb.12434
[11] 赵静, 付家兵, 廖红, 等. 大豆磷效率应用核心种质的根构型性状评价[J]. 科学通报, 2004, 49(13): 1249-1257. doi: 10.3321/j.issn:0023-074X.2004.13.006 [12] 肖爽, 刘连涛, 张永江, 等. 植物微根系原位观测方法研究进展[J]. 植物营养与肥料学报, 2020, 26(2): 370-385. doi: 10.11674/zwyf.19186 [13] CLARK R T, MACCURDY R B, JUNG J K, et al. Three-dimensional root phenotyping with a novel imaging and software platform[J]. Plant Physiology, 2011, 156(2): 455-465. doi: 10.1104/pp.110.169102
[14] LOBET G, DRAYE X, PÉRILLEUX C. An online database for plant image analysis software tools[J]. Plant Methods, 2013, 9: 38. doi: 10.1186/1746-4811-9-38
[15] 余常兵, 陆星, 廖星, 等. 油菜高通量根系构型定量分析与三维重建系统[J]. 中国油料作物学报, 2016, 38(5): 681-690. [16] LIU S, BARROW C S, HANLON M, et al. DIRT/3D: 3D root phenotyping for field-grown maize (Zea mays)[J]. Plant Physiology, 2021, 187(2): 739-757. doi: 10.1093/plphys/kiab311
[17] 钟南, 罗锡文, 秦琴. 基于生长函数的大豆根系生长的三维可视化模拟[J]. 农业工程学报, 2008, 24(7): 151-154. doi: 10.3321/j.issn:1002-6819.2008.07.031 [18] HAN L, GRESSHOFF P M, HANAN J. A functional-structural modelling approach to autoregulation of nodulation[J]. Annals of Botany, 2011, 107(5): 855-863. doi: 10.1093/aob/mcq182
[19] 祁旺定, 尚明瑞. 中国大豆产业发展问题研究[J]. 中国农学通报, 2014, 30(17): 88-96. [20] 程凤娴, 涂攀峰, 严小龙, 等. 酸性红壤中磷高效大豆新种质的磷营养特性[J]. 植物营养与肥料学报, 2010, 16(1): 71-81. [21] 余常兵, 陆星, 李银水, 等. 植物根系三维固定培养装置: CN204579393U[P]. 2015-08-26 [2023-11-12] .
[22] 李丹萍, 刘敦一, 张白鸽, 等. 不同镁肥在中国南方三种缺镁土壤中的迁移和淋洗特征[J]. 土壤学报, 2018, 55(6): 1513-1524. [23] 李亚洲, 李沸, 高铭, 等. 土壤中过量镁对大豆几项生理指标的影响[J]. 农业环境保护, 1990, 9(2): 41-42. [24] 丁玉川, 焦晓燕, 聂督. 镁水平对不同类型土壤大豆生长、养分吸收以及产量的影响[J]. 中国农学通报, 2010, 26(17): 201-205. [25] 曾秀成, 王文明, 罗敏娜, 等. 缺素培养对大豆营养生长和根系形态的影响[J]. 植物营养与肥料学报, 2010, 16(4): 1032-1036. [26] CAKMAK I, MARSCHNER H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves[J]. Plant Physiology, 1992, 98(4): 1222-1227. doi: 10.1104/pp.98.4.1222
[27] GRUBER B D, GIEHL R F H, FRIEDEL S, et al. Plasticity of the Arabidopsis root system under nutrient deficiencies[J]. Plant Physiology, 2013, 163(1): 161-179. doi: 10.1104/pp.113.218453
[28] IYER-PASCUZZI A S, SYMONOVA O, MILEYKO Y, et al. Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems[J]. Plant Physiology, 2010, 152(3): 1148-1157. doi: 10.1104/pp.109.150748
-
期刊类型引用(23)
1. 池美香,陈韶萍,黄婷,陈世雄,梁勇,邱荣洲. 柑橘黄龙病田间症状识别图像数据集. 中国科学数据(中英文网络版). 2025(01): 52-61 . 百度学术
2. 骆润玫,殷惠莉,刘伟康,胡凯,廖飞,刘泽乾,曹亚芃,李强,王卫星. 基于YOLOv5-C的广佛手病虫害识别. 华南农业大学学报. 2023(01): 151-160 . 本站查看
3. 殷献博,邓小玲,兰玉彬,陈欣. 基于改进YOLOX-Nano算法的柑橘梢期长势智能识别. 华南农业大学学报. 2023(01): 142-150 . 本站查看
4. 梁生珺,于明鑫. 应用于无人机平台的轻量Transformer排水口检测框架. 电子技术与软件工程. 2023(01): 165-168 . 百度学术
5. 汪莹,刘静远,吕文刚,龙海,刘宵宵,余道坚,方毅,郑铭森,张浩,陈冬美,高瑞芳. 基于卷积神经网络的昆虫和杂草标本智能全维识别方法初探. 植物检疫. 2023(02): 40-45 . 百度学术
6. 王慧,李康顺,蔡铁,王文祥,董纯铿. 基于约束性多目标优化算法的柑橘黄龙病识别算法. 江苏农业科学. 2023(06): 159-167 . 百度学术
7. 马军磊,栗伟周,张赞. 基于PP-YOLO的电子焊接实训装置安全报警系统. 许昌学院学报. 2023(02): 116-121 . 百度学术
8. 李志臣,凌秀军,李鸿秋,李志军. 基于改进ShuffleNet的板栗分级方法. 山东农业大学学报(自然科学版). 2023(02): 299-307 . 百度学术
9. 杨雪. 基于DCGAN的数据增强方法. 江苏通信. 2023(02): 97-100+107 . 百度学术
10. 边坤,梁慧. 基于机器学习的图案分类研究进展. 图学学报. 2023(03): 415-426 . 百度学术
11. 胡凯,骆润玫,刘泽乾,曹亚芃,廖飞,王卫星,李强,孙道宗. 基于改进SSD的广佛手病虫害检测方法. 南京农业大学学报. 2023(04): 813-821 . 百度学术
12. 王治兵,吴丽丽. 基于改进的MobilenetV3苹果叶片病害图像识别技术. 软件工程. 2023(08): 20-25 . 百度学术
13. 刘拥民,胡魁,聂佳伟,谢铁强. 基于MSDB-ResNet的水稻病虫害识别. 华南农业大学学报. 2023(06): 978-985 . 本站查看
14. 赵法川,徐晓辉,宋涛,郝淼淼,汪曙,朱伟龙. 融合多头注意力的轻量级作物病虫害识别. 华南农业大学学报. 2023(06): 986-994 . 本站查看
15. 李志臣,凌秀军,李鸿秋,李志军. 基于改进EfficientNet的板栗分级方法. 中国农机化学报. 2023(12): 180-185 . 百度学术
16. 徐兢成,王丽华. 基于AlexNet网络的交通标志识别方法. 无线电工程. 2022(03): 470-475 . 百度学术
17. 周巧黎,马丽,曹丽英,于合龙. 基于改进轻量级卷积神经网络MobileNetV3的番茄叶片病害识别. 智慧农业(中英文). 2022(01): 47-56 . 百度学术
18. 胡哲,徐承志,雷光波,徐丽. 基于改进YOLOv5的X射线图像铸件缺陷实时检测. 激光杂志. 2022(05): 54-59 . 百度学术
19. 叶名炀,张杰强. 基于轻量化网络MobileNetV2的玉米病害识别研究. 现代计算机. 2022(11): 46-50 . 百度学术
20. 钟友闻,车文刚,高盛祥. 轻型多尺度黑色素瘤目标检测网络模型的建立:基于注意力机制调控. 南方医科大学学报. 2022(11): 1662-1671 . 百度学术
21. 滕明洪,谭立新. 基于EfficientNetV2和迁移学习的葡萄病害识别研究. 软件. 2022(11): 43-49 . 百度学术
22. 陆健强,梁效,余超然,兰玉彬,邱洪斌,黄捷伟,尹梓濠,陈慧洁,郑胜杰. 基于坐标注意力机制与高效边界框回归损失的线虫快速识别. 农业工程学报. 2022(22): 123-132 . 百度学术
23. 卢慧林,陈大嵩,陈逢浩,叶静文,欧阳革成. 基于纳米孔测序技术的柑橘黄龙病检测方法建立. 环境昆虫学报. 2021(06): 1596-1600 . 百度学术
其他类型引用(14)