Screening and identification of rice salt-tolerant mutants at germination stage induced by space mutagenesis and heavy ion radiation
-
摘要:目的
筛选萌发期耐盐突变体,为耐盐水稻新品种的创制与培育提供优异的种质资源。
方法对优质籼稻品种‘航聚香丝苗’干种子进行空间诱变和重离子诱变处理,并对诱变后代进行耐盐突变体的定向筛选。将野生型(WT)‘航聚香丝苗’种子用不同浓度NaCl溶液处理,探索萌发期耐盐突变体筛选的适宜浓度,以发芽率为指标对5 205份M2代诱变材料进行筛选,并在M3代进行验证。对WT和突变体进行耐盐相关生理指标的测定与分析,考查农艺性状;采用48个SSR标记对诱变后代与WT的遗传相似性进行评估。
结果萌发期耐盐突变体筛选的适宜NaCl溶液浓度为340 mmol/L,筛选得到12份萌发期耐盐突变体。生理指标测定结果显示,2个代表性突变体9-8和22-7的SOD、POD、CAT、APX活性均显著高于WT的,MDA、H2O2和O2−含量均显著低于WT的,耐盐突变体呈现出更强的抗氧化能力。突变体和野生型的农艺性状基本一致。SSR标记检测结果表明,WT ‘航聚香丝苗’与突变体19-49、20-15、20-49、20-62、15-6、16-65、22-7、20-19、20-38均无SSR差异位点,与突变体9-8、19-18、42-113的差异SSR位点均为1个。
结论筛选到12份萌发期耐盐突变体,且与WT ‘航聚香丝苗’的遗传背景高度一致,对水稻抗盐新品种的培育及抗盐性遗传机理的研究具有一定的理论和实际意义。
Abstract:ObjectiveTo screen salt-tolerant mutants during germination, provide excellent germplasm resources for creating and breeding new salt-tolerant rice varieties.
MethodThe dried seeds of the high quality indica rice variety ‘Hangjuxiangsimiao’, were treated with spatial mutagenesis and heavy ion mutagenesis, and the mutagenised progeny were subjected to targeted screening for salt-tolerant mutants. Wild type (WT) ‘Hangjuxiangsimiao’ seeds were treated with different concentrations of NaCl solution to explore the appropriate concentration for screening salt-tolerant mutants at the germination stage, and then 5 205 M2 mutant materials were screened using germination rate as an index and verified in the M3 generation. WT and mutants were measured and analysed for salt-tolerance-related physiological indices and agronomic traits. 48 SSR markers were used to assess the genetic similarity between the mutant progeny and WT.
ResultThe appropriate NaCl concentration for screening salt-tolerant mutants at the germination stage was 340 mmol/L, and 12 salt-tolerant mutants were screened at the germination stage. The results of physiological indices showed that the SOD, POD, CAT and APX activities of two representative mutants 9-8 and 22-7 were significantly higher than those of WT, and the MDA, H2O2 and O2− contents were significantly lower, the salt-tolerant mutants exhibited stronger antioxidant capacity. The results of SSR marker detection showed that there were no SSR differentiation locus between WT seedlings and mutants of 19-49, 20-15, 20-49, 20-62, 15-6, 16-65, 22-7, 20-19 and 20-38, and one differentiation SSR locus between them and mutants of 9-8, 19-18, 42-113.
ConclusionTwelve salt-tolerant mutants were screened at the germination stage, which were highly consistent with the genetic background of wild-type ‘Hangjuxiangsimiao’. It has certain theoretical and practical significance for breeding new salt-tolerant rice varieties and studing the genetic mechanism of salt tolerance.
-
Keywords:
- Rice /
- Space mutation /
- Heavy ion radiation /
- SSR marker /
- Mutant screening /
- Germination stage /
- Salt tolerance
-
图 4 M3代耐盐突变体盐处理7 d后的发芽率、发芽势和芽长对比
“**”表示突变体与野生型在0.01水平差异显著(t检验);其中,红色柱子表示极耐盐突变体,蓝色柱子表示中度耐盐突变体。
Figure 4. Comparison of germination rate, germination potential and bud length of M3 generation salt-tolerant mutants after 7 days of salt treatment
“**” indicates that the mutants differed from the wild-type respectively at 0.01 levels of significant difference (t test); Red bars represent highly salt-tolerant mutants, while blue bars indicate mutants with moderate salt tolerance.
表 1 空间诱变和重离子诱变的水稻突变体M3代株系的主要农艺性状1)
Table 1 The main agronomic characters of the rice mutants derived from space mutation and heavy ion mutation
株系
Line株高/cm
Plant
height剑叶长/cm
Flag-leaf
length剑叶宽/cm
Flag-leaf
width单株穗质量/g
Panicle weight
per plant穗长/cm
Panicle
length十粒长/cm
10-grain
length十粒宽/cm
10-grain
width千粒质量/g
1000-grain
weightWT 112.67±2.52b 34.60±2.04a 1.83±0.21a 22.30±2.82a 24.16±1.57a 11.13±0.16a 1.87±0.26a 21.16±1.50a 9-8 110.14±1.11b 33.75±2.02a 1.85±0.05a 22.24±0.15a 24.36±0.05a 10.59±0.02b 1.87±0.02a 18.52±0.43b 15-6 117.89±1.45a 34.05±0.32a 1.78±0.06a 21.81±1.26a 24.22±0.23a 11.08±0.07a 1.88±0.05a 21.27±0.32a 16-65 113.26±1.56b 33.71±2.18a 1.79±0.14a 22.72±1.31a 23.98±1.32a 11.12±0.09a 1.90±0.04a 20.89±1.03a 22-7 112.03±1.25b 34.19±1.65a 1.82±0.02a 22.99±1.06a 24.10±1.04a 11.13±0.06a 1.89±0.12a 21.25±0.14a 19-18 109.79±1.80b 34.04±1.93a 1.79±0.11a 22.57±1.47a 23.92±1.45a 10.71±0.12b 1.88±0.13a 21.03±0.36a 19-49 112.15±0.32b 33.92±1.21a 1.19±0.12a 22.40±2.03a 24.05±0.96a 11.09±0.11a 1.86±0.18a 20.84±1.21a 20-19 112.98±1.23b 33.92±2.08a 1.78±0.15a 22.16±1.65a 24.31±0.32a 11.14±0.03a 1.87±0.02a 20.96±1.07a 20-15 117.65±1.75a 35.24±1.15a 1.80±0.12a 22.90±1.54a 24.14±1.17a 11.12±0.12a 1.87±0.06a 21.08±0.35a 20-38 110.42±2.11b 34.13±1.33a 1.81±0.04a 22.62±1.63a 24.27±1.26a 11.10±0.11a 1.87±0.11a 21.23±0.22a 20-49 112.67±2.30b 33.68±1.82a 1.83±0.19a 23.14±1.24a 23.89±1.03a 11.03±0.21a 1.88±0.07a 21.35±0.53a 20-62 110.67±2.52b 34.15±1.63a 1.82±0.15a 22.09±2.12a 24.03±1.12a 11.19±0.03a 1.87±0.16a 21.57±0.28a 42-113 110.14±2.11b 30.50±1.29b 1.82±0.04a 22.36±1.36a 23.79±1.39a 11.01±0.22a 1.89±0.08a 21.24±0.55a 1) WT:航聚香丝苗;9-8为重离子诱变后代;其他株系为空间诱变后代;表中数据为平均值±标准误,n=5,同列数据后不同小写字母表示不同株系之间差异显著(P<0.05,Duncan’s法)。
1) WT: Hangjuxiangsimiao; 9-8 represents heavy ion-induced mutant; Other strains represent space-induced mutants; The data in the table are mean value ± standard error, n=5, different lowercase letters after the data in the same column indicate significant differences among different lines (P<0.05,Duncan’s method). -
[1] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. [2] PONCE K, GUO L, LENG Y, et al. Advances in sensing, response and regulation mechanism of salt tolerance in rice[J]. International Journal of Molecular Sciences, 2021, 22(5): 2254. doi: 10.3390/ijms22052254
[3] CHENG X, HE Q, TANG S, et al. The miR172/IDS1 signaling module confers salt tolerance through maintaining ROS homeostasis in cereal crops[J]. New Phytologist, 2021, 230(3): 1017-1033. doi: 10.1111/nph.17211
[4] YOU J, ZONG W, HU H, et al. A STRESS-RESPONSIVE NAC1-regulated protein phosphatase gene rice protein Phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice[J]. Plant Physiology, 2014, 166(4): 2100-2114. doi: 10.1104/pp.114.251116
[5] ZHANG J, FLOWERS T J, WANG S. Mechanisms of sodium uptake by roots of higher plants[J]. Plant and Soil, 2010, 326(1): 45-60.
[6] 黄洁, 白志刚, 钟楚, 等. 水稻耐盐生理及分子调节机制[J]. 核农学报, 2020, 34(6): 1359-1367. doi: 10.11869/j.issn.100-8551.2020.06.1359 [7] 曲梦宇, 许惠滨, 陈静, 等. 水稻耐盐分子机制与分子改良[J]. 植物遗传资源学报, 2022, 23(3): 644-653. [8] 姚栋萍, 吴俊, 胡忠孝, 等. 水稻耐盐碱的生理机制及育种策略[J]. 杂交水稻, 2019, 34(4): 1-7. [9] CYRANOSKI D. Satellite will probe mutating seeds in space[J]. Nature, 2001, 410(6831): 857-858.
[10] 陈淳, 严贤诚, 罗文龙, 等. 水稻空间诱变与重离子诱变生物学效应及突变体定向筛选[J]. 华南农业大学学报, 2021, 42(1): 49-60. doi: 10.7671/j.issn.1001-411X.202004012 [11] 俞法明, 严文潮, 毛雪琴, 等. 利用空间诱变技术进行早籼稻新品种的改良[J]. 核农学报, 2014, 28(6): 949-954. doi: 10.11869/j.issn.100-8551.2014.06.0949 [12] 王伟荣, 孙超才, 蒋美艳, 等. 甘蓝型油菜品种航天诱变后代性状分析[J]. 核农学报, 2015, 29(2): 215-220. doi: 10.11869/j.issn.100-8551.2015.02.0215 [13] 刘录祥, 赵林姝, 郭会君. 作物航天育种研究现状与展望[J]. 中国农业科技导报, 2007, 9(2): 26-29. doi: 10.3969/j.issn.1008-0864.2007.02.005 [14] 陈志强, 郭涛, 刘永柱, 等. 水稻航天育种研究进展与展望[J]. 华南农业大学学报, 2009, 30(1): 1-5. doi: 10.3969/j.issn.1001-411X.2009.01.001 [15] 周利斌, 李文建, 曲颖, 等. 重离子束辐照育种研究进展及发展趋势[J]. 原子核物理评论, 2008, 25(2): 165-170. doi: 10.11804/NuclPhysRev.25.02.165 [16] FU H, LI Y, SHU Q. A revisit of mutation induction by gamma rays in rice (Oryza sativa L. ): Implications of microsatellite markers for quality control[J]. Molecular Breeding, 2008, 22(2): 281-288. doi: 10.1007/s11032-008-9173-7
[17] 李瑞清, 武立权, 舒庆尧, 等. 一个新的水稻白化转绿突变体G9的特性研究[J]. 核农学报, 2010, 24(5): 881-886. doi: 10.11869/hnxb.2010.05.0881 [18] 曾晓珊, 彭丹, 石媛媛, 等. 利用SSR标记构建水稻核心亲本指纹图谱[J]. 作物研究, 2016, 30(5): 481-486. [19] 许绍斌, 陶玉芬, 杨昭庆, 等. 简单快速的DNA银染和胶保存方法[J]. 遗传, 2002, 24(3): 335-336. doi: 10.3321/j.issn:0253-9772.2002.03.027 [20] MANSOUR F M M, HASSAN F A. How salt stress-responsive proteins regulate plant adaptation to saline conditions?[J]. Plant Molecular Biology, 2022, 108(3): 175-224. doi: 10.1007/s11103-021-01232-x
[21] ZHAO S, ZHANG Q, LIU M, et al. Regulation of plant responses to salt stress[J]. International Journal of Molecular Sciences, 2021, 22(9): 4609. doi: 10.3390/ijms22094609
[22] CHOUDHURY F K, RIVERO R M, BLUMWALD E, et al. Reactive oxygen species, abiotic stress and stress combination[J]. The Plant Journal, 2017, 90(5): 856-867. doi: 10.1111/tpj.13299
[23] 中国水稻研究所, 农业部科技发展中心. 水稻品种鉴定技术规程 SSR标记法: NY/T 1433—2014[S]. 北京: 中国农业出版社, 2014. [24] 符德保, 李燕, 肖景华, 等. 中国水稻基因组学研究历史及现状[J]. 生命科学, 2016, 28(10): 1113-1121. [25] 郑静. 一份水稻白化突变体的遗传分析及其基因定位[D]. 雅安: 四川农业大学, 2008. [26] 魏溪涓. 水稻闭花授粉突变体fod的突变基因克隆与功能分析[D]. 金华: 浙江师范大学, 2015. [27] 钟琪. 组织培养技术筛选植物耐盐突变体的研究进展[J]. 安徽农业科学, 2016, 44(5): 145-148. doi: 10.3969/j.issn.0517-6611.2016.05.053 [28] 颜佳倩, 顾逸彪, 薛张逸, 等. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. [29] LIU J, FU C, LI G, et al. ROS homeostasis and plant salt tolerance: Plant nanobiotechnology updates[J]. Sustainability, 2021, 13(6): 3552. doi: 10.3390/su13063552
[30] LIU C, MAO B, YUAN D, et al. Salt tolerance in rice: Physiological responses and molecular mechanisms[J]. The Crop Journal, 2022, 10(1): 13-25. doi: 10.1016/j.cj.2021.02.010
[31] VAN ZELM E, ZHANG Y, TESTERINK C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology, 2020, 71: 403-433. doi: 10.1146/annurev-arplant-050718-100005
[32] FOYER C, NOCTOR G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses[J]. The Plant Cell, 2005, 17(7): 1866-1875. doi: 10.1105/tpc.105.033589
[33] KHARE T, SRIVASTAVA A K, SUPRASANNA P, et al. Individual and additive stress impacts of Na+ and Cl‾ on proline metabolism and nitrosative responses in rice[J]. Plant Physiology and Biochemistry, 2020, 152: 44-52. doi: 10.1016/j.plaphy.2020.04.028
[34] 温贤芳, 张龙, 戴维序, 等. 天地结合开展我国空间诱变育种研究[J]. 核农学报, 2004, 18(4): 241-246. doi: 10.3969/j.issn.1000-8551.2004.04.001 [35] 陈立凯, 黄明, 刘永柱, 等. 水稻开颖半不育突变体的观察、遗传分析和基因定位[J]. 中国农业科学, 2016, 49(1): 1-13. doi: 10.3864/j.issn.0578-1752.2016.01.001 [36] CALDECOTT R S, STEVENS H, ROBERTS B J. Stem rust resistant variants in irradiated populations mutations or field hybrids? [J]. Agronomy Journal, 1959, 51(7): 401-403. doi: 10.2134/agronj1959.00021962005100070011x
[37] 张福彦, 张建伟, 程仲杰, 等. 航天诱变技术在小麦育种上的应用[J]. 核农学报, 2019, 33(2): 262-269. doi: 10.11869/j.issn.100-8551.2019.02.0262