Biological characteristics of the pathogen of guava wilt and screening of biocontrol bacteria and control agents
-
摘要:目的
明确番石榴枯萎病菌的生物学特性,并进行生防菌和防治药剂筛选,为番石榴枯萎病的发生规律及高效防控提供理论依据。
方法在不同碳源、温度、pH、NaCl浓度等培养条件下,测定番石榴枯萎病菌GS-1的生物学特性,采用平板对峙法筛选GS-1的生防菌,并利用菌丝生长速率法测定6种常用杀菌剂对病原菌的抑制效果。
结果番石榴枯萎病菌GS-1菌丝生长的最佳碳源为果糖,产孢最佳碳源为果糖和甘露醇;菌丝最适生长温度为30 ℃,最适生长pH为6;温度为28~46 ℃时均有大量孢子萌发,52 ℃时孢子完全失去活性;番石榴枯萎病菌GS-1菌丝具有一定的耐盐性。生防菌解淀粉芽孢杆菌B2对病原菌GS-1生长的抑制效果最佳。番石榴枯萎病菌GS-1菌丝对咪鲜胺的敏感性最高,0.0004 μg/mL咪鲜胺条件下不生长;其次为吡唑醚菌酯和甲霜灵,EC50分别为0.4912和0.8805 μg/mL。
结论番石榴枯萎病菌适生范围较广,温度较高、中性偏弱酸的环境条件利于其快速生长繁殖,咪鲜胺、吡唑醚菌酯和甲霜灵可作为防治番石榴枯萎病的药剂。
Abstract:ObjectiveThe biological characteristics of Nalanthamala psidii, a causal agent of guava wilt, were studied, and biocontrol bacteria and control agents were screened in order to investigate the occurrence rule and control strategies of guava wilt.
MethodThe biological characteristics of N. psidii GS-1 were detected under cultivation conditions with different carbon source, temperature, pH and NaCl concentration. The biocontrol bacteria for GS-1 was screened using plate confrontation method. The mycelial growth rate method was used to determine the inhibitory effects of six types of commonly fungicides on the pathogen.
ResultThe optimal carbon source for mycelial growth of GS-1 was fructose, and the optimal carbon sources for conidia germination were fructose and mannitol. The most suitable temperature and pH for mycelial growth were 30 ℃and 6 respectively. Plenty of conidia could germinate at the temperature of 28 to 46 ℃. The lethal temperature of conidia was 52 ℃. The GS-1 mycelia had certain degree of salinity tolerance. Bacillus amyloliquefaciens isolate B2 had the highest inhibitory effect on GS-1 growth. The GS-1 mycelia was the most susceptible to prochloraz and it did not grow when the content of prochloraz was 0.0004 μg/mL, followed by pyraclostrobin and metalaxyl with EC50 of 0.4912 and 0.8805 μg/mL, respectively.
ConclusionThe pathogen of guava wilt has a wide range of suitable habitat, and environmental conditions of higher temperature and neutral to weak acidity are conducive to its rapid growth and reproduction. Prochloraz, pyraclostrobin and metalaxyl can be used to control guava wilt.
-
Keywords:
- Guava wilt /
- Nalanthamala psidii /
- Biological characteristic /
- Biocontrol bacteria /
- Control agent
-
-
图 6 不同生防菌株对番石榴枯萎病菌GS-1的平板对峙抑制效果(A)和生长抑制效果(B~D)
BS:贝莱斯芽孢杆菌,B2:解淀粉芽孢杆菌,XX:枯草芽孢杆菌;C、D图中,柱子上方不同小写字母表示处理间差异显著 (P<0.05,Duncan’s 法)
Figure 6. The plate confrontation inhibition effect (A) and growth inhibition effect (B, C and D) of different biocontrol strains on Nalanthamala psidii GS-1
BS: Bacillus velezensis, B2: B. amyloliquefaciens, XX: B. subtilis; In figure C and D, different lowercase letters on columns indicate significant differences (P<0.05,Duncan’s method)
表 1 番石榴枯萎病菌GS-1对6种不同药剂的敏感性
Table 1 Sensitivity of Nalanthamala psidii GS-1 to six types of fungicides
杀菌剂
Fungicide毒力回归方程1)
Toxicity regression equationEC502)/
(μg·mL−1)相关系数
Correlation coefficient吡唑醚菌酯 Pyraclostrobin y = 5.19561 + 0.63355x 0.4912c 0.9995 甲霜灵 Metalaxyl y = 5.135 00 + 2.44163x 0.8805c 0.9827 甲基硫菌灵 Thiophanate-methyl y = 4.11042 + 0.63956x 24.5999c 0.9608 代森锰锌 Mancozeb y = 3.09376 + 1.36947x 24.6578c 0.9895 霜霉威盐酸盐 Propamocarb hydrochloride y = 3.82053 + 0.30493x 7379.3042a 0.9630 春雷霉素 Kasugamycin y = 3.32901 + 0.42801x 44193.1643b 0.9273 1) x表示药剂质量浓度的对数值,y表示抑菌率的概率值;2) 同列数据后不同小写字母表示处理间差异显著 (P< 0.05,Duncan’s法)
1) x indicates logarithm value of the mass concentration of the fungicide, y indicates corresponding mortality probability value; 2) Different lowercase letters in the same column indicate significant differences (P< 0.05, Duncan’s method) -
[1] 宁琳, 陈豪君, 潘祖健, 等. 我国南亚热带地区番石榴种质资源保护现状[J]. 中国南方果树, 2015, 44(5): 147-149. [2] JAMIESON S, WALLACE C E, DAS N, et al. Guava (Psidium guajava L. ): A glorious plant with cancer preventive and therapeutic potential[J]. Critical Reviews in Food Science and Nutrition, 2023, 63(2): 192-223.
[3] JI C Y, REN D D, LIANG X Y, et al. First report of Nalanthamala psidii causing wilt disease of guava in Guangdong, China[J]. Plant Disease, 2023, 107(6): 1943.
[4] 张芙蓉, 曾敬, 张守梅, 等. 广州南沙番石榴枯萎病的病原菌[J]. 菌物学报, 2022, 41(8): 1165-1173. [5] SCHROERS H J, GELDENHUIS M M, WINGFIELD M J, et al. Classification of the guava wilt fungus Myxosporium psidii, the palm pathogen Gliocladium vermoesenii and the persimmon wilt fungus Acremonium diospyri in Nalanthamala[J]. Mycologia, 2005, 97(2): 375-395. doi: 10.1080/15572536.2006.11832814
[6] LEU L S, KAO C W, WANG C C, et al. Myxosporium wilt of guava and its control[J]. Plant Disease Reporter, 1979, 63: 1075-1077.
[7] HONG C F, HSIEH H Y, CHEN K S, et al. Importance of root infection in guava wilt caused by Nalanthamala psidii[J]. Plant Pathology, 2015, 64(2): 450-455. doi: 10.1111/ppa.12282
[8] SCHOEMAN M H, BENADE E, WINGFIELD M J. The symptoms and cause of guava wilt in South Africa[J]. Journal of Phytopathology, 1997, 145(1): 37-41.
[9] ATHIPUNYAKOM P, LUANGSA-ARD J J. Nalanthamala psidii cause of guava wilt disease in Thailand[C]//Proceedings of the 46th Kasetsart University Annual Conference, Kasetsart: Kasetsart University, 2008: 504-512.
[10] ALAM K M, ALAM M M, ISLAM M, et al. First report of Nalanthamala psidii causing wilt disease of guava in Bangladesh[J]. Plant Disease, 2019, 103(5): 1043.
[11] SCHOEMAN M H, LABUSCHAGNE N, CALITZ F J. Efficacy of fungicides, plant resistance activators and biological control agents against guava wilt disease caused by Nalanthamala psidii[J]. South African Journal of Plant and Soil, 2017, 34(2): 119-124.
[12] ISLAM K K, FAROOQUE A M, RAHIM M A. Growth and development of wilt resistant grafts as influenced by variety, methods of grafting and scion type in guava (Psidium guajava L. )[J]. Agricultural Studies, 2018, 2(2): 40. doi: 10.31058/j.as.2018.22010
[13] SHUKLA P K, FATIMA T, RAJAN S. Research on Fusarium wilt disease of guava[J]. Indian Phytopathology, 2019, 72(4): 629-636. doi: 10.1007/s42360-019-00167-0
[14] VELOSO J S, CÂMARA M P S, SOUZA R M. Guava decline: Updating its etiology from ‘Fusarium solani’ to Neocosmospora falciformis[J]. European Journal of Plant Pathology, 2021, 159(2): 455-460. doi: 10.1007/s10658-020-02161-z
[15] ANJUM R, KHAN I A, GLEASON M L, et al. First report of a Ceratocystis manginecans causing quick decline of Psidium guajava in Pakistan[J]. Plant Disease, 2021, 105(8): 2245.
[16] MISRA A K. Guava diseases: Their symptoms, causes and management[J]. Springer Netherlands, 2004, 2: 81-119.
[17] 崔一平, 彭埃天, 宋晓兵, 等. 番石榴枯萎病病原菌的分离及分子生物学鉴定[J]. 植物保护学报, 2021, 48(2): 467-468. [18] 刘任, 戚佩坤, 梁关生, 等. 番石榴茎溃疡病病原鉴定[J]. 华南农业大学学报, 1996, 17(2): 65-69. [19] 邵雪花, 刘牛, 赖多, 等. 不同杀菌剂对番石榴枝枯病病原菌的毒力和田间防效[J]. 植物保护, 2019, 45(2): 199-203. [20] 丁兆建. 香蕉根际生防微生物筛选及对枯萎病的盆栽防效测定[D]. 广州: 华南农业大学, 2008. [21] 李敏慧, 曾敬, 魏玉清, 等. 一株枯草芽孢杆菌XX及其在防治土传真菌病害中的应用: CN202111087271.1[P]. 2022-03-04. [22] 李敏慧, 曾敬, 苑曼琳, 等. 一株香蕉内生贝莱斯芽孢杆菌及其应用: CN201911413362.2[P]. 2022-03-25. [23] FIRA D, DIMKIĆ I, BERIĆ T, et al. Biological control of plant pathogens by Bacillus species[J]. Journal of Biotechnology, 2018, 285: 44-55. doi: 10.1016/j.jbiotec.2018.07.044
[24] YADAV V S, NANDNI S, SINGH K P, et al. Management of guava wilt in tarai regions of Uttarakhand[J]. Journal of Pharmacognosy and Phytochemistry, 2018, 7(6): 2370-2374.
[25] SINGH V P, SINGH D K, RANA M, et al. Detection and management strategies of guava wilt pathogen[J]. Agrica, 2021, 10(2): 100-110.
[26] SUWAN N, THAVORNWONG S, NALUMPANG S. Evaluation of fungicide and actinomycete efficiency in controlling Nalanthamala psidii, causal agent of guava wilt disease[J]. Asia-Pacific Journal of Science and Technology, 2013, 18(3): 391-403.