• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

水稻lncRNA SVR及邻近SAUR基因在种子低温萌发中的表达

刘金朝, 浦娜, 陈淳, 陈伟雄, 王慧, 肖武名

刘金朝, 浦娜, 陈淳, 等. 水稻lncRNA SVR及邻近SAUR基因在种子低温萌发中的表达[J]. 华南农业大学学报, 2023, 44(6): 896-905. DOI: 10.7671/j.issn.1001-411X.202308015
引用本文: 刘金朝, 浦娜, 陈淳, 等. 水稻lncRNA SVR及邻近SAUR基因在种子低温萌发中的表达[J]. 华南农业大学学报, 2023, 44(6): 896-905. DOI: 10.7671/j.issn.1001-411X.202308015
LIU Jinzhao, PU Na, CHEN Chun, et al. Expression of lncRNA SVR and adjacent SAUR genes in rice during seed germination under low temperature[J]. Journal of South China Agricultural University, 2023, 44(6): 896-905. DOI: 10.7671/j.issn.1001-411X.202308015
Citation: LIU Jinzhao, PU Na, CHEN Chun, et al. Expression of lncRNA SVR and adjacent SAUR genes in rice during seed germination under low temperature[J]. Journal of South China Agricultural University, 2023, 44(6): 896-905. DOI: 10.7671/j.issn.1001-411X.202308015

水稻lncRNA SVR及邻近SAUR基因在种子低温萌发中的表达

基金项目: 广东省基础与应用基础研究基金(2021A1515010410);广东省级乡村振兴战略专项资金种业振兴项目(2022-NPY-00-016)
详细信息
    作者简介:

    刘金朝,硕士研究生,主要从事水稻遗传与基因功能研究,E-mail: ljz666666@stu.scau.edu.cn

    通讯作者:

    王 慧,教授,博士,主要从事水稻遗传育种研究,E-mail: wanghui@scau.edu.cn

    肖武名,副研究员,博士,主要从事水稻基因挖掘与遗传育种研究,E-mail: heredity24@126.com

  • 中图分类号: S511

Expression of lncRNA SVR and adjacent SAUR genes in rice during seed germination under low temperature

  • 摘要:
    目的 

    长链非编码RNA(Long non-coding RNA,lncRNA)长度大于200 nt,一般不具有编码蛋白质功能。探究低温下lncRNA对邻近SAUR基因表达的影响,以期为研究水稻种子低温萌发的能力提供理论依据。

    方法 

    lncRNA SVR由华南农业大学国家植物航天育种工程技术研究中心前期研究筛选,可以响应低温胁迫,通过生物信息学方法分析lncRNA SVR的二级结构并寻找lncRNA SVR内部的冷胁迫基序,通过qRT-PCR分析lncRNA SVR和SAUR基因的表达特性。

    结果 

    lncRNA SVR序列中存在高度相似的冷胁迫响应基序,且在茎环连接处。表达特性分析表明,在种子萌发过程中低温胁迫会持续降低lncRNA SVR的表达,邻近的多个SAUR基因在低温胁迫下的表达量明显高于在常温下的表达量,表明lncRNA SVR的邻近SAUR基因一定程度上能够和lncRNA SVR一样响应低温胁迫。表达相关性分析表明,在低温萌发中lncRNA SVR与这些SAUR基因的表达均呈负相关关系,lncRNA SVR与OsSAUR55的表达呈显著负相关关系。进一步分析种子低温萌发中SAUR基因在lncRNA SVR敲除系中的表达情况,结果表明,在敲除系中,lncRNA SVR的下降幅度低于其在野生型中的下降幅度,OsSAUR41OsSAUR53OsSAUR54OsSAUR55表达量的上升幅度均显著低于其在野生型中的上升幅度。

    结论 

    lncRNA SVR可能负调控OsSAUR55的表达,进而响应低温胁迫。

    Abstract:
    Objective 

    Long non-coding RNA (lncRNA) is longer than 200 nt and generally does not code proteins. To explore the effect of lncRNA on the expression of neighbouring SAUR genes under low temperature, and provide a theoretical basis for studying the ability of rice seeds to germinate at low temperature.

    Method 

    lncRNA SVR was investigated in response to cold stress in previous research of National Engineering Research Center of Plant Space Breeding, South China Agricultural University. The secondary structure of lncRNA SVR was analysed by bioinformatics, and the cold stress motifs within lncRNA SVR was searched. The expression characteristics of lncRNA SVR and SAUR genes were analysed by qRT-PCR.

    Result 

    In this study, highly similar cold stress response motifs were found in the sequence of lncRNA SVR and at the stem-loop junction. Expression characterization showed that cold stress during seed germination continuously decreased the expression of lncRNA SVR, and the expression of some neighbouring SAUR genes was significantly higher under cold stress than that at room temperature, indicating that the neighbouring SAUR genes could respond to cold stress to some extent as well as lncRNA SVR. Expression correlation analysis showed that the expression relationship between lncRNA SVR and these SAUR genes in low temperature germination were all negatively correlated, and the expression of lncRNA SVR and OsSAUR55 showed a significant negative correlation. Further analysis of SAUR gene expression in low temperature seed germination in the lncRNA SVR knockout lines showed that the decrease of lncRNA SVR in the knockout lines was lower than that in the wild type, and the increase in expression of OsSAUR41, OsSAUR53, OsSAUR54 and OsSAUR55 was significantly lower than that in the wild type.

    Conclusion 

    lncRNA SVR is able to negatively regulate the expression of OsSAUR55, further respond to low temperature stress.

  • 图  1   lncRNA SVR序列中存在的冷胁迫响应基序

    红色标识为与冷胁迫响应基序高度相似序列的位置,黄色标识为与冷胁迫响应基序存在高度相似性的序列

    Figure  1.   Cold stress response motif in lncRNA SVR

    The positions of highly similar sequences to the cold stress response motifs are marked in red, and the sequences showing high similarity to the cold stress response motifs are marked in yellow

    图  2   lncRNA SVR在常温和低温萌发中表达的动态变化

    Figure  2.   Dynamic changes of lncRNA SVR expression in seed germination at room and low temperatures

    图  3   SAUR基因簇在常温和低温的表达分析

    Figure  3.   Expression analysis of SAUR gene cluster at room and low temperature

    图  4   lncRNA SVR和SAUR基因簇表达的相关性分析

    Figure  4.   Expression correlation analysis of lncRNA SVR and SAUR genes

    图  5   lncRNA SVR突变体的靶点序列

    Figure  5.   Target sequences of the lncRNA SVR mutants

    图  6   不同SAUR基因在lncRNA SVR转基因材料中的表达分析

    Figure  6.   Expression analysis of different SAUR genes in lncRNA SVR transgenic materials

    图  7   不同SAUR基因在lncRNA SVR转基因材料中的表达变化

    “*”“**”分别表示在P<0.05和P<0.01水平差异显著(t检验)

    Figure  7.   Expression changes of different SAUR genes in lncRNA SVR transgenic materials

    “*” and “**” indicate significant differences at P<0.05和P<0.01 levels respectively (t test)

    表  1   本研究所使用的引物

    Table  1   qRT-PCR primers used in this study

    名称 NameID/基因 Gene序列(5′→3′) Sequence
    lncRNA SVR(用于时空表达
    For temporal and spatial expression)
    MSTRG.182510.4 F: TCTGTGCGATGAGACTCAAGGAG
    R: AGCCCATAACGTCATGCTTGC
    lncRNA SVR(用于基因敲除材料
    For gene knocked out material)
    MSTRG.182510.4 F: TTCACAAGAGACTGTCCCATCGTA
    R: TGCTACGAGAACCACGTTTGC
    OsActin Os03g0718100 F: GAATGCTAAGCCAAGAGGAG
    R: AATCACAAGTGAGAACCACAG
    OsSAUR39 Os09g0545300 F: CCATGATCAATCCTAAGAGGCT
    R: TGATCTTTTCCTCACCTGTGAA
    OsSAUR40 Os09g0545400 F: ATCTTGATTTGTGTAGCATCGC
    R: GACAACAACCTGACTAGACTGA
    OsSAUR41 Os09g0545700 F: ACCTCTCCCCATGTTCTGGT
    R: ACCCTGAAGGCGACTATTGC
    OsSAUR44 Os09g0547033 F: TTGTGTCTGCTTAGGAGAGATG
    R: TGTACAAACAGCAAGTTGATGG
    OsSAUR45 Os09g0546100 F: CAGCTGAAACCAAGATCAACAA
    R: GTGCAGCACTCTTCATTTTCTT
    OsSAUR46 Os09g0546200 F: GAGACTGGTTCAATTGGCAAAG
    R: GAGCATTCTTCAGTTTCTTGGG
    OsSAUR51 Os09g0546700 F: GATGGCCTACCTCGCTGCTG
    R: GCATTTGGTTGGAGACAAGGC
    OsSAUR53 Os09g0546900 F: GAGTATGTCCTGTGCTTGCTTA
    R: CAAGATTTCACAATGGTGCTCA
    OsSAUR54 Os09g0547000 F: CCACAGCGTATGTCGCAGA
    R: GATCGCCGTGTTGAGGTACA
    OsSAUR55 Os09g0547100 F: AGAAATGGCGAAGGATGGCA
    R: AACCTTGGGCTTCTTCCGTC
    下载: 导出CSV
  • [1] 杨贺, 张楠, 刘自广, 等. 低温胁迫下结球甘蓝BoNR8 lncRNA过表达对拟南芥种子萌发的影响[J]. 植物研究, 2020, 40(3): 441-446.
    [2]

    FU X D. Non-coding RNA: A new frontier in regulatory biology[J]. National Science Review, 2014, 1(2): 190-204. doi: 10.1093/nsr/nwu008

    [3]

    WASEEM M, LIU Y, XIA R. Long non-coding RNAs, the dark matter: An emerging regulatory component in plants[J]. International Journal of Molecular Sciences, 2020, 22(1): 86. doi: 10.3390/ijms22010086.

    [4]

    KAPRANOV P, CHENG J, DIKE S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription[J]. Science, 2007, 316(5830): 1484-1488. doi: 10.1126/science.1138341

    [5]

    SHI X, SUN M, LIU H, et al. Long non-coding RNAs: A new frontier in the study of human diseases[J]. Cancer Letters, 2013, 339(2): 159-166. doi: 10.1016/j.canlet.2013.06.013

    [6]

    MA L, BAJIC V B, ZHANG Z. On the classification of long non-coding RNAs[J]. RNA Biology, 2013, 10(6): 925-934.

    [7]

    KOPP F, MENDELL J T. Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3): 393-407. doi: 10.1016/j.cell.2018.01.011

    [8] 王彬, 陈敏氡, 白昌辉, 等. 长链非编码RNA在植物生长发育和逆境胁迫响应中的研究进展[J]. 中国细胞生物学学报, 2023, 45(1): 153-163.
    [9] 郑佳秋, 吴永成, 王薇薇, 等. 植物逆境相关长链非编码RNA的研究进展[J]. 江苏农业科学, 2020, 48(4): 19-23.
    [10] 张楠, 刘自广, 孙世臣, 等. 拟南芥AtR8 lncRNA对盐胁迫响应及其对种子萌发的调节作用[J]. 植物学报, 2020, 55(4): 421-429.
    [11]

    WANG Y, LUO X, SUN F, et al. Overexpressing lncRNA LAIR increases grain yield and regulates neighbouring gene cluster expression in rice[J]. Nature Communications, 2018, 9: 3516. doi: 10.1038/s41467-018-05829-7.

    [12] 蔡晶晶. 长链非编码RNA13853调控拟南芥干旱胁迫应答机制研究[D]. 南昌: 南昌大学, 2020.
    [13] 张晓佩. 陆地棉长链非编码RNAs-lncRNA354和lncRNA973的功能和作用机制研究[D]. 泰安: 山东农业大学, 2022.
    [14]

    WANG P, DAI L, AI J, et al. Identification and functional prediction of cold-related long non-coding RNA (lncRNA) in grapevine[J]. Scientific Reports, 2019, 9: 6638. doi: 10.1038/s41598-019-43269-5.

    [15]

    CAO Z, ZHAO T, WANG L, et al. The lincRNA XH123 is involved in cotton cold-stress regulation[J]. Plant Molecular Biology, 2021, 106(6): 521-531. doi: 10.1007/s11103-021-01169-1

    [16]

    MOISON M, PACHECO J M, LUCERO L, et al. The lncRNA APOLO interacts with the transcription factor WRKY42 to trigger root hair cell expansion in response to cold[J]. Molecular Plant, 2021, 14(6): 937-948. doi: 10.1016/j.molp.2021.03.008

    [17]

    PACHECO J M, MANSILLA N, MOISON M, et al. The lncRNA APOLO and the transcription factor WRKY42 target common cell wall EXTENSIN encoding genes to trigger root hair cell elongation[J]. Plant Signaling & Behavior, 2021, 16(8): 1920191. doi: 10.1080/15592324.2021.1920191.

    [18]

    GAO Q, LIU J, WENG H, et al. A long noncoding RNA derived from lncRNA-mRNA networks modulates seed vigor[J]. International Journal of Molecular Sciences, 2022, 23(16): 9472. doi: 10.3390/ijms23169472.

    [19] 管健. 应用Real Time PCR法进行mRNA表达量相对定量分析方法的探讨[J]. 现代园艺, 2014(5): 4-5.
    [20]

    DI C, YUAN J, WU Y, et al. Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features[J]. The Plant Journal, 2014, 80(5): 848-861. doi: 10.1111/tpj.12679

    [21] 朱宇斌, 孔莹莹, 王君晖. 植物生长素响应基因SAUR的研究进展[J]. 生命科学, 2014, 26(4): 407-413.
    [22]

    CHAE K, ISAACS C G, REEVES P H, et al. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation[J]. The Plant Journal, 2012, 71(4): 684-697. doi: 10.1111/j.1365-313X.2012.05024.x

    [23] 吴春梅. 拟南芥生长素响应基因SAUR6SAUR14SAUR16对抗冻的作用和机理研究[D]. 兰州: 兰州大学, 2021.
    [24] 翟立升. 水稻OsSAUR10的表达和功能研究及水稻胚芽特异表达基因的生物信息学分析[D]. 贵阳: 贵州师范大学, 2019.
    [25] 李明发. SAUR15在种子萌发中的功能及分子机理研究[D]. 兰州: 兰州大学, 2022.
    [26] 宋松泉, 刘军, 唐翠芳, 等. 生长素代谢与信号转导及其调控种子休眠与萌发的分子机制[J]. 科学通报, 2020, 65(34): 3924-3943.
    [27]

    SUN Y, HAO P, LV X, et al. A long non-coding apple RNA, MSTRG. 85814.11, acts as a transcriptional enhancer of SAUR32 and contributes to the Fe-deficiency response[J]. The Plant Journal, 2020, 103(1): 53-67. doi: 10.1111/tpj.14706

图(7)  /  表(1)
计量
  • 文章访问数:  602
  • HTML全文浏览量:  13
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-21
  • 网络出版日期:  2023-11-12
  • 发布日期:  2023-10-16
  • 刊出日期:  2023-11-09

目录

    /

    返回文章
    返回