Abstract:
Objective To investigate how Fusarium oxysporum affects the fundamental biological traits of nematodes (Caenorhabditis elegans), and identify the critical mechanism of nematode responding to F. oxysporum infection.
Method The active and inactive spores were cocultured with C. elegans to determine the biological characteristics of C. elegans, such as lifespan, body length, motility/reproductive ability and pharyngeal pumping rate. The whole genome sequencing was performed to find the key pathways and biological functions of nematode responding to F. oxysporum infection by GO and KEGG analysis.
Result The coculture with active spores shortened the longevity of nematodes, significantly decreased the body size and reduced the reproductive ability of nematodes. However, the coculture did not obviously affect the pharyngeal pumping rate and motility ability of nematodes. GO analysis showed that the differentially expressed genes were enriched in biological functions such as innate immune response and oxidoreductase activity. KEGG analysis showed that the differentially expressed genes were enriched in cytochrome P450 metabolizing drug, cytochrome P450 metabolizing xenobiotics, fatty acid metabolism and other pathways.
Conclusion F. oxysporum has adverse effects on the basic life activities of C. elegans, which provides insight into the natural immune mechanism of nematodes in response to F. oxysporum and the similarity with plant immunity, so as to find plant-related disease resistance genes.