• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

含有伯酰胺和氰基的苯基噻唑衍生物的设计、合成及杀虫活性评价

杨帅, 唐豪毅, 赵晨, 徐汉虹

杨帅, 唐豪毅, 赵晨, 等. 含有伯酰胺和氰基的苯基噻唑衍生物的设计、合成及杀虫活性评价[J]. 华南农业大学学报, 2024, 45(3): 354-363. DOI: 10.7671/j.issn.1001-411X.202308001
引用本文: 杨帅, 唐豪毅, 赵晨, 等. 含有伯酰胺和氰基的苯基噻唑衍生物的设计、合成及杀虫活性评价[J]. 华南农业大学学报, 2024, 45(3): 354-363. DOI: 10.7671/j.issn.1001-411X.202308001
YANG Shuai, TANG Haoyi, ZHAO Chen, et al. Design, synthesis and evaluation of insecticidal activity of phenylthiazole derivative containing primary amide and cyanogroup[J]. Journal of South China Agricultural University, 2024, 45(3): 354-363. DOI: 10.7671/j.issn.1001-411X.202308001
Citation: YANG Shuai, TANG Haoyi, ZHAO Chen, et al. Design, synthesis and evaluation of insecticidal activity of phenylthiazole derivative containing primary amide and cyanogroup[J]. Journal of South China Agricultural University, 2024, 45(3): 354-363. DOI: 10.7671/j.issn.1001-411X.202308001

含有伯酰胺和氰基的苯基噻唑衍生物的设计、合成及杀虫活性评价

基金项目: 国家自然科学基金(31972286);广东省重点研发计划(2023B0202080001);广东省现代农业产业共性关键技术研发创新团队建设项目(2023KJ133)
详细信息
    作者简介:

    杨 帅,博士研究生,主要从事绿色农药分子设计与合成研究,E-mail: syangbrighter@163.com

    通讯作者:

    赵 晨,副教授,博士,主要从事绿色农药分子设计与合成研究,E-mail: zhaoc@scau.edu.cn

    徐汉虹,教授,博士,主要从事导向农药分子设计与合成研究,E-mail: hhxu@scau.edu.cn

  • 中图分类号: S433.4

Design, synthesis and evaluation of insecticidal activity of phenylthiazole derivative containing primary amide and cyanogroup

  • 摘要:
    目的 

    噻唑是一类具有广泛生物活性的五元杂环化合物,本文设计并合成一系列含有伯酰胺及氰基的苯基噻唑衍生物,进一步挖掘噻唑骨架在防治鳞翅目害虫领域的潜力。

    方法 

    以不同取代基的苯甲酸为原料合成含有伯酰胺及氰基的噻唑衍生物,并经1H NMR、13C NMR和ESI-MS确证结构。采用浸液法测定目标化合物对小菜蛾Plutella xylostella的生物活性,并通过密度泛函理论(Density functional theory,DFT)计算从分子轨道层面解释该骨架具有杀虫活性的原因和差异。

    结果 

    经结构确证,合成了22个含有伯酰胺及氰基的噻唑衍生物,其中6个化合物(6d、7d、13a、13b、14a和14b)对小菜蛾表现出很好的杀虫活性(校正死亡率 > 50%),尤其是化合物6d和7d,对小菜蛾的LC50达到了23.94和30.37 mg/L。构效关系表明,苯环仅取代4−CF3且5−位噻唑未取代时,表现出最优的杀虫活性。DFT计算结果表明,4−三氟甲基苯基噻唑既传递电子又接受电子,且化合物6d比7d具有更小的HOMO−LUMO间隙(ΔE)。

    结论 

    化合物6d可作为先导化合物进一步开发,本研究可为含有噻唑骨架杀虫剂的分子设计与优化提供有价值的线索。

    Abstract:
    Objective 

    Thiazole is a class of five-membered heterocyclic compounds with a wide range of biological activities, which are widely used in the fields of medicine and agrochemicals. In this paper, we designed and synthesized a series of phenyl thiazole derivatives containing primary amide and cyanogroup to further explore the potential of thiazole scaffold in controlling Lepidoptera pests.

    Method 

    The new thiazole derivatives containing primary amide and cyanogroup were synthesized from benzoic acid with different substituent, and the structures were confirmed by 1H NMR, 13C NMR and ESI-MS. The biological activities of target products against Plutella xylostella were determined by the leaf immersion method. The density functional theory (DFT) calculation was used to explain the reason and difference of insecticidal activity of this skeleton at the molecular orbital level.

    Result 

    The results of structural verification showed 22 thiazole derivatives containing primary amide and cyanogroup were synthesized. Six compounds (6d, 7d, 13a, 13b, 14a and 14b) showed good insecticidal activities (mortality > 50%) against P. xylostella, especially the compounds of 6d and 7d with LC50 of 23.94 and 30.37 mg/L respectively. The structure-activity relationship showed the optimal insecticidal activity was demonstrated for benzene ring monosubstituted 4-CF3 and 5-position thiazole unsubstituted. The results of DFT calculation showed that [4-(trifluoromethyl) phenyl] thiazole both delivered and received electrons, and the compound 6d has a smaller HOMO−LUMO gap (ΔE) than 7d.

    Conclusion 

    The compound 6d can be further developed as a lead compound. This research provides a valuable clue for molecule design and optimization of insecticide containing thiazole scaffold.

  • 图  1   目标化合物6a~6i和7a~7i的合成路线

    Figure  1.   The synthetic routes of target compounds of 6a~6i and 7a~7i

    图  2   目标化合物13a、13b、14a和14b的合成路线

    Figure  2.   The synthetic routes of the target compounds of 13a, 13b, 14a and 14b

    图  3   目标化合物的结构式

    Figure  3.   The structures of target compounds

    图  4   化合物6d、7d、13a、13b、14a和14b的前沿分子轨道

    红色部分代表正分子轨道,绿色部分代表负分子轨道

    Figure  4.   Frontier molecular orbitals of the compounds of 6d, 7d, 13a, 13b, 14a and 14b

    The red part represented positive molecular orbital and the green part represented negative molecular orbital

    表  1   目标化合物处理小菜蛾3龄幼虫48 h后的死亡率1)

    Table  1   The mortality rate of the 3rd-instar larvae of Plutella xylostella treated by target compound after 48 hours

    化合物
    Compound
    校正死亡率/%
    Corrected
    mortality rate
    化合物
    Compound
    校正死亡率/%
    Corrected
    mortality rate
    6a 6.67 ± 3.33ab 7a 0.00 ± 0.00a
    6b 35.56 ± 2.22d 7b 9.44 ± 0.56b
    6c 13.33 ± 3.33b 7c 0.00 ± 0.00a
    6d 100.00 ± 0.00g 7d 100.00 ± 0.00g
    6e 0.00 ± 0.00a 7e 0.00 ± 0.00a
    6f 27.27 ± 0.00c 7f 28.33 ± 1.67cd
    6g 13.33 ± 6.67b 7g 0.00 ± 0.00a
    6h 0.00 ± 0.00a 7h 0.00 ± 0.00a
    6i 0.00 ± 0.00a 7i 0.00 ± 0.00a
    13a 62.78 ± 3.64f 14a 51.52 ± 1.52e
    13b 69.44 ± 6.26f 14b 53.33 ± 4.24e
    茚虫威
    Indoxacarb
    100.00 ± 0.00g
     1) 表中数据为平均值±标准误;同列数据后的不同字母表示差异显著(P < 0.05,Duncan’s法)
     1) The data in the table was mean ± standard error, the different lowercase letters in the same column indicated significant difference (P<0.05, Duncan’s method)
    下载: 导出CSV

    表  2   化合物6d和7d处理小菜蛾3龄幼虫48 h后的杀虫活性

    Table  2   Insecticidal activities of compounds 6d and 7d against the 3rd-instar larvae of Plutella xylostella at 48 hours after treatment

    化合物
    Compound
    LC50/
    (mg·L−1)
    95%置信区间/
    (mg·L−1)
    95% confidence
    interval
    斜率±标准误
    Slop ± SE
    χ2
    6d23.9419.94~28.753.67 ± 0.473.102
    7d30.3725.18~36.903.41 ± 0.444.017
    茚虫威
    Indoxacarb
    4.223.08~5.531.92 ± 0.301.650
    下载: 导出CSV
  • [1]

    LAMBERTH C, JEANMART S, LUKSCH T, et al. Current challenges and trends in the discovery of agrochemicals[J]. Science, 2013, 341(6147): 742-746. doi: 10.1126/science.1237227

    [2]

    ECKELBARGER J D, PARKER M H, YAP M C, et al. Synthesis and biological activity of a new class of insecticides: The N-(5-aryl-1, 3, 4-thiadiazol-2-yl)amides[J]. Pest Management Science, 2017, 73(4): 761-773. doi: 10.1002/ps.4359

    [3]

    FURLONG M J, WRIGHT D J, DOSDALL L M. Diamondback moth ecology and management: Problems, progress, and prospects[J]. Annual Review of Entomology, 2013, 58: 517-541. doi: 10.1146/annurev-ento-120811-153605

    [4]

    MA L L, YIN Z B, XIE Q R, et al. Metabolomics and mass spectrometry imaging reveal the chronic toxicity of indoxacarb to adult zebrafish (Danio rerio) livers[J]. Journal of Hazardous Materials, 2023, 453: 131304. doi: 10.1016/j.jhazmat.2023.131304

    [5]

    JIANG X Y, XIAO L, CHEN Y, et al. Degradation of the novel heterocyclic insecticide pyraquinil in water: Kinetics, degradation pathways, transformation products identification, and toxicity assessment[J]. Journal of Agricultural and Food Chemistry, 2023, 71(27): 10277-10290. doi: 10.1021/acs.jafc.3c01971

    [6]

    BREVIK K, SCHOVILLE S D, MOTA-SANCHEZ D, et al. Pesticide durability and the evolution of resistance: A novel application of survival analysis[J]. Pest Management Science, 2018, 74(8): 1953-1963. doi: 10.1002/ps.4899

    [7]

    LAHM G P, CORDOVA D, BARRY J D, et al. 4-Azolylphenyl isoxazoline insecticides acting at the GABA gated chloride channel[J]. Bioorganic & Medicinal Chemistry Letters, 2013, 23(10): 3001-3006.

    [8]

    LIU Z J, LI Q X, SONG B A. Recent research progress in and perspectives of mesoionic insecticides: Nicotinic acetylcholine receptor inhibitors[J]. Journal of Agricultural and Food Chemistry, 2020, 68(40): 11039-11053. doi: 10.1021/acs.jafc.0c02376

    [9] 郭林朝, 杨鸿浩, 李文烨, 等. 作用于烟碱型乙酰胆碱受体的杀虫剂研究进展[J]. 化学与生物工程, 2023, 40(4): 7-13. doi: 10.3969/j.issn.1672-5425.2023.04.002
    [10]

    MAO G L, TIAN Y Q, SUN Z, et al. Bruceine D isolated from Brucea javanica (L. ) Merr. as a systemic feeding deterrent for three major lepidopteran pests[J]. Journal of Agricultural and Food Chemistry, 2019, 67(15): 4232-4239. doi: 10.1021/acs.jafc.8b06511

    [11]

    MOHAREB R M, KLAPÖTKE T M, REINHARDT E. Uses of dimedone for the synthesis of thiazole derivatives as new anti-tumor, c-Met, tyrosine kinase, and Pim-1 inhibitions[J]. Medicinal Chemistry Research, 2018, 27(11/12): 2494-2511.

    [12] 崔胜峰, 王艳, 吕敬松, 等. 噻唑类化合物应用研究新进展[J]. 中国科学(化学), 2012, 42(8): 27.
    [13] 李昌兴, 刘东东, 高一星, 等. 新烟碱类杀虫剂的研究与开发进展[J]. 化学试剂, 2023, 45(3): 29-36.
    [14] 胡德禹, 宋宝安, 何伟, 等. 噻唑类杀菌剂的合成及生物活性研究进展[J]. 合成化学, 2006, 14(4): 319-328.
    [15] 钱虹. 新颖杀线虫剂氟噻虫砜[J]. 世界农药, 2015, 37(3): 60-61.
    [16]

    ZHAO W J, ZHENG S J, ZOU J W, et al. Synthesis of novel pesticidal N, N′-disubstituted sulfamide derivatives using sulfur(VI) fluorine exchange click reaction[J]. Journal of Agricultural and Food Chemistry, 2021, 69(21): 5798-5803. doi: 10.1021/acs.jafc.0c04194

    [17]

    YANG S, PENG H X, TANG J H, et al. Discovery of novel N-pyridylpyrazole thiazole derivatives as insecticide leads[J]. Agronomy, 2022, 12(10): 2472. doi: 10.3390/agronomy12102472

    [18] 杨帅, 江薰垣, 张悦, 等. 苯基吡唑类化合物的合成、杀虫活性及对蜜蜂的毒性[J]. 华南农业大学学报, 2020, 41(3): 72-79. doi: 10.7671/j.issn.1001-411X.201906018
    [19]

    FINNEY D J. The adjustment for a natural mortality in probit analysis[J]. Annals of Applied Biology, 1949, 36: 187-195. doi: 10.1111/j.1744-7348.1949.tb06408.x

    [20]

    YU Z W, ZHANG X L, REN J Z, et al. Improving insecticidal activity of chlorantraniliprole by replacing the chloropyridinyl moiety with a substituted cyanophenyl group[J]. Journal of Agricultural and Food Chemistry, 2022, 70(31): 9645-9663. doi: 10.1021/acs.jafc.2c03133

    [21]

    REN J Z, YUAN H L, LIU X Y, et al. Novel fluorinated aniline anthranilic diamides improved insecticidal activity targeting the ryanodine receptor[J]. Journal of Agricultural and Food Chemistry, 2022, 70(34): 10453-10465. doi: 10.1021/acs.jafc.2c03134

    [22]

    KARUNAKARAN V, BALACHANDRAN V. FT-IR, FT-Raman spectra, NBO, HOMO-LUMO and thermodynamic functions of 4-chloro-3-nitrobenzaldehyde based on abinitio HF and DFT calculations[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 98: 229-239. doi: 10.1016/j.saa.2012.08.003

    [23]

    NATARAJ A, BALACHANDRAN V, KARTHICK T. Molecular structure, vibrational spectra, first hyperpolarizability and HOMO-LUMO analysis of p-acetylbenzonitrile using quantum chemical calculation[J]. Journal of Molecular Structure, 2013, 1038: 134-144. doi: 10.1016/j.molstruc.2013.01.054

    [24]

    HUANG D, LIU A, LIU W, et al. Synthesis and insecticidal activities of novel 1H-pyrazole-5-carboxylic acid derivatives[J]. Heterocyclic Communications, 2017, 23(6): 455-460. doi: 10.1515/hc-2017-0110

    [25] 梁凯, 周钱, 荀校, 等. 含噻唑环结构的新型吡唑酰胺类化合物的合成与杀虫活性研究[J]. 有机化学, 2020, 40(6): 1665-1672.
    [26]

    SOLIMAN N, SALAM M A E, FADDA A, et al. Synthesis, characterization, and biochemical impacts of some new bioactive sulfonamide thiazole derivatives as potential insecticidal agents against the cotton leafworm, Spodoptera littoralis[J]. Journal of Agricultural and Food Chemistry, 2020, 68(21): 5790-5805. doi: 10.1021/acs.jafc.9b06394

图(4)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-31
  • 网络出版日期:  2024-03-05
  • 发布日期:  2024-02-26
  • 刊出日期:  2024-05-09

目录

    Corresponding author: XU Hanhong, hhxu@scau.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回