• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

丁氏稻种资源有利基因挖掘与创新研究进展

陈志雄, 王兰, 吴锦文, 刘向东

陈志雄, 王兰, 吴锦文, 等. 丁氏稻种资源有利基因挖掘与创新研究进展[J]. 华南农业大学学报, 2023, 44(5): 649-658. DOI: 10.7671/j.issn.1001-411X.202307016
引用本文: 陈志雄, 王兰, 吴锦文, 等. 丁氏稻种资源有利基因挖掘与创新研究进展[J]. 华南农业大学学报, 2023, 44(5): 649-658. DOI: 10.7671/j.issn.1001-411X.202307016
CHEN Zhixiong, WANG Lan, WU Jinwen, et al. Research progress in favorable gene mining and innovation of Ting’s rice germplasm[J]. Journal of South China Agricultural University, 2023, 44(5): 649-658. DOI: 10.7671/j.issn.1001-411X.202307016
Citation: CHEN Zhixiong, WANG Lan, WU Jinwen, et al. Research progress in favorable gene mining and innovation of Ting’s rice germplasm[J]. Journal of South China Agricultural University, 2023, 44(5): 649-658. DOI: 10.7671/j.issn.1001-411X.202307016

丁氏稻种资源有利基因挖掘与创新研究进展

基金项目: 岭南水稻种质资源基地库项目(2023-40);岭南现代农业实验室科研项目(NT2021001)
详细信息
    作者简介:

    陈志雄,副研究员,博士,主要从事稻种资源保护与创新研究,E-mail: chenzx@scau.edu.cn

    通讯作者:

    刘向东,教授,博士,主要从事稻种资源保护与创新(多倍体水稻遗传育种)研究,E-mail: xdliu@scau.edu.cn

  • 中图分类号: S511;S334

Research progress in favorable gene mining and innovation of Ting’s rice germplasm

  • 摘要:

    稻种资源是水稻生物育种的重要物质基础。我国保存的稻种资源数量超过9万份,丁氏稻种资源(Ting’s rice germplasm)是极具特色的一类,主要包括丁颖在20世纪20—30年代广泛收集的7 000多份各地的栽培稻、卢永根在20世纪90年代组织收集的2 000份野生稻资源以及所创制的新型四倍体水稻新种质等。本文总结了近20多年来丁氏稻种资源的研究进展,并提出了今后研究应重点解决的问题,为水稻育种更好地利用该资源提供参考。

    Abstract:

    Rice germplasm provides an important fundation for biological breeding. The total number of rice germplasm preserved in China exceeds 90000, among which Ding’s rice germplasm is a unique category. The Ding’s rice germplasm mainly included over 7000 cultivated rice varieties collected by DING Ying in various regions from 1920s to 1930s, 2 000 wild rice lines collected by LU Yonggen in the 1990s, the newly-devolped neo-tetraploid rice germplasm, and so on. This article summarized the research progress of Ding’s rice germplasm in the past 20 years and proposed the key subjects in future research, with the aim of providing a reference for better utilization of this germplasm in rice breeding.

  • 表  1   从丁氏收集稻种资源中鉴定的潜在优异基因资源

    Table  1   Potential and superior gene resources identified from Ting’s rice germplasm collection

    基因/QTL1)
    Gene/QTL
    染色体
    Chromosome
    耐逆性
    Stress
    resistance
    基因/QTL1)
    Gene/QTL
    染色体
    Chromosome
    耐逆性
    Stress
    resistance
    基因/QTL1)
    Gene/QTL
    染色体
    Chromosome
    耐逆性
    Stress
    resistance
    QTL1~QTL3a Chr1 冷害 Os01g57350c Chr1 铝毒 qRE7d Chr11 锌毒
    QTL4~QTL13a Chr2 冷害 Os01g57360c Chr1 铝毒 qRRE1~qRRE2d Chr1 锌毒
    QTL14~QTL21a Chr3 冷害 Os01g74200c Chr1 铝毒 qRRE4d Chr2 锌毒
    QTL22a Chr5 冷害 Os03g30060c Chr3 铝毒 qRRE4~qRRE6d Chr3 锌毒
    qALT1.1~qALT1.6b Chr1 铝毒 Os03g30060c Chr3 铝毒 qRRE7d Chr4 锌毒
    qALT2.1~qALT2.3b Chr2 铝毒 Os07g03050c Chr7 铝毒 qRRE8~qRRE9d Chr6 锌毒
    qALT3.1~qALT3.7b Chr3 铝毒 Os09g33550c Chr9 铝毒 qRRE10d Chr7 锌毒
    qALT4.1~qALT4.2b Chr4 铝毒 Os11g03110c Chr11 铝毒 qRRE11~qRRE12d Chr8 锌毒
    qALT6.1~qALT6.2b Chr6 铝毒 qRE1~qRE2d Chr2 铝毒 qRRE13d Chr9 锌毒
    qALT7.1~qALT7.2b Chr7 铝毒 qRE3~qRE4d Chr6 铝毒 qRRE14d Chr10 锌毒
    qALT9.1b Chr9 铝毒 qRE5d Chr8 锌毒 qRRE15~qRRE17d Chr11 锌毒
    qALT11.1~qALT11.2b Chr11 铝毒 qRE6d Chr9 锌毒 qRRE18~qRRE19d Chr11 锌毒
     1) a~d分别表示鉴定方法为GWAS (SLAF)[9]、GWAS (SLAF)[12]、GWAS (re-squencing、transcriptome)[13]和GWAS (SLAF)[14]QTL5QTL17分别与OsFAD2OsMYB2共定位[9]qALT1.6OsFRDL4qALT2.2Os02g49790qALT3.1OsApx1qALT6.2STAR1共定位[12]qRRE1qRRE15分别与OsMTI-3aqZRTDW11共定位[14]
     1) a−d indicate the identification methods were GWAS (SLAF)[9], GWAS (SLAF)[12], GWAS (re-squencing, transcriptome)[13] and GWAS (SLAF)[14], respectively; QTL5 and OsFAD2[9], QTL17 and OsMYB2[9], qALT1.6 and OsFRDL4[12], qALT2.2 and Os02g49790[12], qALT3.1 and OsApx1[12], qALT6.2 and STAR1[12], qRRE1 and OsMTI-3a[14], qRRE15 and qZRTDW11[14], are co-located
    下载: 导出CSV

    表  2   丁氏稻种资源野生稻资源的有利基因资源

    Table  2   Favorable gene resources from wild rice of Ting’s rice germplasm

    基因/QTL
    Gene/QTL
    染色体
    Chromosome
    功能
    Function
    来源
    Source
    鉴定方法
    Identification method
    OoADF1 耐盐 药用野生稻 同源克隆
    Sbn Chr5 克服籼粳杂种花粉不育 广东高州普通野生稻以及IRW28 分子标记
    Sdn Chr1 克服籼粳杂种花粉不育 广东高州普通野生稻以及IRW28 分子标记
    Sen Chr12 克服籼粳杂种花粉不育 广东高州普通野生稻以及IRW28 分子标记
    qRRE-6-2 Chr6 耐铝 广东高州普通野生稻 QTL定位
    qRRE-7-2 Chr7 耐铝 广东高州普通野生稻 QTL定位
    qGL3.5 Chr3 调控粒型 广东遂溪普通野生稻 基因定位与克隆
    GSW3 Chr3 调控粒型 广东遂溪普通野生稻 基因定位与克隆
    下载: 导出CSV

    表  3   同源四倍体水稻减数分裂期间差异表达基因

    Table  3   Differently expressed genes during meiosis of autotetraploid rice

    基因来源
    Gene
    source
    花粉育性/%
    Pollen
    fertility
    差异基因数
    No. of differently
    expressed genes
    下调基因数
    No. of down
    regulated genes
    涉及已知基因
    Involved and
    identified genes
    参考文献
    Reference
    台中65-4x 73.67 786 125 PAIR2OsDMC1B [51]
    T449 54.09 75 60 OsMTOPVIBOsMOF [53]
    02428-4x 43.30 663 352 OsMYB80OsABCG15PTC1CYP703A3 [54]
    下载: 导出CSV

    表  4   利用高州野生稻单片段代换系检出的重要农艺性状QTLs

    Table  4   QTLs of important agronomic trait detected by SSSL of wild rice in Gaozhou

    代换系编号
    SSSL code
    QTL性状
    Trait
    染色体
    Chromosome
    定位片段
    Located segment
    加性效应
    Additive
    effect
    加性效应比例/%
    Additive effect
    proportion
    2Pss-2-2结实率Chr2RM530—RM208—长臂末端−0.34537.5
    5Pss-11-1结实率Chr11RM21—PSM366—PSM417−0.30533.1
    6Lfl-6-1剑叶长Chr6RM253—RM527—RM539—RM3—PSM138−8.16525.3
    6Wfl-6-1剑叶宽Chr6RM253—RM527—RM539—RM3—PSM138−7.86524.3
    9Lfl-2-1剑叶长Chr2RM110—RM211—RM279—PSM116−0.34016.3
    9Wfl-2-1剑叶宽Chr2RM110—RM211—RM279—PSM116−0.49023.6
    下载: 导出CSV
  • [1]

    KHUSH G S. What it will take to feed 5.0 billion rice consumers in 2030[J]. Plant Molecular Biology, 2005, 59(1): 1-6. doi: 10.1007/s11103-005-2159-5

    [2]

    GODFRAY H C, BEDDINGTON J R, CRUTE I R, et al. Food security: The challenge of feeding 9 billion people[J]. Science, 2010, 327(5967): 812-818. doi: 10.1126/science.1185383

    [3] 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10): 841-857. doi: 10.16288/j.yczz.18-213
    [4] 李晓玲, 李金泉, 卢永根. 水稻核心种质的构建策略研究[J]. 沈阳农业大学学报, 2007, 38(5): 681-687. doi: 10.3969/j.issn.1000-1700.2007.05.007
    [5] 李自超, 张洪亮, 曹永生, 等. 中国地方稻种资源初级核心种质取样策略研究[J]. 作物学报, 2003, 29(1): 20-24. doi: 10.3321/j.issn:0496-3490.2003.01.004
    [6] 李晓玲. 栽培稻种质资源核心种质构建的研究[D]. 广州: 华南农业大学, 2006.
    [7]

    ZHANG P, LI J Q, LI X L, et al. Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers[J]. PLoS One, 2011, 6(12): e27565. doi: 10.1371/journal.pone.0027565

    [8]

    ZHANG P, ZHONG K Z, ZHONG Z Z, et al. Genome-wide association study of important agronomic traits within a core collection of rice (Oryza sativa L. )[J]. BMC Plant Biology, 2019, 19: 259. doi: 10.1186/s12870-019-1842-7.

    [9]

    SONG J Y, LI J Q, SUN J, et al. Genome-wide association mapping for cold tolerance in a core collection of rice (Oryza sativa L.) landraces by using high-density single nucleotide polymorphism markers from specific-locus amplified fragment sequencing[J]. Frontiers in Plant Science, 2018, 9: 875. doi: 10.3389/fpls.2018.00875.

    [10]

    FU D, ZHONG K Z, ZHONG Z Z, et al. Genome-wide association study of sheath blight resistance within a core collection of rice (Oryza sativa L. )[J]. Agronomy, 2022, 12(7): 1493. doi: 10.3390/agronomy12071493.

    [11]

    ZHANG P, ZHONG K Z, TONG H H, et al. Association mapping for aluminum tolerance in a core collection of rice landraces[J]. Frontiers in Plant Science, 2016, 7: 1415. doi: 10.3389/fpls.2016.01415.

    [12]

    ZHAO M H, SONG J Y, WU A T, et al. Mining beneficial genes for aluminum tolerance within a core collection of rice landraces through genome-wide association mapping with high density SNPs from specific-locus amplifified fragment sequencing[J]. Frontier in Plant Science, 2018, 9: 1838. doi: 10.3389/fpls.2018.01838.

    [13]

    ZHANG P, ZHONG K Z, ZHONG Z Z, et al. Mining candidate gene for rice aluminum tolerance through genome wide association study and transcriptomic analysis[J]. BMC Plant Biology, 2019, 19(1): 490. doi: 10.1186/s12870-019-2036-z.

    [14]

    ZHONG K Z, XIE L H, HU S K, et al. Genome-wide association study of zinc toxicity tolerance within a rice core collection (Oryza sativa L. )[J]. Plants, 2022, 11(22): 3138. doi: 10.3390/plants11223138.

    [15]

    SHAHID M Q, CHEN F Y, LI H Y, et al. Double-neutral genes, Sa-n and Sb-n, for pollen fertility in rice to overcome indica × japonica hybrid sterility[J]. Crop Science, 2013, 53(1): 164-176. doi: 10.2135/cropsci2012.07.0451

    [16] 杨有新, 吴锦文, 陈志雄, 等. 基于功能性标记和测序发掘携带有S 5 n基因的水稻新种质[J]. 科学通报, 2009, 54(15): 2212-2218.
    [17] 李宏岩, 王思哲, SHAHID M Q, 等. 从携带S 5 n基因的水稻种质中发掘S a nS b nS c n基因[J]. 作物学报, 2013, 39(8): 1366-1376.
    [18] 张欢欢, 刘蕊, 郭海滨, 等. 药用野生稻有利基因发掘与利用研究进展[J]. 中国农学通报, 2009, 25(19): 42-45.
    [19] 潘小芬. 药用野生稻TAC文库的构建[D]. 广州: 华南农业大学, 2006.
    [20] 汪暖, 陈志雄, 刘蕊, 等. 药用野生稻TAC克隆转化籼稻的体系初探[J]. 植物生理学通讯, 2010, 46(3): 217-222.
    [21] 刘蕊, 张欢欢, 陈志雄, 等. 筛选和转化药用野生稻TAC克隆获得耐旱水稻[J]. 中国农业科学, 2014, 47(8): 1445-1457. doi: 10.3864/j.issn.0578-1752.2014.08.001
    [22]

    LIU R, ZHANG H H, CHEN Z X, et al. Drought-tolerant rice germplasm developed from an Oryza officinalis transformation-competent artificial chromosome clone[J]. Genetics and Molecular Research, 2015, 14(4): 13667-13678. doi: 10.4238/2015.October.28.29

    [23] 李培纲, 李红梅, 张帅, 等. 药用野生稻ADF基因的克隆及其抗逆性分析[J]. 华北农学报, 2017, 32(6): 37-44. doi: 10.7668/hbnxb.2017.06.006
    [24] 卢永根, 刘向东, 陈雄辉. 广东高州普通野生稻的研究进展[J]. 植物遗传资源学报, 2008, 9(1): 1-5. doi: 10.13430/j.cnki.jpgr.2008.01.012
    [25] 王兰, 蔡东长. 高州普通野生稻苗期耐寒性鉴定及其SSR多态标记分析[J]. 华北农学报, 2011, 26(6): 12-15. doi: 10.7668/hbnxb.2011.06.003
    [26]

    LIU W, GHOURI F, YU H, et al. Genome wide re-sequencing of newly developed rice lines from common wild rice (Oryza rufipogon Griff. ) for the identification of NBS-LRR genes[J]. PLoS One, 2017, 12(7): e0180662. doi: 10.1371/journal.pone.0180662

    [27]

    YU H, SHAHID M Q, LI R B, et al. Genome-wide analysis of genetic variations and the detection of rich variants of NBS-LRR encoding genes in common wild rice lines[J]. Plant Molecular Reporter, 2018, 36(4): 618-630. doi: 10.1007/s11105-018-1103-1

    [28]

    CHEN J J, DING J H, OUYANG Y D, et al. A triallelic system of S 5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(32): 11436-11441.

    [29] 魏常敏, 王兰, 杨有新, 等. 普通野生稻中S 5 n基因的鉴定及其胚囊育性研究[J]. 科学通报, 2010, 55(11): 1007-1014.
    [30]

    TONG J F, LI Y H, YANG Y X, et al. Molecular evolution of rice S 5 n and functional comparison among different sequences[J]. Grop Germplasm Resources, 2011, 56(19): 2016-2024.

    [31]

    PENG H, SHAHID M Q, LI Y H, et al. Molecular evolution of S 5 locus and large differences in its coding region revealed insignificant effect on indica × japonica embryo sac fertility[J]. Plant Systematics and Evolution, 2015, 301(2): 639-655. doi: 10.1007/s00606-014-1102-0

    [32] 史磊刚, 刘向东, 刘博, 等. 从普通野生稻中鉴定栽培稻F1花粉不育座位S b的中性基因[J]. 科学通报, 2009, 54(19): 2967-2974.
    [33]

    LIU B, LI J Q, SHAHID M Q, et al. Identification of neutral genes at pollen sterility loci S d and S e of cultivated rice (Oryza sativa) with wild rice (O. rufipogon) origin[J]. Genetics and Molecular Research, 2011, 10(4): 3435-3445. doi: 10.4238/2011.October.31.10

    [34]

    LI J Q, SHAHID M Q, FENG J H, et al. Identification of neutral alleles at pollen sterility gene loci cultivated rice (Oryza sativa L.) from wild rice (O. rufipogon Griff.)[J]. Plant Systematics and Evolution, 2012, 298(1): 33-42. doi: 10.1007/s00606-011-0520-5

    [35] 杨培周, 郭海滨, 赵杏娟, 等. 广东高州普通野生稻生殖特性的研究[J]. 植物遗传资源学报, 2006, 7(2): 136-143. doi: 10.3969/j.issn.1672-1810.2006.02.002
    [36] 练子贤, 魏常敏, 卢永根, 等. 广东高州普通野生稻与粳稻杂交F1胚囊育性及发育特点[J]. 中国水稻科学, 2008, 22(3): 266-272. doi: 10.3321/j.issn:1001-7216.2008.03.008
    [37]

    ZHANG L S, SHIVUTE F N, SHAHID M Q, et al. In vitro induction of auto-allotetraploid in a newly developed wild rice line from Oryza alta Swallen[J]. Plant Cell, Tissue and Organ Culture, 2019, 139(3): 577-587. doi: 10.1007/s11240-019-01701-8

    [38]

    FU X L, LU Y G, LIU X D, et al. Cytological mechanisms of interspecific incrossability and hybrid sterility between Oryza sativa L. and O. alta Swallen[J]. Chinese Science Bulletin, 2007, 52(6): 755-765. doi: 10.1007/s11434-007-0138-8

    [39] 傅雪琳, 刘向东, 卢永根. 亚洲栽培稻与短花药野生稻种间杂交障碍观察[J]. 华南农业大学学报, 2013, 34(3): 287-291. doi: 10.7671/j.issn.1001-411X.2013.03.002
    [40]

    FU X L, LU Y G, LIU X D, et al. Cytological behavior of hybridization barriers between Oryza sativa and Oryza officinalis[J]. Agricultural Sciences in China, 2011, 10(10): 1489-1500. doi: 10.1016/S1671-2927(11)60143-0

    [41] 褚绍尉, 王林, 刘桂富, 等. 广东高州普通野生稻耐铝性及其QTL定位[J]. 华北农学报, 2013, 28(3): 12-18. doi: 10.3969/j.issn.1000-7091.2013.03.003
    [42] 王兰, 李智, 郑杏梅, 等. 普通野生稻矮化突变体的株高与分蘖基因的QTL定位及主效基因的遗传分析[J]. 华北农学报, 2014, 29(5): 5-9. doi: 10.7668/hbnxb.2014.05.002
    [43] 郑跃滨, 李智, 赵海燕, 等. 水稻粒长QTL定位与主效基因的遗传分析[J]. 西北植物学报, 2020, 40(4): 598-604. doi: 10.7606/j.issn.1000-4025.2020.04.0598
    [44]

    WANG L, LIU Y, ZHAO H Y, et al. Identification of qGL3.5, a novel locus controlling grain length in rice through bulked segregant analysis and fine mapping[J]. Frontiers in Plant Science, 2022, 13: 921029. doi: 10.3389/fpls.2022.921029.

    [45]

    BAI F, MA H J, CAI Y C, et al. Natural allelic variation in GRAIN SIZE AND WEIGHT 3 of wild rice regulates the grain size and weight[J/OL]. Plant Physiology, (2023-06-24) [2023-07-30]. 2023. doi: 10.1093/plphys/kiad320.

    [46] 张华华, 冯九焕, 卢永根, 等. 利用激光扫描共聚焦显微镜观察同源四倍体水稻胚囊的形成与发育[J]. 电子显微学报, 2003, 22(5): 380-384. doi: 10.3969/j.issn.1000-6281.2003.05.006
    [47] 王兰, 刘向东, 卢永根, 等. 同源四倍体水稻胚乳发育: 极核融合和胚乳细胞化[J]. 中国水稻科学, 2004, 18(4): 281-289. doi: 10.3321/j.issn:1001-7216.2004.04.001
    [48] 王兰, 刘向东, 卢永根, 等. 同源四倍体水稻胚乳发育: 糊粉层乳淀粉积累及胼胝质“套”的形成[J]. 中国水稻科学, 2004, 18(6): 507-514. doi: 10.3321/j.issn:1001-7216.2004.06.007
    [49] 郭海滨, 卢永根, 冯九焕, 等. 利用激光扫描共聚焦显微术对同源四倍体水稻胚囊形成与发育的进一步观察[J]. 激光生物学报, 2006, 15(2): 111-117. doi: 10.3969/j.issn.1007-7146.2006.02.001
    [50]

    HE J H, SHAHID M Q, LI Y J, et al. Allelic interaction of F1 pollen sterility loci and abnormal chromosome behaviour caused pollen sterility in inter-subspecific autotetraploid rice hybrids[J]. Journal of Experimental Botany, 2011, 62(13): 4433-4445. doi: 10.1093/jxb/err098

    [51]

    WU J W, SHAHID M Q, GUO H B, et al. Comparative cytological and transcriptomic analysis of pollen development in autotetraploid and diploid rice[J]. Plant Reproduction, 2014, 27(4): 181-196. doi: 10.1007/s00497-014-0250-2

    [52]

    HU C Y, ZENG Y X, LU Y G, et al. High embryo sac fertility and diversity of abnormal embryo sacs detected in autotetraploid indica/japonica hybrids in rice by whole-mount eosin B-staining confocal laser scanning microscopy[J]. Plant Breeding, 2009, 128(2): 187-192. doi: 10.1111/j.1439-0523.2008.01555.x

    [53]

    CHEN L, SHAHID M Q, WU J, et al. Cytological and transcriptome analyses reveal abrupt gene expression for meiosis and saccharide metabolisms that associated with pollen abortion in autotetraploid rice[J]. Molecular Genetics and Genomics, 2018, 293(6): 1407-1420. doi: 10.1007/s00438-018-1471-0

    [54]

    LI X, YU H, JIAO Y M, et al. Genome-wide analysis of DNA polymorphisms, the methylome and transcriptome revealed that multiple factors are associated with low pollen fertility in autotetraploid rice[J]. PLoS One, 2018, 13(8): e0201854. doi: 10.1371/journal.pone.0201854

    [55]

    LI X, SHAHID M Q, WU J W, et al. Comparative small RNA analysis of pollen development in autotetraploid and diploid rice[J]. International Journal of Molecular Sciences, 2016, 17(4): 499. doi: 10.3390/ijms17040499.

    [56]

    LI X, SHAHID M Q, XIA J, et al. Analysis of small RNAs revealed differential expressions during pollen and embryo sac development in autotetraploid rice[J]. BMC Genomics, 2017, 18: 129. doi: 10.1186/s12864-017-3526-8.

    [57]

    LI X, SHAHID M Q, WEN M S, et al. Global identification and analysis revealed differentially expressed lncRNAs associated with meiosis and low fertility in autotetraploid rice[J]. BMC Plant Biology, 2020, 20(1): 82. doi: 10.1186/s12870-020-2290-0.

    [58]

    GUO H B, MENDRIKAHY J N, XIE L, et al. Transcriptome analysis of neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis[J]. Scientific Reports, 2017, 7: 40139. doi: 10.1038/srep40139.

    [59] 刘向东, 吴锦文, 陆紫君, 等. 同源四倍体水稻: 低育性机理、改良与育种展望[J/OL]. 遗传, (2023-06-28)[2023-07-30]. https://kns.cnki.net/kcms2/detail/11.1913.R.20230626.2143.002.html.
    [60]

    CHEN L, YUAN Y, WU J W, et al. Carbohydrate metabolism and fertility related genes high expression levels promote heterosis in autotetraploid rice harboring double neutral genes[J]. Rice, 2019, 12: 34. doi: 10.1186/s12284-019-0294-x.

    [61]

    GHALED M A A, LI C, SHAHID M Q, et al. Heterosis analysis and underlying molecular regulatory mechanism in a wide-compatible neo-tetraploid rice line with long panicles[J]. BMC Plant Biology, 2020, 20(1): 83. doi: 10.1186/s12870-020-2291-z.

    [62] 张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760. doi: 10.16288/j.yczz.19-105
    [63]

    LIN S J, LIU Z P, ZHANG K, et al. GL9 from Oryza glumaepatula controls grain size and chalkiness in rice[J]. Crop Journal, 2023, 11(1): 198-207. doi: 10.1016/j.cj.2022.06.006

    [64]

    ZHAO H Y, FU Y, ZHANG G Q, et al. GS6.1 controls kernel size and plant architecture in rice[J]. Planta, 2023, 258(2): 42. doi: 10.1007/s00425-023-04201-4.

    [65]

    ZHAN P L, MA S P, XIAO Z L, et al. Natural variations in grain length 10 (GL10) regulate rice grain size[J]. Journal of Genetics and Genomics, 2022, 49(5): 405-413. doi: 10.1016/j.jgg.2022.01.008

    [66]

    ZHAN P L, WEI X, XIAO Z L, et al. GW10, a member of P450 subfamily regulates grain size and grain number in rice[J]. Theoretical and Applied Genetics, 2021, 134(12): 3941-3950. doi: 10.1007/s00122-021-03939-3

    [67]

    PEI R Q, ZHANG Z G, HUANG M C, et al. Mapping QTLs controlling low-temperature germinability in rice by using single segment substitution lines derived from 4 AA-genome species of wild rice[J]. Euphytica, 2021, 217(4): 58. doi: 10.1007/s10681-021-02791-2.

    [68]

    TAN Q Y, ZOU T, ZHENG M M, et al. Substitution mapping of the major quantitative trait loci controlling stigma exsertion rate from Oryza glumaepatula[J]. Rice, 2020, 13(1): 37. doi: 10.1186/s12284-020-00397-1.

    [69]

    WANG S K, LI S, LIU Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8): 949-954. doi: 10.1038/ng.3352

    [70]

    WANG S K, WU K, YUAN Q B, et al. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950-954. doi: 10.1038/ng.2327

    [71] 赵杏娟. 广东高州普通野生稻单片段代换系的构建及分蘖数QTL鉴定[D]. 广州: 华南农业大学, 2008.
  • 期刊类型引用(10)

    1. 何玉,周晨莉,张恒嘉. 水氮互作对土壤有机碳、微生物及酶活性的影响研究述评. 水利规划与设计. 2025(03): 97-100+106 . 百度学术
    2. 秦钧,骆洪义,贾国燏,褚旭,宋久洋,胡华林. 聚乙烯微塑料对土壤的影响及综合生物标志物响应指数. 山东化工. 2025(03): 12-18 . 百度学术
    3. 赵俊波,胡兵辉. 水肥调控对茶树土壤酶及土壤养分的影响. 山西农业大学学报(自然科学版). 2024(02): 130-140 . 百度学术
    4. 梁榕,何娇,孙飞虎,张瑞芳,王鑫鑫. 聚乙烯微塑料对土壤养分和酶活性的影响. 环境科学. 2024(06): 3679-3687 . 百度学术
    5. 王颜玉,王文定,郑梦瑶,欧行奇,郑会芳. 施氮和灌溉处理对麦田土壤有机碳组分及酶活性的影响. 环境工程技术学报. 2024(05): 1419-1426 . 百度学术
    6. 朱琪,史中兴,寇燕燕,刘斌,陈亮,栾倩倩. 原位工程化根治技术和增施生物有机肥对盐碱地土壤酶活性及甜瓜产量、品质的影响. 中国瓜菜. 2023(03): 77-84 . 百度学术
    7. 赵朔. 水肥一体化模式对马铃薯干物质积累及水分利用效率的影响. 基层农技推广. 2023(05): 34-37 . 百度学术
    8. 郝海波,许文霞,侯振安. 水氮耦合对滴灌棉田土壤有机碳组分及酶活性的影响. 植物营养与肥料学报. 2023(05): 860-875 . 百度学术
    9. 吕江艳,龙鹏宇,罗维钢,李伏生,农梦玲. 甘蔗节水高产和蔗田氧化亚氮减排的滴灌施肥模式. 节水灌溉. 2023(12): 1-8 . 百度学术
    10. 关追追,卢奇锋,陈动,邱权,苏艳,李吉跃,何茜. 施肥方式对幼龄楸树非结构性碳器官分配和生长季动态的影响. 西北植物学报. 2022(08): 1355-1362 . 百度学术

    其他类型引用(9)

表(4)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  23
  • PDF下载量:  32
  • 被引次数: 19
出版历程
  • 收稿日期:  2023-07-29
  • 网络出版日期:  2023-11-12
  • 发布日期:  2023-09-06
  • 刊出日期:  2023-09-09

目录

    /

    返回文章
    返回