Variation characteristics of female semi-sterile mutant rs(s) in rice induced by space flight
-
摘要:目的
揭示航天诱变水稻雌性半不育的变异特性。
方法以常规籼型水稻‘秋B’(野生型)航天搭载诱变获得的雌性半不育突变体rs(s)为研究对象,对其开展形态学、细胞学、生理学和遗传学研究。调查突变体与野生型及其正反交F1、F2群体结实率,对亲本的花粉和胚囊育性进行细胞学观察,测定突变体与野生型幼穗生长素(IAA)、细胞分裂素(TZR)、脱落酸(ABA)和赤霉素(GA3)的含量变化。
结果突变体rs(s)雄蕊发育正常但雌性半不育,该性状受隐性单基因调控;发育过程中子房干瘪瘦小,柱头伸长不明显,雌蕊在胚囊发育的有丝分裂阶段发生异常,导致胚囊败育;IAA含量在突变体幼穗分化第6阶段急剧增加。
结论突变体rs(s)是一个新的雌性半不育突变体,在有丝分裂阶段生长素含量急剧增加,可能抑制了雌蕊的生长发育,导致雌蕊发育畸形、雌性半不育。
Abstract:ObjectiveTo reveal the variation characteristics of female semi-sterility in rice induced by space flight.
MethodThe morphologic, cytological, physiological and genetic characteristics of a female semi-sterile mutant rs(s) obtained in conventional indica rice ‘Qiu B’ through space flight mutagenesis were studied. The setting rates of the mutant and its wild type, as well as their reciprocal cross F1 and F2 populations, were investigated. Cytological observations of pollen and embryo sac fertility of the mutant and the wild type were conducted. The content changes of auxin (IAA), cytokinin (TZR), abscisic acid (ABA) and gibberellin (GA3) in young ears of parents were determined.
ResultThe mutant rs(s) was female semi-sterile and it had normal stamen development, indicating the semi-sterility might be controlled by a single recessive gene. During the development, the ovary was shrift and thin, the elongation of the stigma was not obvious, and the pistil was abnormal in the mitotic stage of embryo sac development, which leaded to embryo sac abortion. The content of IAA increased sharply at the 6th stage of young panicle differentiation.
ConclusionThe mutant rs(s) is a new female semi-sterile mutant. The auxin content is up-regulated in the mitotic stage, which may be the main cause of pistil development malformation and female semi-sterility.
-
Keywords:
- Rice /
- Female semi-sterility /
- Mitosis /
- Auxin
-
-
图 1 野生型(WT)与突变体rs(s)及其正反交F1和辅助授粉的结实率
柱子上方的不同小写字母表示差异极显著(P < 0.01, Duncan’s法)
Figure 1. The setting rates of wild type (WT), mutant rs(s) as well as their reciprocal cross F1 and auxiliary pollination
Different lowercase letters on the columns indicate very significant differences (P < 0.01, Duncan’s method)
-
[1] 王乃彦. 开展航天育种的科学研究工作, 为我国农业科学技术的发展做贡献[J]. 核农学报, 2002, 16(5): 257-260. [2] 陈志强, 周丹华, 郭涛, 等. 水稻航天生物育种研究进展[J]. 华南农业大学学报, 2019, 40(5): 195-202. [3] 吴德志, 刘永柱, 郭涛, 等. 实践八号育种卫星搭载籼稻的诱变效应研究[J]. 核农学报, 2010, 24(2): 209-213. [4] XU J, YANG C, YUAN Z, et al. The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana[J]. The Plant Cell, 2010, 22(1): 91-107. doi: 10.1105/tpc.109.071803
[5] 赵世绪, 杜中, 凌祖铭. 用子房整体透明法和微分干涉差显微镜研究水稻的胚胎发育[J]. 遗传, 1993, 15(4): 33-52. [6] 凌定厚, 马镇荣, 陈梅芳, 等. 起源于体细胞培养的籼稻雌性不育突变[J]. 遗传学报, 1991, 18(5): 446-451. [7] 常玉晓. 水稻T-DNA插入突变体侧翼序列的分离和水稻DNA复制蛋白RPA1a及RPA2-3基因的功能研究[D]. 武汉: 华中农业大学, 2010. [8] DING L, LI S C, WANG S Q, et al. Phenotypic characterization and genetic mapping of a new gene required for male and female gametophyte development in rice[J]. Molecular Breeding, 2012, 29: 1-12. doi: 10.1007/s11032-010-9520-3
[9] 黄祯, 赵炳然, 胡远艺, 等. 水稻突变体FSV1雌不育基因的初步定位[J]. 杂交水稻, 2010, 25(S1): 273-275. [10] 官文祥, 邓赟, 李小旭, 等. 水稻雌性不育分子机理研究进展[J]. 分子植物育种, 2017, 15(2): 672-684. [11] DELTEIL A, GOBBATO E, CAYROL B, et al. Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus[J]. BMC Plant Biology, 2016, 16: 17. doi: 10.1186/s12870-016-0711-x.
[12] WANG N, HUANG H, REN S, et al. The rice wall-associated receptor-like kinase gene OsDEES1 plays a role in female gametophyte development[J]. Plant Physiology, 2012, 160(2): 696-707. doi: 10.1104/pp.112.203943
[13] AWASTHI A, PAUL P, KUMAR S, et al. Abnormal endosperm development causes female sterility in rice insertional mutant OsAPC6[J]. Plant Science, 2012, 183: 167-174. doi: 10.1016/j.plantsci.2011.08.007
[14] KUMAR M, BASHA P O, PURI A, et al. A candidate gene OsAPC6 of anaphase-promoting complex of rice identified through T-DNA insertion[J]. Functional & Integrative Genomics, 2010, 10(3): 349-358.
[15] WANG T, LI Y, SONG S, et al. EMBRYO SAC DEVELOPMENT 1 affects seed setting rate in rice by controlling embryo sac development[J]. Plant Physiology, 2021, 186(2): 1060-1073. doi: 10.1093/plphys/kiab106
[16] 黎燕霞, 宋书锋, 王天抗, 等. 水稻的雌性不育研究进展[J]. 分子植物育种, 2023, 21(5): 1658-1664. [17] CHANG Y, GONG L, YUAN W, et al. Replication protein A (RPA1a) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice[J]. Plant Physiology, 2009, 151(4): 2162-2173. doi: 10.1104/pp.109.142877
[18] 王胜华, 陈放, 周开达. 水稻花粉的离体萌发[J]. 作物学报, 2000, 26(5): 609-612. [19] 傅雪琳, 卢永根, 李金泉, 等. 亚洲栽培稻与普通野生稻种间杂种花粉和胚囊败育研究[J]. 植物遗传资源学报, 2008, 9(3): 362-366. [20] 钟蓉, 肖邡明, 高方远, 等. 植物雌性不育的研究进展[J]. 大自然探索, 1998, 17(1): 75-79. [21] ZENG Y, HU C, LU Y, et al. Abnormalities occurring during female gametophyte development result in the diversity of abnormal embryo sacs and leads to abnormal fertilization in indica/japonica hybrids in rice[J]. Journal of Integrative Plant Biology, 2009, 51(1): 3-12. doi: 10.1111/j.1744-7909.2008.00733.x
[22] TENG C, DU D, XIAO L, et al. Mapping and identifying a candidate gene (Bnmfs) for female-male sterility through whole-genome resequencing and RNA-Seq in rapeseed (Brassica napus L)[J]. Frontiers in Plant Science, 2017, 8: 2086. doi: 10.3389/fpls.2017.02086.
[23] 龙思芳, 张大双, 彭强, 等. 水稻雌性半不育突变体M21的细胞学研究和基因的初步定位[J]. 分子植物育种, 2017, 15(4): 1371-1377. [24] ZHANG K, SONG Q, WEI Q, et al. Down-regulation of OsSPX1 caused semi-male sterility, resulting in reduction of grain yield in rice[J]. Plant Biotechnology Journal, 2016, 14(8): 1661-1672. doi: 10.1111/pbi.12527
[25] YANG L, WU Y, YU M, et al. Genome-wide transcriptome analysis of female-sterile rice ovule shed light on its abortive mechanism[J]. Planta, 2016, 244(5): 1011-1028. doi: 10.1007/s00425-016-2563-x
[26] CHEN L, JIE Z, LI H, et al. Transcriptomic analysis reveals candidate genes for female sterility in pomegranate flowers[J]. Frontiers in Plant Science, 2017, 8: 1430. doi: 10.3389/fpls.2017.01430.
[27] XU Y, XIAO M, LIU Y, et al. The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in rice[J]. Plant Molecular Biology, 2017, 94(1/2): 97-107.
[28] 刘文杰, 黄胜楠, 刘志勇, 等. 大白菜雌不育突变体fsm花蕾激素代谢的转录组分析[J]. 沈阳农业大学学报, 2019, 50(2): 138-145. [29] SARKAR A K, LUIJTEN M, MIYASHIMA S, et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers[J]. Nature, 2007, 446(7137): 811-814. doi: 10.1038/nature05703
[30] FURUTANI M, VERNOUX T, TRAAS J, et al. PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis[J]. Development, 2004, 131(20): 5021-5030. doi: 10.1242/dev.01388
[31] SCHMÜLLING T, WERNER T, RIEFLER M, et al. Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species[J]. Journal of Plant Research, 2003, 116(3): 241-252. doi: 10.1007/s10265-003-0096-4
[32] ZHAO Z, WANG C, YU X, et al. Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(36): e2121671119. doi: 10.1073/pnas.2121671119.