• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

水稻遗传育种相关生物信息数据库和工具的研究进展

彭歆, 钱乾, 谭健韬, 彭波, 甘玉立, 王成睿, 刘琦, 沈梦圆

彭歆, 钱乾, 谭健韬, 等. 水稻遗传育种相关生物信息数据库和工具的研究进展[J]. 华南农业大学学报, 2023, 44(6): 854-866. DOI: 10.7671/j.issn.1001-411X.202306065
引用本文: 彭歆, 钱乾, 谭健韬, 等. 水稻遗传育种相关生物信息数据库和工具的研究进展[J]. 华南农业大学学报, 2023, 44(6): 854-866. DOI: 10.7671/j.issn.1001-411X.202306065
PENG Xin, QIAN Qian, TAN Jiantao, et al. Research progress on bioinformatics databases and tools related to rice genetics and breeding[J]. Journal of South China Agricultural University, 2023, 44(6): 854-866. DOI: 10.7671/j.issn.1001-411X.202306065
Citation: PENG Xin, QIAN Qian, TAN Jiantao, et al. Research progress on bioinformatics databases and tools related to rice genetics and breeding[J]. Journal of South China Agricultural University, 2023, 44(6): 854-866. DOI: 10.7671/j.issn.1001-411X.202306065

水稻遗传育种相关生物信息数据库和工具的研究进展

基金项目: 广东省农业科学院协同创新中心项目(XTXM202203);广东省农业科学院水稻研究所“优谷计划”(2023YG08);省级乡村振兴战略专项“种业振兴项目”(2022NJS00004);广东省水稻育种新技术重点实验室项目(2020B1212060047)
详细信息
    作者简介:

    彭 歆,助理研究员,博士,主要从事水稻生物信息大数据挖掘利用和数据库的构建相关研究,E-mail: pengxin@gdaas.cn

    通讯作者:

    刘 琦,研究员,博士,主要从事水稻大数据育种及相关数据库和软件的开发研究,E-mail: qiliu@gdaas.cn

    沈梦圆,助理研究员,博士,主要从事水稻RNA表观转录组学及相关数据库和软件的开发研究,E-mail: mengyuanshen@126.com

  • 中图分类号: S511;S32

Research progress on bioinformatics databases and tools related to rice genetics and breeding

  • 摘要:

    水稻Oryza sativa L.是主要的粮食作物,也是单子叶植物研究的模式植物。面对日益严峻的环境和人口压力,培育高产、优质、环境适性强的水稻品种是解决当前粮食安全问题的有效途径。随着多组学技术的快速发展,积累了海量的水稻遗传育种相关的数据。生物信息数据库和在线分析工具是存储这些数据的载体,用以整合、可视化和共享数据,并为数据的深入挖掘和利用提供工具,从而为育种决策提供数据支撑。本综述系统梳理了近20年来开发的水稻生物信息数据库和在线分析工具,并基于内置数据集和功能对它们进行了分类和总结。最后,讨论了现有的水稻生物信息数据库和在线分析工具的问题与不足,并对它们在大数据和人工智能时代的发展方向进行了展望。

    Abstract:

    Rice (Oryza sativa L.) is both a major staple food and a model crop plant for monocot studies. Facing the increasingly severe environmental and population problems, breeding varieties with high yield, high quality, and wide adaptability is the efficient way to solve the food security problems. With the rapid development of multi-omics technology, large volumes of data related to rice genetics and breeding have been accumulated. Bioinformatics databases and online analysis tools are developed to store, integrate, visualize, and share these datasets. In addition, some databases possess built-in tools for further mining and using datasets to provide data support for decision-making in breeding. In this review, we systematically sort out rice bioinformatics databases and online analysis tools developed in the past two decades. Subsequently, we classified and summarized these resources based on their built-in datasets and features. Finally, the problems and deficiencies of the existing rice bioinformatics resources were discussed, and the development direction of bioinformatics resources in the era of big data and artificial intelligence was prospected.

  • 广西地处亚热带地区,光热充沛,11月份晚稻收获后农田进入空窗期,利用冬闲田发展马铃薯产业空间大。然而广西冬季雨水偏少,灌水成为制约广西冬种马铃薯产业发展的条件之一。马铃薯实际生产中盲目灌水和过量施肥现象普遍存在,而滴灌施肥可以根据作物需水需肥规律和土壤水分养分状况精确控制灌水量、施肥量和灌水施肥时间,将水分养分直接供应到根区,实现作物“按需灌水施肥”,从而提高作物产量和水分养分利用效率[1],同时滴灌施肥也影响土壤碳组分,因此,研究合适的滴灌施肥模式将为调控土壤碳库提供新的途径。目前常用土壤可溶性有机碳、易氧化有机碳和微生物量碳、碳库管理指数等表征土壤碳库,而水肥管理会影响土壤碳库和酶活性。有研究表明,长期合理施肥显著提高土壤有机碳、易氧化有机碳、可溶性有机碳、微生物量碳含量及碳库管理指数[2],与传统施肥相比,滴灌施肥增加各层次土壤易氧化有机碳和可溶性有机碳含量[3]。其他研究也发现,滴灌施肥对提高土壤易氧化有机碳有积极的作用[4-6]。土壤水分含量影响土壤有机碳矿化速率和外界有机碳分解速率[7],从而使土壤有机碳的含量发生变化。俞华林等[8]发现,适量灌水会增加土壤有机碳含量,但少量或过量灌水降低土壤有机碳矿化速率。当土壤水分过量时,土壤透气性和土壤微生物生长环境变差,土壤中有机碳不易被土壤中的微生物分解,而外界的碳源则易被微生物降解腐烂成有机物质,原有的有机碳不会分解且外源有机碳增加,从而使土壤有机碳含量增加[9]。水肥管理也会影响土壤酶如蔗糖酶、纤维素酶和过氧化氢酶等酶活性,滴灌施肥有利于提高土壤中酶活性[10],而土壤酶活性会影响土壤碳组分。研究发现,各种形态有机碳组分与土壤蔗糖酶和纤维素酶活性均呈显著的正相关关系[11]

    近年来国内外学者较多关注滴灌施肥对马铃薯生长、产量、品质和水分利用效率的影响,而滴灌灌水量和滴灌施肥比例协同作用对种植马铃薯土壤碳库管理指数的影响研究较少,且土壤酶活性如何影响土壤有机碳组分和碳库管理指数有待深入研究。因此,在南宁市防雨棚内开展不同滴灌灌水量和滴灌施肥比例的田间试验,通过测定马铃薯收获后土壤有机碳及活性组分和酶活性,计算土壤碳库管理指数(Carbon pool management index,CPMI),分析土壤有机碳组分和碳库管理指数与酶活性之间的关系,以获得种植马铃薯土壤有机碳库调控的水肥管理模式,并揭示土壤酶活性对土壤有机碳组分和碳库管理指数的影响。

    田间试验在南宁市广西大学校内移动防雨棚中进行,该移动棚通风、透光,可以保障作物生长期间自然光照和温度,通过电控传感器在降雨时遮盖,非降雨时移开。供试土壤为赤红壤,pH6.60(水土质量比2.5∶1.0,pH计法),有机质10.6 g·kg−1(重铬酸钾容量法–外加热法),全氮0.99 g·kg−1(半微量开氏法),碱解氮53.6 mg·kg−1(NaOH碱解扩散法),速效磷68.7 mg·kg−1[0.05 mol·L−1 HCl–0.025 mol·L−1 H2SO4浸提,比色法],速效钾217.9 mg·kg−1(1 mol·L−1中性NH4OAc浸提,火焰光度法),田间持水量30.5%(环刀法),容重1.4 g·cm−3(室内环刀法)[12]。供试马铃薯品种为费乌瑞它。

    依据马铃薯在不同时期的需水规律及前人研究结果[13-14],试验设高、低2种滴灌灌水量,其中,高灌水量:苗期、块茎形成期、块茎膨大期和淀粉积累期土壤含水量分别保持在田间持水量的60%~70%70%~80%75%~85%和50%~60%;低灌水量:苗期、块茎形成期、块茎膨大期和淀粉积累期土壤含水量分别保持在田间持水量的50%~60%、60%~70%70%~80%和40%~50%。设3种滴灌施肥比例,即NK100-0:N、K肥以100%作基肥土施,不追肥;NK70-30:N、K肥以70%作基肥土施,30%作滴灌追肥(苗期7.5%,块茎形成期15%,块茎膨大期7.5%);NK50-50:N、K肥以50%作基肥土施,50%作滴灌追肥(苗期12.5%,块茎形成期25%,块茎膨大期12.5%)。试验共设6个处理,具体如表1所示,每个处理重复3次,共18个小区,每小区面积8.64 m2(3.6 m×2.4 m)。

    表  1  田间试验处理及N、K肥的基、追肥比例
    Table  1.  Treatments for field experiment and radio of base fertilizer and topdressing for N,K fertilizer
    处理
    Treatment
    滴灌灌水量
    Drip irrigation amount
    滴灌施肥比例
    Fertigation ratio
    基肥/%
    Base fertilizer
    追肥 Topdressing/%
    苗期
    Seedling stage
    块茎形成期
    Tuber formation stage
    块茎膨大期
    Tuber expansion stage
    T1 高灌水量
    High irrigation amount
    NK100-0 100 0 0 0
    T2 NK70-30 70 7.5 15 7.5
    T3 NK50-50 50 12.5 25 12.5
    T4 低灌水量
    Low irrigation amount
    NK100-0 100 0 0 0
    T5 NK70-30 70 7.5 15 7.5
    T6 NK50-50 50 12.5 25 12.5
    下载: 导出CSV 
    | 显示表格

    各小区均施用化学肥料N 150 kg·hm−2、P2O5 90 kg·hm−2和K2O 300 kg·hm−2,以及堆沤后牛粪15 t·hm−2。氮肥用尿素[w(N)为 46.4%],磷肥用钙镁磷肥[w(P2O5)为18.0%],钾肥用硫酸钾[w(K2O)为52.0%]。牛粪中养分:w(有机质)为14.3%、w(N)为0.76%、w(P2O5)为0.85%、w(K2O)为0.59%。牛粪和钙镁磷肥全部做基肥土施。灌溉方式采用地表滴灌,滴头流量一致,滴头设在马铃薯植株两侧,用水表计量灌水。N肥和K肥按上述施肥方式施用,事先按设计要求配好肥料溶液,通过滴灌带进行灌溉施肥,灌溉方法采用交替滴灌。

    于2017年11月4日将沤熟牛粪施入试验小区,11月5日翻地,11月10日将部分尿素、钙镁磷肥以及硫酸钾作为基肥土施。11月11日切马铃薯块茎,每个种薯块茎留2~3个芽眼,用质量分数为0.5%的高锰酸钾溶液和丁硫克百威水溶液浸泡拌种后晾干,11月14日播种,12月4日移栽或补齐未发芽位置的马铃薯苗。用TRIME-PICO-IPH TDR水分测定仪(德国IMKO)测定土壤含水量,确保土壤含水量在试验设定范围内。12月6日施苗肥,12月11日进行第一次中耕培土。12月20日施块茎形成肥,12月25日进行第2次培土(培土到植株附近,芽块顶部到垄背顶部达到15~20 cm左右,做成梯形垄)。2018年1月4日,施块茎膨大肥,2月8日喷农药(棉铃虫核型多角体病毒,预防马铃薯晚疫病),试验于2018年3月5日收获马铃薯。

    于3月6日(马铃薯收获后次日)用5点法在马铃薯相邻植株中间采集0~20 cm耕作层土壤,将土样混匀,迅速运回实验室,部分新鲜土样过孔径2 mm筛网,除去根系、砂石等后,保存于4 ℃冰箱,直接用于土壤有机碳组分和酶活性的测定。剩余土样风干后过0.149 mm筛后进行土壤总有机碳含量的测定。

    土壤总有机碳(Total organic carbon,TOC)含量用高温外加热重铬酸钾氧化–容量法测定[12];活性有机碳(Labile organic carbon,LOC)含量用浓度为333 mmol·L−1的高锰酸钾溶液氧化土样,并于565 nm下通过测定光密度得到[12];微生物量碳(Microbial biomass carbon,MBC)和可溶性有机碳(Dissolved organic carbon,,DOC)含量分别用三氯甲烷熏蒸和不用三氯甲烷熏蒸后,用浓度为0.5 mol·L−1硫酸钾溶液提取,采用高温外加热重铬酸钾氧化–容量法测定[12]

    土壤蔗糖酶活性用3,5–二硝基水杨酸溶液比色法测定,其活性以1 g干土1 d生成葡萄糖的质量(mg)表示;纤维素酶活性也用3,5–二硝基水杨酸溶液比色法测定,以1 g干土3 d生成葡萄糖的质量(mg)表示1个活性单位(U);过氧化氢酶活性用高锰酸钾滴定法测定,其活性以1 g干土消耗浓度为0.02 mol·L−1的KMnO4溶液体积(mL)表示,3种酶活性测定的具体操作步骤见《土壤酶及其研究法》[15]

    土壤碳库指数(Carbon pool index,CPI)和碳库管理指数的计算参照杜爱林等[16]的方法进行。

    试验数据采用Excel 2016和SPSS 24.0软件进行分析。方差分析包括滴灌灌水量和滴灌施肥比例主效应,以及它们之间的交互效应。用Duncan’s法对不同处理进行多重比较。用Pearson相关系数表示土壤总有机碳及其组分和碳库管理指数与酶活性之间的相关性。

    表2方差分析可知,滴灌灌水量和滴灌施肥。比例对土壤总有机碳(TOC)影响显著(P<0.05)。土壤TOC质量分数在5.46~7.12 g·kg−1之间。多重比较结果显示,相同滴灌施肥比例下,高灌水量土壤TOC含量显著高于低灌水量土壤。在高灌水量下,NK50-50施肥处理土壤TOC含量分别比NK100-0和NK70-30处理提高15.2%和7.1%。在低灌水量下,NK50-50施肥处理土壤TOC含量比NK100-0和NK70-30处理提高12.6%和9.8%。

    表  2  不同处理对土壤有机碳及其组分的影响1)
    Table  2.  Effects of different treatments on soil organic carbon and its components
    处理
    Treatment
    滴灌灌水量
    Drip irrigation amount
    滴灌施肥比例
    Fertigation ratio
    w/(g·kg−1) w/(mg·kg−1)
    总有机碳
    Total organic carbon(TOC)
    活性有机碳
    Labile organic carbon(LOC)
    可溶性有机碳
    Dissolved organic carbon(DOC)
    微生物量碳
    Microbial biomass carbon(MBC)
    T1 高灌水量
    High irrigation amount
    NK100-0 6.18±0.15bc 0.44±0.03b 323.0±57.0ab 374.8±25.3ab
    T2 NK70-30 6.65±0.24ab 0.49±0.01b 369.5±27.5a 384.8±20.3a
    T3 NK50-50 7.12±0.24a 0.55±0.02a 328.7±14.8ab 370.6±3.1b
    T4 低灌水量
    Low irrigation amount
    NK100-0 5.46±0.15d 0.43±0.01b 189.5±49.8b 325.8±8.5b
    T5 NK70-30 5.60±0.16cd 0.44±0.01b 241.3±93.5ab 343.0±9.6ab
    T6 NK50-50 6.15±0.18bc 0.47±0.01b 215.6±7.6ab 324.1±18.7b
    显著性检验
    (P值)
    Significance test
    (P value)
    滴灌灌水量 Drip irrigation amount 0.004 0.008 0.011 0.005
    滴灌施肥比例 Fertigation ratio 0.001 0.003 0.626 0.567
    滴灌灌水量×滴灌施肥比例
    Drip irrigation amount × Fertigation ratio
    0.674 0.125 0.979 0.975
     1) 同列数据后的不同小写字母表示处理间差异显著 (P<0.05,Duncan’s法)
     1) Different lowercase letters in the same column indicate significant differences among treatments (P<0.05,Duncan’s test)
    下载: 导出CSV 
    | 显示表格

    滴灌灌水量和滴灌施肥比例对土壤活性有机碳(LOC)影响显著(P<0.05)(表2)。土壤LOC质量分数介于0.43~0.55 g·kg−1之间。NK50-50下,高灌水量土壤LOC含量显著高于低灌水量土壤。高灌水量下,NK50-50处理土壤LOC含量较NK100-0增加25.0%,且差异显著,而在低灌水量下,不同滴灌施肥比例土壤LOC含量之间的差异并不显著。

    滴灌灌水量对于土壤可溶性有机碳(DOC)影响显著(P<0.05)(表2)。土壤DOC质量分数介于189.5~369.5 mg·kg−1之间。相同滴灌施肥比例下,高灌水量土壤DOC含量与低灌水量土壤之间的差异不显著,相同滴灌灌水量下,不同滴灌施肥比例土壤DOC含量之间的差异也不显著。低灌水量下,NK70-30土壤DOC含量比NK100-0高27.3%。

    滴灌灌水量对土壤微生物量碳(MBC)影响显著(P<0.05)(表2)。土壤MBC质量分数在324.1~384.8 mg·kg−1之间。相同滴灌施肥比例下,高灌水量土壤MBC含量与低灌水量土壤MBC含量之间的差异不显著;相同滴灌灌水量下,不同滴灌施肥比例土壤MBC含量之间的差异也不显著。

    此外,滴灌灌水量和滴灌施肥比例之间的交互作用对土壤TOC、LOC、DOC和MBC含量的影响均不显著(P>0.05)。T3处理土壤TOC和LOC含量相对较高,而T2处理土壤DOC和MBC含量相对较高。在相同滴灌施肥比例下,高灌水量土壤有机碳及其组分较低灌水量土壤高。

    表3方差分析可知,滴灌灌水量对土壤蔗糖酶活性影响显著(P<0.05),但滴灌施肥比例和滴灌灌水量×滴灌施肥比例对土壤蔗糖酶活性的影响并不显著(P>0.05)。多重比较结果显示,NK100-0和NK50-50下,高灌水量土壤蔗糖酶活性较相应低灌水量土壤分别提高18.9%和18.2%,但差异不显著。土壤蔗糖酶活性以T3处理较高。

    表  3  不同处理对土壤酶活性的影响1)
    Table  3.  Effects of different treatments on soil enzyme activity
    处理
    Treatment
    滴灌灌水量
    Drip irrigation amount
    滴灌施肥比例
    Fertigation ratio
    蔗糖酶活性/(mg·g−1·d−1)
    Sucrase activity
    纤维素酶活性/U
    Cellulase activity
    过氧化氢酶活性/(mL·g−1)
    Catalase activity
    T1 高灌水量
    High irrigation amount
    NK100-0 7.17±0.36ab 0.73±0.06a 0.45±0.03a
    T2 NK70-30 7.29±0.14a 0.75±0.04a 0.47±0.03a
    T3 NK50-50 7.39±0.24a 0.75±0.03a 0.46±0.02a
    T4 低灌水量
    Low irrigation amount
    NK100-0 6.03±0.56b 0.64±0.06a 0.39±0.06a
    T5 NK70-30 6.30±0.18ab 0.67±0.06a 0.45±0.04a
    T6 NK50-50 6.25±0.44ab 0.66±0.03a 0.44±0.04a
    显著性检验
    (P值)
    Significance
    Test
    (Pvalue)
    滴灌灌水量 Drip irrigation amount 0.003 0.062 0.311
    滴灌施肥比例 Fertigation ratio 0.799 0.906 0.602
    滴灌灌水量×滴灌施肥比例
    Drip irrigation amount × Fertigation ratio
    0.969 0.999 0.873
     1)同列数据后的不同小写字母表示处理间差异显著 (P<0.05,Duncan’s法)
     1) Different lowercase letters in the same column indicate significant differences among treatments (P<0.05,Duncan’s test)
    下载: 导出CSV 
    | 显示表格

    滴灌灌水量、滴灌施肥比例以及滴灌灌水量×滴灌施肥比例对土壤纤维素酶和过氧化氢酶活性的影响均不显著(P>0.05)(表3)。各处理土壤纤维素酶和过氧化氢酶活性之间的差异不显著。

    表4方差分析可知,滴灌灌水量对土壤碳库指数影响显著(P<0.05),但对碳库管理指数(CPMI)影响不显著(P>0.05)。滴灌施肥比例对土壤CPI和CPMI影响均不显著(P>0.05)。滴灌灌水量×滴灌施肥比例对土壤CPI和CPMI均有显著影响(P<0.05)。

    在相同滴灌施肥比例下,高灌水量土壤CPI和CPMI均高于低灌水量土壤。高灌水量下,NK50-50施肥处理土壤的CPI和CPMI比NK100-0分别提高15.1%和25.8%;低灌水量下,NK50-50施肥处理土壤的CPI和CPMI比NK100-0分别提高12.6%和8.4%。土壤CPI和CPMI以T3处理最高。

    土壤有机碳及其组分和碳库管理指数与酶活性之间的相关性分析结果如表5所示。土壤TOC、DOC、MBC和CPI均与蔗糖酶活性之间呈显著正相关(相关系数分别为0.61,0.48,0.46和0.60),而土壤碳库指数与其他2种酶活性之间的相关性均不显著。

    表  4  不同处理对土壤碳库管理指数的影响1)
    Table  4.  Effects of different treatments on soil carbon pool management index
    处理
    Treatment
    滴灌灌水量
    Drip irrigation amount
    滴灌施肥比例
    Fertigation ratio
    碳库指数
    Carbon pool index
    (CPI)
    碳库管理指数
    Carbon pool management index
    (CPMI)
    T1 高灌水量
    High irrigation amount
    NK100-0 1.26±0.03bc 121.65±7.57b
    T2 NK70-30 1.35±0.05ab 134.36±4.23b
    T3 NK50-50 1.45±0.05a 153.04±5.71a
    T4 低灌水量
    Low irrigation amount
    NK100-0 1.11±0.03d 120.08±4.93b
    T5 NK70-30 1.14±0.03cd 122.43±4.23b
    T6 NK50-50 1.25±0.04bc 130.19±2.63b
    显著性检验
    (P值)
    Significance test
    (P value)
    滴灌灌水量 Drip irrigation amount 0.001 0.111
    滴灌施肥比例 Fertigation ratio 0.113 0.194
    滴灌灌水量×滴灌施肥比例
    Drip irrigation amount × Fertigation ratio
    0.000 0.001
     1)同列数据后的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)
     1)Different lowercase letters in the same column indicate significant differences among treatments (P<0.05,Duncan’s test)
    下载: 导出CSV 
    | 显示表格
    表  5  土壤有机碳及其组分含量和碳库管理指数与酶活性的相关性分析1)
    Table  5.  Correlation analyses of soil organic carbon and fraction contents and carbon pool management index with enzyme activity
    指标
    Index
    蔗糖酶
    Sucrase
    纤维素酶
    Cellulase
    过氧化氢酶
    Catalase
    总有机碳 Total organic carbon (TOC) 0.61** 0.24 0.33
    活性有机碳 Labile organic carbon (LOC) 0.29 0.23 0.14
    可溶性有机碳 Dissolved organic carbon (DOC) 0.48* 0.02 0.29
    微生物量碳 Microbial biomass carbon (MBC) 0.46* 0.29 0.03
    碳库指数 Carbon pool index (CPI) 0.60** 0.24 0.31
    碳库管理指数 Carbon pool management index (CPMI) 0.23 0.24 0.20
     1)“*”和“**”分别表示达0.05和0.01水平的显著相关(n=3,Pearson法)
     1)“*” and “**” indicate significant correlations at 0.05 and 0.01 levels, respectively(n=3, Pearson method)
    下载: 导出CSV 
    | 显示表格

    本研究表明,在相同滴灌灌水量下,与NK100-0相比,NK50-50和NK70-30滴灌施肥下的土壤TOC、LOC和DOC含量都有所提高。NK100-0处理土壤总有机碳及其组分含量等都较低,原因是该处理的肥料全部用作基肥施入土壤,后期养分供应不足,而且部分N肥易通过挥发或反硝化损失,影响N肥施用效果。而NK50-50和NK70-30交替灌溉追施N、K肥使两侧根区土壤处于交替干燥和湿润状态,在提供作物所需水分和养分的同时,使根区土壤处于良好的通气状态,为土壤微生物提供了有益的生存条件,故交替滴灌施肥比例的增加有利于土壤有机碳组分的增加[17];再加上在马铃薯成熟期化学N、K肥配施能够促进作物根系生长,通过增加地下生物量来提高土壤有机质含量,进而有助于有机碳及其组分的增加[18]

    本研究表明,滴灌灌水量对于土壤有机碳及其组分的影响都达到显著水平。在相同滴灌施肥比例下,高灌水量土壤TOC、LOC、DOC和MBC含量都高于低灌水量土壤。相关研究发现,土壤含水量从土壤含水量<50%变成50%~100%时,土壤微生物活性通常会受到抑制,使土壤有机碳矿化分解缓慢,进而使土壤有机碳及其组分增加[19]

    土壤碳库管理指数作为反映土壤碳素动态变化灵敏而有效的指标,与土壤有效碳的关系密切,可反映和评估土壤碳素动态变化[20]。土壤碳库管理指数可用于衡量土壤质量,CPMI值越大,表明土壤质量越好[21]。本研究表明,在相同的灌水量下,NK50-50施肥处理土壤的CPI和CPMI均高于NK100-0,说明提高滴灌施肥比例会增加土壤CPMI,这与滕秋梅等[22]和张鹏等[23]的研究结果一致。说明适量N、K肥的加入可促进植物生长,增强土壤养分循环功能。究其原因,可能是N、K肥施入后主要提高的是LOC含量,导致碳库管理指数较高。凋落物和根系分泌物转化为有机质时,一部分有机质活化后为植物生长提供养分,一部分有机质转化为惰性碳库固存下来,这2个比例维持在一定范围内[24]

    土壤酶在土壤养分周转及土壤功能稳定中有重要作用。在影响土壤酶活性因子中,土壤水分对酶活性的影响具有异质性。本研究表明,土壤蔗糖酶活性在高灌水量下较高,说明灌水量的增加会提高土壤蔗糖酶活性,这与田幼华等[25]、高丽敏等[26]研究结果一致,但与万忠梅等[27]的研究结果相反,这可能是由于不同作物的需水量不同。而本研究结果可能是因为土壤水分的增加,加快了微生物胞外酶和底物的运输速率,可为酶促反应提供良好的反应环境,进而蔗糖酶和纤维素酶活性得到提高[28]。但滴灌施肥比例对土壤蔗糖酶、纤维素酶、过氧化氢酶活性的影响不显著,这与大多数研究结果并不相同。这可能是由于本研究是在相同的施肥量下,滴灌施肥比例对各种酶活性的影响较小;而大多数研究是通过设置不同的施肥梯度实现的。

    蔗糖酶对蔗糖分解的催化作用具有专一性,能将土壤中蔗糖分子分解成果糖和葡萄糖,为土壤微生物提供营养物质,促进土壤有机碳积累与分解转化,从而直接或者间接地影响有机碳矿化过程[29]。本研究表明,土壤总有机碳与蔗糖酶活性呈极显著正相关,以往研究也有相似的结果[30],说明土壤蔗糖酶活性影响土壤有机碳的积累。本研究发现,土壤有机碳组分与纤维素酶和过氧化氢酶活性之间的关系不显著,然而,马瑞萍等[11]对黄土高原不同植物群落土壤团聚体中有机碳和酶活性研究表明,土壤纤维素酶活性与各种组分有机碳之间的关系均呈显著正相关。张英英[31]研究发现,不同耕作措施下甘肃旱地农田0~30 cm土层土壤活性有机碳与纤维素酶和过氧化物酶活性之间的关系呈显著正相关,与本试验结果不同,可能是试验条件和土壤类型不同的原因所致。

    综上所述,在高灌水量(苗期、块茎形成期、块茎膨大期和淀粉积累期土壤含水量分别保持在田间持水量的60%~70%70%~80%、75%~85%和50%~60%)和NK50-50施肥处理(N、K肥以50%作基肥土施,50%作滴灌追肥)下土壤总有机碳及其组分、蔗糖酶活性和碳库管理指数较高,因此,高灌水量和N、K肥基、追肥比50∶50处理为广西冬种马铃薯种植土壤有机碳库调控的水肥耦合模式。此外,土壤TOC、DOC、MBC含量和CPI均与蔗糖酶活性呈显著正相关,说明土壤蔗糖酶活性会影响土壤有机碳及其组分。

  • 表  1   已发表的水稻基因组数据库

    Table  1   The published rice genomic databases

    数据库
    Database
    描述
    Description
    参考文献
    Reference
    NCBI 综合数据库、稻属16个物种参考基因组、基因组重测序数据,https://www.ncbi.nlm.nih.gov/ [16]
    Ensembl 综合数据库、稻属10个物种参考基因组、基因组注释,http://plants.ensembl.org/ [17]
    Phytozome 综合数据库、‘日本晴’和‘Kitaake’参考基因组、基因组注释,https://phytozome-next.jgi.doe.gov/ [18]
    RAP-DB ‘日本晴’、IRGSP-1.0参考基因组、基因组注释,http://rapdb.dna.affrc.go.jp/ [19]
    MSU-RGAP ‘日本晴’、MSU7.0参考基因组、基因组注释,http://rice.uga.edu/ [20]
    RIGW ‘珍汕97’和‘明恢63’参考基因组、多组学数据、互作数据,http://rice.hzau.edu.cn/rice_rs3/ [21]
    IC4R 参考基因组、基因组注释、基因表达谱,http://ic4r.org/ [22]
    Rice Genome Hub 稻属10个物种的参考基因组(32个基因组信息),https://rice-genome-hub.southgreen.fr/ [23]
    RPAN 3KRG线性泛基因组、泛基因组浏览器,http://cgm.sjtu.edu.cn/3kricedb/ [10]
    RicePanGenome 线性泛基因组、基因组变异、67个参考基因组,http://db.ncgr.ac.cn/RicePanGenome/ [11]
    RiceRc 图形泛基因组、33个参考基因组,http://ricerc.sicau.edu.cn/ [12]
    RiceSuperPIRdb 图形泛基因组、251个参考基因组,http://www.ricesuperpir.com/ [13]
    RGI 基于同源基因簇的水稻泛基因组、16个水稻参考基因组,https://riceome.hzau.edu.cn [14]
    OryzaGenome 稻属参考基因组,208个种质基因组信息,涉及19个野生稻和2个栽培稻物种,http://viewer.shigen.info/oryzagenome2detail/ [24]
    RiceRelativesGD 水稻17个近缘物种基因组和单倍型信息,http://ibi.zju.edu.cn/ricerelativesgd/ [25]
    funRiceGenes 基因功能数据库、IRGSP-1.0和MSU7.0基因注释,http://funricegenes.ncpgr.cn/ [26]
    下载: 导出CSV

    表  2   水稻转录和转录后调控相关数据库

    Table  2   The transcriptional and posttranscriptional regulation related databases in rice

    数据库
    Database
    描述
    Description
    参考文献
    Reference
    RiceXPro 微阵列数据集,自然条件下各个生长发育阶段、幼苗激素和胁迫处理的基因表达信息,https://ricexpro.dna.affrc.go.jp/ [27]
    CREP ‘珍汕97’和‘明恢63’的39个组织的基因表达信息,
    http://crep.ncpgr.cn/crep-cgi/home.pl
    [28]
    RED 水稻9个组织,在不同生长阶段和处理的基因表达谱和基因共表达网络,http://expression.ic4r.org [29]
    TENOR 包括‘日本晴’在不同环境胁迫和激素处理条件下的140个mRNA-seq数据集,https://tenor.dna.affrc.go.jp/ [30]
    PPRD 11726个水稻mRNA-seq数据集,使用统一流程和最新的参考基因组进行分析和整合,http://ipf.sustech.edu.cn/pub/ricerna/ [31]
    eRice ‘日本晴’和‘9311’的mRNA-seq、DNA甲基化和组蛋白修饰数据库,http://www.elabcaas.cn/rice/index.html [32]
    RiceENCODE 综合调控RNA转录的DNA修饰、组蛋白修饰、染色质构象等表观调控元件,http://glab.hzau.edu.cn/RiceENCODE/ [33]
    RiceNCexp 提供基于mRNA-seq和sRNA-seq的基因和sRNA转录水平和共表达网络信息,https://cbi.njau.edu.cn/RiceNCexp/ [34]
    ARMOUR 7个水稻品种在不同发育时期、组织和胁迫下的miRNA和相应的靶标信息,https://www.icgeb.org/armour.html [35]
    RiceLncPedia 包含了水稻ncRNAs的表达谱、变异位点、ncRNA之间和ncRNA与编码基因的共表达网络信息,http://3dgenome.hzau.edu.cn/RiceLncPedia [36]
    RiceATM 挖掘miRNA与水稻农艺性状的关系,包括表型选择、样本分组、微阵列数据预处理、统计分析和靶基因预测等功能,http://syslab3.nchu.edu.tw/rice/ [37]
    CSRDB 整合了水稻和玉米的sRNA和它们的靶基因信息,http://sundarlab.ucdavis.edu/smrnas/ [38]
    miRbase 包含水稻已知和新的miRNA的序列和前体序列信息,是使用最广泛的miRNA综合数据库,http://mirbase.org/ [39]
    PceRBase 包含水稻等26个物种的ceRNA、miRNA和它们的靶基因信息,http://bis.zju.edu.cn/pcernadb/index.jsp [40]
    GreeNC 2.0 水稻lncRNA数据库,http://greenc.sequentiabiotech.com/wiki2/Main_Page [41]
    PLncDB 提供lncRNA的长度、类型、表达谱和表观遗传等信息,http://plncdb.tobaccodb.org/ [42]
    CANTATAdb 提供lncRNA长度、类型和表达谱信息,http://cantata.amu.edu.plhttp://yeti.amu.edu.pl/CANTATA/ [43]
    PmiREN 包含水稻miRNA及其前体序列、二级结构、表达模式、潜在靶点等信息,http://www.pmiren.com/ [44]
    PlantcircBase 提供水稻circRNA的分类、表达谱信息,http://ibi.zju.edu.cn/plantcircbase/ [45]
    PlaASDB 水稻和拟南芥在非生物和生物胁迫下的AS事件及AS与基因表达之间的联系,http://zzdlab.com/PlaASDB/ASDB/index.html [46]
    PlantAPAdb 水稻和拟南芥等6个物种基因组范围内的APA位点及注释信息,http://www.bmibig.cn/plantAPAdb [47]
    下载: 导出CSV

    表  3   已发表的水稻基因网络数据库

    Table  3   The publised gene network databases in rice

    数据库
    Database
    描述
    Description
    参考文献
    Reference
    RiceFREND 基于不同组织不同生长发育阶段的微阵列数据构建的共表达网络,http://ricefrend.dna.affrc.go.jp/ [53]
    OryzaExpress 基于微阵列数据构建的共表达网络,http://plantomics.mind.meiji.ac.jp/OryzaExpress/ [54]
    RiceAntherNet 基于微阵列数据集构建的花粉和花药发育过程的共表达网络,https://www.cpib.ac.uk/anther/riceindex.html [55]
    NetREx 基于同源映射和转录组数据集构建的基因在逆境和激素处理下的共表达网络,https://bioinf.iiit.ac.in/netrex/index.html [56]
    PRIN 基于模式物种蛋白互作基因同源映射构建的水稻蛋白质互作网络,http://bis.zju.edu.cn/prin/ [57]
    RiceNetv2 基于蛋白互作、mRNA-seq等多种数据集,利用机器学习算法构建的基因网络,http://www.inetbio.org/ricenet [58]
    RicePPINet 基于机器学习算法构建的蛋白质互作网络,http://netbio.sjtu.edu.cn/riceppinet [59]
    下载: 导出CSV

    表  4   已发表的水稻种质资源信息数据库

    Table  4   The published germplasm information resources in rice

    数据库
    Database
    描述
    Description
    参考文献
    Reference
    MBKBASE 以‘R498’和‘日本晴’为参考基因组,包含130578份种质的表型、群体结构和单倍型信息,https://www.mbkbase.org/rice/ [60]
    RiceVarMap 4726份水稻种质资源的基因组变异、基因型和表型数据,http://ricevarmap.ncpgr.cn/v2/ [61]
    SNP-Seek 4036份水稻的SNP图谱、表型和全基因组关联分析数据集,https://snp-seek.irri.org/ [62]
    SR4R 包含5152份种质资源的遗传变异、群体遗传学和进化基因组学数据集,http://sr4r.ic4r.org/ [63]
    HapRice 253份国际和日本来源的水稻种质的SNP和单倍型图谱,http://qtaro.abr.affrc.go.jp/index.html [64]
    RFGB 3KRG的表型、遗传变异和基因单倍型信息,http://www.rmbreeding.cn/ [65]
    RiceData 包含省级以上审定品种、大面积推广品种、外引品种以及地方性农家品种信息,http://www.ricedata.cn/variety/ [66]
    RiTE DB 包含266份水稻品种中鉴定到的54911个转座子信息数据集,https://www.genome.arizona.edu/cgi-bin/rite/index.cgi [67]
    RTRIP 3KRG的基因组转座子信息,提供转座子序列位点图谱、遗传多样性、基因组进化和分子标记等信息,http://ibi.zju.edu.cn/Rtrip/index.html [68]
    下载: 导出CSV

    表  5   常用的基因编辑系统

    Table  5   Commonly used gene editing systems

    编辑系统
    Editing system
    编辑作用
    Editing function
    用途
    Application
    CRISPR/Cas 靶点切割/突变 基因敲除、遗传改良
    CRISPR/Cas/Donor DNA片段插入/替换 DNA片段突变、遗传改良
    CRISPR/Cas-CBE 单碱基转换:C > T(G > A) 单碱基转换、遗传改良
    CRISPR/Cas-ABE 单碱基转换:A > G(T > C) 单碱基转换、遗传改良
    CRISPR/Cas-CGBE 单碱基转换:C > G(G > C) 单碱基转换、遗传改良
    CRISPR/Prime editors 小片段插入、替换 单碱基的任意转换和小DNA片段的
    替换或插入、遗传改良
    下载: 导出CSV

    表  6   水稻基因编辑生物信息工具与数据库

    Table  6   The bioinformatics tools and databases for gene editing in rice

    数据库
    Database
    描述
    Description
    参考文献
    Reference
    CRISPR-GE “一站式”基因编辑设计工具包,涵盖靶点筛选、引物设计、编辑结果鉴定、脱靶分析等流程,http://skl.scau.edu.cn/ [73-74]
    MMEJ预测工具 评估MMEJ介导片段删除效率,http://www.rgenome.net/ [75]
    BEtarget 提供候选靶点在基因上的位置、GC含量、潜在脱靶值和脱靶位点、编辑窗口内的碱基变化及对应的氨基酸变化等信息,http://skl.scau.edu.cn/betarget/ [76]
    MMEJ-KO 基于微同源删除基因组片段的靶点设计工具,http://skl.scau.edu.cn/mmejko/ [77]
    GeneCat 快速提取基因组序列工具,http://skl.scau.edu.cn/genecat/ [78]
    Cas-Designers sgRNA设计线上工具,http://www.rgenome.net/cas-designer/ [79]
    Cas-Offinder sgRNA脱靶预测线上工具,http://www.rgenome.net/cas-offinder/ [80]
    CRISPR-P 多功能的sgRNA设计工具,随后升级为CRISPR-P 2.0,支持49个物种基因组的sgRNA设计,http://crispr.hzau.edu.cn/CRISPR2/ [81-82]
    CRISPRbase 碱基编辑综合知识平台,统计了多个物种的编辑效率、靶点偏好性和精准度,并进行功能注释,http://crisprbase.maolab.org/ [83]
    PGED 植物基因组编辑数据库,可供用户查阅或上存基因编辑靶位点、突变情况、表型信息等,http://plantcrispr.org [84]
    CAFRI-Rice 水稻冗余基因数据库,为基因编辑候选靶标的选择提供参考,http://pcafri-rice.khu.ac.kr [85]
    Ribo-uORF uORF综合数据库,收集了6个物种的高可信度uORF和TIS位点信息,为uORF编辑提供靶标,http://rnainformatics.org.cn/RiboUORF [86]
    下载: 导出CSV

    表  7   可用于水稻智能育种的机器学习软件和算法

    Table  7   The machine learning software and algorithms for intelligent breeding in rice

    软件
    Software
    模型
    Model
    描述
    Description
    参考文献
    Reference
    BGLR BL、BR、BayesA/B 基于基因−环境互作和多性状的基因组选择模型的构建,https://github.com/gdlc/BGLR-R [89]
    BRNN brnn 基于双向循环神经网络进行基因组选择和表型预测,https://cran.r-project.org/web/packages/brnn/ [90]
    BWGS BayesA/B、BL、BRR 基于R语言开发进行基因组选择和表型预测,https://cran.r-project.org/web/packages/BWGS/ [91]
    CropGBM LightGBM 基因型和表型数据预处理、群体结构分析、SNP 特征选择、表型预测和数据可视化,https://github.com/YuetongXU/CropGBM [92]
    DeepGS CNN 基于深度学习整合多组学数据进行基因组选择,https://github.com/cma2015/DeepGS/ [93]
    DNNGP DNN 基于深度神经网络整合多组学数据进行基因组选择,http://github.com/AIBreeding/DNNGP/ [94]
    HIBLUP BLUP 利用谱系、基因组和表型信息,评估个体的遗传价值,https://hiblup.github.io/ [95]
    KAML KAML、GBLUP 控制质量性状和数量性状的关键基因挖掘,https://github.com/YinLiLin/KAML [96]
    PopVar RRBLUP、 BayesA/B/C、
    BL、BRR
    利用基因型和表型数据预测双亲后代的遗传方差和表型值,https://cran.r-project.org/web/packages/PopVar/ [97]
    rrBLUP RRBLUP 基因组分子标记遗传效应估计与表型预测,https://cran.r-project.org/web/packages/rrBLUP/ [98]
    sommer GBLUP、RRBLUP 加性效应、显性效应、上位性效应评估和遗传力的计算,https://cran.r-project.org/web/packages/sommer/ [99]
    STGS ANN、BLUP、LASSO、
    RF、RR、SVM
    基于分子标记对单一性状进行基因组选择,https://cran.r-project.org/web/packages/STGS/ [100]
    GCTA BLUP SNP 遗传力评估和全基因组关联分析,http://cnsgenomics.com/software/gcta/ [101]
    JWAS Bayes 基因组选择和全基因组关联分析,http://reworkhow.github.io/JWAS.jl/latest/ [102]
    PIBULP BLUP 遗传参数评估与育种值估计,https://github.com/huiminkang/PIBLUP [103]
    solGS RRBLUP 基于组学数据进行复杂性状表型预测,http://cassavabase.org/solgs [104]
    IPAT GBLUP、RRBLUP、BayesB 全基因组关联分析与育种值估计的在线图形化界面工具,http://poissonfish.github.io/iPat/index.html [105]
    下载: 导出CSV
  • [1]

    VAN ITTERSUM M K. Crop yields and global food security. Will yield increase continue to feed the world?[J]. European Review of Agricultural Economics, 2016, 43(1): 191-192. doi: 10.1093/erae/jbv034

    [2] 景海春, 田志喜, 种康, 等. 分子设计育种的科技问题及其展望概论[J]. 中国科学(生命科学), 2021, 51(10): 1356-1365.
    [3]

    WALLACE J G, RODGERS-MELNICK E, BUCKLER E S. On the road to breeding 4.0: Unraveling the good, the bad, and the boring of crop quantitative genomics[J]. Annual Review of Genetics, 2018, 52: 421-444. doi: 10.1146/annurev-genet-120116-024846

    [4]

    JIA L, XIE L J, LAO S T, et al. Rice bioinformatics in the genomic era: Status and perspectives[J]. The Crop Journal, 2021, 9(3): 609-621. doi: 10.1016/j.cj.2021.03.003

    [5] 彭歆, 罗立新, 张力, 等. 重离子诱发的2个水稻突变体表型鉴定及遗传分析[J]. 华南农业大学学报, 2018, 39(1): 12-17. doi: 10.7671/j.issn.1001-411X.2018.01.003
    [6] 程式华. 中国水稻育种百年发展与展望[J]. 中国稻米, 2021, 27(4): 1-6.
    [7]

    WREN J D, GEORGESCU C, GILES C B, et al. Use it or lose it: Citations predict the continued online availability of published bioinformatics resources[J]. Nucleic Acids Research, 2017, 45(7): 3627-3633. doi: 10.1093/nar/gkx182

    [8]

    WING R A, AMMIRAJU J S S, LUO M, et al. The Oryza map alignment project: The golden path to unlocking the genetic potential of wild rice species[J]. Plant Molecular Biology, 2005, 59(1): 53-62. doi: 10.1007/s11103-004-6237-x

    [9]

    YAO W, LI G, ZHAO H, et al. Exploring the rice dispensable genome using a metagenome-like assembly strategy[J]. Genome Biology, 2015, 16: 187. doi: 10.1186/s13059-015-0757-3

    [10]

    SUN C, HU Z Q, ZHENG T Q, et al. RPAN: Rice pan-genome browser for ~3000 rice genomes[J]. Nucleic Acids Research, 2017, 45(2): 597-605. doi: 10.1093/nar/gkw958

    [11]

    ZHAO Q, FENG Q, LU H, et al. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice[J]. Nature Genetics, 2018, 50(2): 278-284. doi: 10.1038/s41588-018-0041-z

    [12]

    QIN P, LU H W, DU H L, et al. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations[J]. Cell, 2021, 184(13): 3542-3558. doi: 10.1016/j.cell.2021.04.046

    [13]

    SHANG L, LI X, HE H, et al. A super pan-genomic landscape of rice[J]. Cell Research, 2022, 32(10): 878-896. doi: 10.1038/s41422-022-00685-z

    [14]

    YU Z, CHEN Y, ZHOU Y, et al. Rice Gene Index: A comprehensive pan-genome database for comparative and functional genomics of Asian rice[J]. Molecular Plant, 2023, 16(5): 798-801. doi: 10.1016/j.molp.2023.03.012

    [15]

    WANG J, YANG W, ZHANG S, et al. A pangenome analysis pipeline provides insights into functional gene identification in rice[J]. Genome Biology, 2023, 24(1): 19. doi: 10.1186/s13059-023-02861-9

    [16]

    PRUITT K D, TATUSOVA T, MAGLOTT D R. NCBI reference sequences (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins[J]. Nucleic Acids Research, 2007, 35(Suppl_1): D61-D65. doi: 10.1093/nar/gkl842

    [17]

    HUBBARD T, BARKER D, BIRNEY E, et al. The Ensembl genome database project[J]. Nucleic Acids Research, 2002, 30(1): 38-41. doi: 10.1093/nar/30.1.38

    [18]

    GOODSTEIN D M, SHU S, HOWSON R, et al. Phytozome: A comparative platform for green plant genomics[J]. Nucleic Acids Research, 2012, 40(DI): D1178-D1186.

    [19]

    SAKAI H, LEE S S, TANAKA T, et al. Rice annotation project database (RAP-DB): An integrative and interactive database for rice genomics[J]. Plant and Cell Physiology, 2013, 54(2): e6. doi: 10.1093/pcp/pcs183

    [20]

    KAWAHARA Y, DE LA BASTIDE M, HAMILTON J P, et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data[J]. Rice, 2013, 6(1): 4. doi: 10.1186/1939-8433-6-4

    [21]

    SONG J M, LEI Y, SHU C C, et al. Rice Information GateWay: A comprehensive bioinformatics platform for indica rice genomes[J]. Molecular Plant, 2018, 11(3): 505-507. doi: 10.1016/j.molp.2017.10.003

    [22]

    SANG J, ZOU D, WANG Z, et al. IC4R-2.0: Rice genome reannotation using massive RNA-seq data[J]. Genomics, Proteomics & Bioinformatics, 2020, 18(2): 161-172.

    [23]

    AGRET C, GOTTIN C, DEREEPER A, et al. South green resources to manage rice big genomics data[C]//The Plant & Animal Genome Conference (PAG). San Diego: Scherago International, 2020.

    [24]

    OHYANAGI H, EBATA T, HUANG X, et al. OryzaGenome: Genome diversity database of wild Oryza species[J]. Plant and Cell Physiology, 2016, 57(1): e1.

    [25]

    MAO L, CHEN M, CHU Q, et al. RiceRelativesGD: A genomic database of rice relatives for rice research[J]. Database, 2019, 2019: baz110. doi: 10.1093/database/baz110

    [26]

    YAO W, LI G, YU Y, et al. funRiceGenes dataset for comprehensive understanding and application of rice functional genes[J]. GigaScience, 2018, 7(1): gix119.

    [27]

    SATO Y, TAKEHISA H, KAMATSUKI K, et al. RiceXPro version 3.0: Expanding the informatics resource for rice transcriptome[J]. Nucleic Acids Research, 2013, 41(D1): D1206-D1213.

    [28]

    WANG L, XIE W, CHEN Y, et al. A dynamic gene expression atlas covering the entire life cycle of rice[J]. The Plant Journal, 2010, 61(5): 752-766. doi: 10.1111/j.1365-313X.2009.04100.x

    [29]

    XIA L, ZOU D, SANG J, et al. Rice Expression Database (RED): An integrated RNA-Seq-derived gene expression database for rice[J]. Journal of Genetics and Genomics, 2017, 44(5): 235-241. doi: 10.1016/j.jgg.2017.05.003

    [30]

    KAWAHARA Y, OONO Y, WAKIMOTO H, et al. TENOR: Database for comprehensive mRNA-seq experiments in rice[J]. Plant and Cell Physiology, 2016, 57(1): e7.

    [31]

    YU Y, ZHANG H, LONG Y, et al. Plant Public RNA-seq Database: A comprehensive online database for expression analysis of ~45 000 plant public RNA-Seq libraries[J]. Plant Biotechnology Journal, 2022, 20(5): 806-808. doi: 10.1111/pbi.13798

    [32]

    ZHANG P, WANG Y, CHACHAR S, et al. eRice: A refined epigenomic platform for japonica and indica rice[J]. Plant Biotechnology Journal, 2020, 18(8): 1642-1644. doi: 10.1111/pbi.13329

    [33]

    XIE L, LIU M, ZHAO L, et al. RiceENCODE: A comprehensive epigenomic database as a rice Encyclopedia of DNA elements[J]. Molecular Plant, 2021, 14(10): 1604-1606. doi: 10.1016/j.molp.2021.08.018

    [34]

    ZHANG B, FEI Y, FENG J, et al. RiceNCexp: A rice non-coding RNA co-expression atlas based on massive RNA-seq and small-RNA seq data[J]. Journal of Experimental Botany, 2022, 73(18): 6068-6077. doi: 10.1093/jxb/erac285

    [35]

    SANAN-MISHRA N, TRIPATHI A, GOSWAMI K, et al. ARMOUR - A rice miRNA: mRNA interaction resource[J]. Frontiers in Plant Science, 2018, 9: 602. doi: 10.3389/fpls.2018.00602

    [36]

    ZHANG Z, XU Y, YANG F, et al. RiceLncPedia: A comprehensive database of rice long non-coding RNAs[J]. Plant Biotechnology Journal, 2021, 19(8): 1492-1494. doi: 10.1111/pbi.13639

    [37]

    LIU W T, YANG C C, CHEN R K, et al. RiceATM: A platform for identifying the association between rice agronomic traits and miRNA expression[J]. Database, 2016, 2016: baw151.

    [38]

    JOHNSON C, BOWMAN L, ADAI A T, et al. CSRDB: A small RNA integrated database and browser resource for cereals[J]. Nucleic Acids Research, 2007, 35(Suppl_1): D829-D833.

    [39]

    KOZOMARA A, BIRGAOANU M, GRIFFITHS-JONES S. miRBase: From microRNA sequences to function[J]. Nucleic Acids Research, 2019, 47(D1): D155-D162. doi: 10.1093/nar/gky1141

    [40]

    YUAN C, MENG X, LI X, et al. PceRBase: A database of plant competing endogenous RNA[J]. Nucleic Acids Research, 2017, 45(D1): D1009-D1014. doi: 10.1093/nar/gkw916

    [41]

    MARSICO M D, PAYTUVI GALLART A, SANSEVERINO W, et al. GreeNC 2.0: A comprehensive database of plant long non-coding RNAs[J]. Nucleic Acids Research, 2022, 50(D1): D1442-D1447. doi: 10.1093/nar/gkab1014

    [42]

    JIN J, LU P, XU Y, et al. PLncDB V2.0: A comprehensive encyclopedia of plant long noncoding RNAs[J]. Nucleic Acids Research, 2021, 49(D1): D1489-D1495. doi: 10.1093/nar/gkaa910

    [43]

    SZCZEŚNIAK M W, BRYZGHALOV O, CIOMBOROWSKA-BASHEER J, et al. CANTATAdb 2.0: Expanding the collection of plant long noncoding RNAs[J]. Methods in Molecular Biology, 2019, 1933: 415-429.

    [44]

    GUO Z, KUANG Z, WANG Y, et al. PmiREN: A comprehensive encyclopedia of plant miRNAs[J]. Nucleic Acids Research, 2020, 48(D1): D1114-D1121. doi: 10.1093/nar/gkz894

    [45]

    XU X, DU T, MAO W, et al. PlantcircBase 7.0: Full-length transcripts and conservation of plant circRNAs[J]. Plant Communications, 2022, 3(4): 100343. doi: 10.1016/j.xplc.2022.100343

    [46]

    GUO X, WANG T, JIANG L, et al. PlaASDB: A comprehensive database of plant alternative splicing events in response to stress[J]. BMC Plant Biology, 2023, 23(1): 225. doi: 10.1186/s12870-023-04234-7

    [47]

    ZHU S, YE W, YE L, et al. PlantAPAdb: A comprehensive database for alternative polyadenylation sites in plants[J]. Plant Physiology, 2020, 182(1): 228-242. doi: 10.1104/pp.19.00943

    [48] 徐海冬, 宁博林, 牟芳, 等. 选择性多聚腺苷酸化的生物学效应及其调控机制研究进展[J]. 遗传, 2021, 43(1): 4-15. doi: 10.16288/j.yczz.20-200
    [49]

    HAN L, ZHONG W, QIAN J, et al. A multi-omics integrative network map of maize[J]. Nature Genetics, 2023, 55(1): 144-153. doi: 10.1038/s41588-022-01262-1

    [50]

    LIU C, MA Y, ZHAO J, et al. Computational network biology: Data, models, and applications[J]. Physics Reports, 2020, 846: 1-66. doi: 10.1016/j.physrep.2019.12.004

    [51]

    HAQUE S, AHMAD J S, CLARK N M, et al. Computational prediction of gene regulatory networks in plant growth and development[J]. Current Opinion in Plant Biology, 2019, 47: 96-105. doi: 10.1016/j.pbi.2018.10.005

    [52]

    YAN J, WANG X. Machine learning bridges omics sciences and plant breeding[J]. Trends in Plant Science, 2023, 28(2): 199-210. doi: 10.1016/j.tplants.2022.08.018

    [53]

    SATO Y, NAMIKI N, TAKEHISA H, et al. RiceFREND: A platform for retrieving coexpressed gene networks in rice[J]. Nucleic Acids Research, 2013, 41(Database issue): D1214-D1221.

    [54]

    HAMADA K, HONGO K, SUWABE K, et al. OryzaExpress: An integrated database of gene expression networks and omics annotations in rice[J]. Plant and Cell Physiology, 2011, 52(2): 220-229.

    [55]

    LIN H, YU J, PEARCE S P, et al. RiceAntherNet: A gene co-expression network for identifying anther and pollen development genes[J]. The Plant Journal, 2017, 92(6): 1076-1091. doi: 10.1111/tpj.13744

    [56]

    SIRCAR S, MUSADDI M, PAREKH N. NetREx: Network-based rice expression analysis server for abiotic stress conditions[J]. Database, 2022, 2022: baac060.

    [57]

    GU H, ZHU P, JIAO Y, et al. PRIN: A predicted rice interactome network[J]. BMC Bioinformatics, 2011, 12: 161. doi: 10.1186/1471-2105-12-161

    [58]

    LEE T, OH T, YANG S, et al. RiceNet v2: An improved network prioritization server for rice genes[J]. Nucleic Acids Research, 2015, 43(W1): W122-W127. doi: 10.1093/nar/gkv253

    [59]

    LIU S, LIU Y, ZHAO J, et al. A computational interactome for prioritizing genes associated with complex agronomic traits in rice (Oryza sativa)[J]. The Plant Journal, 2017, 90(1): 177-188. doi: 10.1111/tpj.13475

    [60]

    PENG H, WANG K, CHEN Z, et al. MBKbase for rice: An integrated omics knowledgebase for molecular breeding in rice[J]. Nucleic Acids Research, 2020, 48(D1): D1085-D1092.

    [61]

    ZHAO H, YAO W, OUYANG Y, et al. RiceVarMap: A comprehensive database of rice genomic variations[J]. Nucleic Acids Research, 2015, 43(Database issue): D1018-D1022.

    [62]

    MANSUETO L, FUENTES R R, BORJA F N, et al. Rice SNP-seek database update: New SNPs, indels, and queries[J]. Nucleic Acids Research, 2017, 45(D1): D1075-D1081. doi: 10.1093/nar/gkw1135

    [63]

    YAN J, ZOU D, LI C, et al. SR4R: An integrative SNP resource for genomic breeding and population research in rice[J]. Genomics, Proteomics & Bioinformatics, 2020, 18(2): 173-185.

    [64]

    YONEMARU J, EBANA K, YANO M. HapRice, an SNP haplotype database and a web tool for rice[J]. Plant and Cell Physiology, 2014, 55(1): e9.

    [65]

    WANG C, YU H, HUANG J, et al. Towards a deeper haplotype mining of complex traits in rice with RFGB v2.0[J]. Plant Biotechnology Journal, 2020, 18(1): 14-16. doi: 10.1111/pbi.13215

    [66] 鄂志国, 王磊. 中国水稻品种及其系谱数据库[J]. 中国水稻科学, 2011, 25(5): 565-566. doi: 10.3969/j.issn.1001-7216.2011.05.017
    [67]

    COPETTI D, ZHANG J, EL BAIDOURI M, et al. RiTE database: A resource database for genus-wide rice genomics and evolutionary biology[J]. BMC Genomics, 2015, 16(1): 538. doi: 10.1186/s12864-015-1762-3

    [68]

    LIU Z, WANG T, WANG L, et al. RTRIP: A comprehensive profile of transposon insertion polymorphisms in rice[J]. Plant Biotechnology Journal, 2020, 18(12): 2379-2381. doi: 10.1111/pbi.13425

    [69] 刘耀光, 李构思, 张雅玲, 等. CRISPR/Cas植物基因组编辑技术研究进展[J]. 华南农业大学学报, 2019, 40(5): 38-49. doi: 10.7671/j.issn.1001-411X.201905058
    [70] 李文龙, 栾鑫, 张强, 等. 基于CRISPR/Cas9基因编辑技术的水稻定向改良研究进展[J]. 广东农业科学, 2022, 49(9): 114-124. doi: 10.16768/j.issn.1004-874X.2022.09.012
    [71] 何晓玲, 刘鹏程, 马伯军, 等. 基于CRISPR/Cas9的基因编辑技术研究进展及其在植物中的应用[J]. 植物学报, 2022, 57(4): 508-531.
    [72]

    ANZALONE A V, RANDOLPH P B, DAVIS J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157. doi: 10.1038/s41586-019-1711-4

    [73]

    XIE X, MA X, ZHU Q, et al. CRISPR-GE: A convenient software toolkit for CRISPR-based genome editing[J]. Molecular Plant, 2017, 10(9): 1246-1249. doi: 10.1016/j.molp.2017.06.004

    [74]

    LIU W, XIE X, MA X, et al. DSDecode: A web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations[J]. Molecular Plant, 2015, 8(9): 1431-1433. doi: 10.1016/j.molp.2015.05.009

    [75]

    BAE S, KWEON J, KIM H S, et al. Microhomology-based choice of Cas9 nuclease target sites[J]. Nature Methods, 2014, 11(7): 705-706. doi: 10.1038/nmeth.3015

    [76]

    XIE X, LI F, TAN X, et al. BEtarget: A versatile web-based tool to design guide RNAs for base editing in plants[J]. Computational and Structural Biotechnology Journal, 2022, 20: 4009-4014. doi: 10.1016/j.csbj.2022.07.046

    [77]

    XIE X, LIU W, DONG G, et al. MMEJ-KO: A web tool for designing paired CRISPR guide RNAs for microhomology-mediated end joining fragment deletion[J]. Science China Life Sciences, 2021, 64(6): 1021-1024. doi: 10.1007/s11427-020-1797-3

    [78]

    MUTWIL M, OBRO J, WILLATS W G T, et al. GeneCAT: Novel webtools that combine BLAST and co-expression analyses[J]. Nucleic Acids Research, 2008, 36(Suppl_2): W320-W326.

    [79]

    PARK J, BAE S, KIM J S. Cas-Designer: A web-based tool for choice of CRISPR-Cas9 target sites[J]. Bioinformatics, 2015, 31(24): 4014-4016. doi: 10.1093/bioinformatics/btv537

    [80]

    BAE S, PARK J, KIM J S. Cas-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases[J]. Bioinformatics, 2014, 30(10): 1473-1475. doi: 10.1093/bioinformatics/btu048

    [81]

    LEI Y, LU L, LIU H Y, et al. CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants[J]. Molecular Plant, 2014, 7(9): 1494-1496. doi: 10.1093/mp/ssu044

    [82]

    LIU H, DING Y, ZHOU Y, et al. CRISPR-P 2.0: An improved CRISPR-Cas9 tool for genome editing in plants[J]. Molecular Plant, 2017, 10(3): 530-532. doi: 10.1016/j.molp.2017.01.003

    [83]

    FAN J, SHI L, LIU Q, et al. Annotation and evaluation of base editing outcomes in multiple cell types using CRISPRbase[J]. Nucleic Acids Research, 2023, 51(D1): D1249-D1256. doi: 10.1093/nar/gkac967

    [84]

    ZHENG Y, ZHANG N, MARTIN G B, et al. Plant genome editing database (PGED): A call for submission of information about genome-edited plant mutants[J]. Molecular Plant, 2019, 12(2): 127-129. doi: 10.1016/j.molp.2019.01.001

    [85]

    HONG W J, KIM Y J, KIM E J, et al. CAFRI-Rice: CRISPR applicable functional redundancy inspector to accelerate functional genomics in rice[J]. The Plant Journal, 2020, 104(2): 532-545. doi: 10.1111/tpj.14926

    [86]

    LIU Q, PENG X, SHEN M, et al. Ribo-uORF: A comprehensive data resource of upstream open reading frames (uORFs) based on ribosome profiling[J]. Nucleic Acids Research, 2023, 51(D1): D248-D261. doi: 10.1093/nar/gkac1094

    [87]

    XUE C, QIU F, WANG Y, et al. Tuning plant phenotypes by precise, graded downregulation of gene expression[J]. Nature Biotechnology, 2023. doi: 10.1038/s41587-023-01707-w.

    [88] 王向峰, 才卓. 中国种业科技创新的智能时代: “玉米育种4.0”[J]. 玉米科学, 2019, 27(1): 1-9. doi: 10.13597/j.cnki.maize.science.20190101
    [89]

    PéREZ P, DE LOS CAMPOS G. Genome-wide regression and prediction with the BGLR statistical package[J]. Genetics, 2014, 198(2): 483-495. doi: 10.1534/genetics.114.164442

    [90]

    PÉREZ-RODRÍGUEZ P, GIANOLA D, GONZÁLEZ-CAMACHO J M, et al. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat[J]. G3:Genes| Genomes| Genetics, 2012, 2(12): 1595-1605.

    [91]

    CHARMET G, TRAN L G, AUZANNEAU J, et al. BWGS: A R package for genomic selection and its application to a wheat breeding programme[J]. PLoS One, 2020, 15(4): e0222733. doi: 10.1371/journal.pone.0222733

    [92]

    YAN J, XU Y, CHENG Q, et al. LightGBM: Accelerated genomically designed crop breeding through ensemble learning[J]. Genome Biology, 2021, 22(1): 271. doi: 10.1186/s13059-021-02492-y

    [93]

    MA W, QIU Z, SONG J, et al. A deep convolutional neural network approach for predicting phenotypes from genotypes[J]. Planta, 2018, 248(5): 1307-1318. doi: 10.1007/s00425-018-2976-9

    [94]

    WANG K, ABID M A, RASHEED A, et al. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants[J]. Molecular Plant, 2023, 16(1): 279-293. doi: 10.1016/j.molp.2022.11.004

    [95]

    YIN L, ZHANG H, TANG Z, et al. HIBLUP: An integration of statistical models on the BLUP framework for efficient genetic evaluation using big genomic data[J]. Nucleic Acids Research, 2023, 51(8): 3501-3512. doi: 10.1093/nar/gkad074

    [96]

    YIN L, ZHANG H, ZHOU X, et al. KAML: Improving genomic prediction accuracy of complex traits using machine learning determined parameters[J]. Genome Biology, 2020, 21(1): 146. doi: 10.1186/s13059-020-02052-w

    [97]

    MOHAMMADI M, TIEDE T, SMITH K P. PopVar: A genome-wide procedure for predicting genetic variance and correlated response in biparental breeding populations[J]. Crop Science, 2015, 55(5): 2068-2077. doi: 10.2135/cropsci2015.01.0030

    [98]

    ENDELMAN J B. Ridge regression and other kernels for genomic selection with R package rrBLUP[J]. The Plant Genome, 2011, 4(3): 250-255. doi: 10.3835/plantgenome2011.08.0024

    [99]

    COVARRUBIAS-PAZARAN G. Genome-assisted prediction of quantitative traits using the R package sommer[J]. PLoS One, 2016, 11(6): e0156744. doi: 10.1371/journal.pone.0156744

    [100]

    BUDHLAKOTI N, MISHRA D C, RAI A, et al. STGS: Genomic selection using single trait [EB/OL]. [2023-06-30]. https://cran.r-project.org/web/packages/STGS.

    [101]

    YANG J, LEE S H, GODDARD M E, et al. GCTA: A tool for genome-wide complex trait analysis[J]. American Journal of Human Genetics, 2011, 88(1): 76-82. doi: 10.1016/j.ajhg.2010.11.011

    [102]

    CHENG H, FERNANDO R, GARRICK D, et al. JWAS: Julia implementation of whole-genome analysis software[C]//Proceedings of the World Congress on Genetics Applied to Livestock Production. Auckland, New Zealand: World Congress on Genetics Applied to Livestock Production, 2018.

    [103]

    KANG H, NING C, ZHOU L, et al. PIBLUP: High-performance software for large-scale genetic evaluation of animals and plants[J]. Frontiers in Genetics, 2018, 9: 226. doi: 10.3389/fgene.2018.00226

    [104]

    TECLE I Y, EDWARDS J D, MENDA N, et al. solGS: A web-based tool for genomic selection[J]. BMC Bioinformatics, 2014, 15(1): 398. doi: 10.1186/s12859-014-0398-7

    [105]

    CHEN C J, ZHANG Z. iPat: Intelligent prediction and association tool for genomic research[J]. Bioinformatics, 2018, 34(11): 1925-1927.

    [106]

    XU Y, MA K, ZHAO Y, et al. Genomic selection: A breakthrough technology in rice breeding[J]. The Crop Journal, 2021, 9(3): 669-677. doi: 10.1016/j.cj.2021.03.008

    [107]

    XU Y, ZHANG X, LI H, et al. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction[J]. Molecular Plant, 2022, 15(11): 1664-1695. doi: 10.1016/j.molp.2022.09.001

    [108] 蒋金金, 苏汉东, 洪登峰, 等. 植物生物技术研究进展[J]. 植物生理学报, 2023, 59(8): 1436-1462. doi: 10.13592/j.cnki.ppj.600006
  • 期刊类型引用(3)

    1. 贾新蕾,黄增朝,杨林狄,吕静,李妍萍,简纪常,黄郁葱. 不同培养温度的鱼源海豚链球菌转录组分析. 热带生物学报. 2024(01): 109-121 . 百度学术
    2. 杨林狄,贾新蕾,黄增朝,吕静,梁华芳,黄郁葱. 银鼓鱼海豚链球菌的分离、鉴定及毒力基因检测. 大连海洋大学学报. 2023(02): 233-241 . 百度学术
    3. 徐伟,施慧,汪玮,张鼎元,许文军,柴学军. 小黄鱼海豚链球菌的分离鉴定. 中国预防兽医学报. 2022(07): 725-730 . 百度学术

    其他类型引用(2)

表(7)
计量
  • 文章访问数:  1442
  • HTML全文浏览量:  43
  • PDF下载量:  112
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-07-09
  • 网络出版日期:  2023-11-12
  • 发布日期:  2023-09-11
  • 刊出日期:  2023-11-09

目录

/

返回文章
返回