Current advances on the molecular mechanism of seed vigor
-
摘要:
种子活力是种子播种质量的重要指标,也是种用价值的主要组成部分,它是一个复杂的综合性状,表现为种子快速发芽、耐逆萌发、幼苗快速建成等性状。种子活力与种子发育、成熟、劣变、萌发和处理等环节都密切相关,且受到各种外界环境的影响。本文重点总结了调控种子活力形成、种子快速萌发、种子耐逆萌发、种子幼苗建成等方面的分子机理研究进展,并对今后研究方向进行了展望。
Abstract:Seed vigor is an important index of sowing quality and a major component of seed value. Seed vigor is a complex trait encompassing attributes such as rapid germination, high stress tolerance, and rapid seedling establishment. The regulation of seed vigor is involved in the processes of seed development, seed maturation, seed deterioration, seed germination, and seed treatments, and it is also influenced by various environment factors. In this review, the recent advances on the molecular mechanism of the regulation on the vigor establishment, rapid germination, stress tolerance, and seedling establishment were summarized, as well as the prospects of future research was discussed.
-
Keywords:
- Seed vigor /
- Seed germination /
- Seedling establishment /
- Molecular mechanism /
- Stress tolerance
-
世界一半以上的人口以稻米为主食[1]。陆稻(Upland rice)和水稻(Lowland rice)是亚洲栽培稻Oryza sativa L.的2种生态型[2]。陆稻,也称旱稻或者旱谷,通常是指在旱地、坡地及干旱生态环境下正常生长的栽培稻类型[3],具有节约水资源、轻简宜机、劳动强度低和少甲烷排放等优点。陆稻种植不需灌溉水层,水分供给主要依赖于自然降雨或少量灌溉[4]。陆稻在适应陆生旱地环境过程中,形成了对陆生环境土壤养分、水分、季节和日长变化等的适应性[5-6]。与水稻相比,典型的陆稻具备低水分条件下种子萌发、萌发后出土、苗期与杂草竞争、趋避不利环境(如快速卷叶、快速灌浆成熟)、耐旱,以及适应于水分供给的光周期反应等能力,这些对陆生环境的适应表现被称为陆生适应性(Aerobic adaptation)[6]。
陆稻在选择驯化过程中,形成大量地方种质[7]。最近发现,陆稻可能先于水稻更早从野生稻中驯化而来[8]。基于水田生态系统育成的水稻品种普遍不适应通气有氧的陆生旱地环境[9-10]。传统的陆稻生产主要分布在我国云南、贵州、海南等山区及东南亚国家,具有深播出土、抗(耐)旱等特性[11-12]。虽然传统陆稻的产量低,但其蕴含的优异基因是稻作遗传育种的宝库。在全球气候变化背景下,水资源短缺已成为传统水稻生产最为主要的限制因素[13]。将传统陆稻与现代水稻改良品种相结合进行遗传改良,是应对水资源短缺和干旱等挑战的有效途径[14-15]。因此,有待进一步加强特异陆稻种质的挖掘和创新利用,但目前缺乏对陆稻陆生适应性关键节点性状简便、高效的系统鉴定方法,极大地限制了陆稻在遗传育种中的利用价值。
目前关于陆稻早期幼苗陆生适应性的综合性评价,特别是与陆稻生产实践紧密结合的低水分胁迫条件下的萌发和深土出土能力,仍缺乏系统深入地研究。现阶段对于水、陆稻种子低水分胁迫条件下萌发的研究,主要以聚乙二醇 (Polyethylene glycol 6000, PEG6000)作为诱导条件[16]。李自超等[17]对比了陆稻和水稻在不同质量浓度PEG6000处理条件下幼苗的生长情况,陆稻生长势比水稻更好。在200 g/L PEG6000溶液中培养时,陆稻仍有一定的生长量,而水稻均不能发芽。胡德勇等[18]调查了不同水分处理对陆稻种子萌发的影响,发现陆稻品种‘IAPAR’种子萌发的临界含水率可低至田间持水量的30%。徐建欣等[19]发现,在150 g/L PEG6000处理下,陆稻的相对发芽率、相对幼根长度等性状指标优于水稻,可视为陆稻对低水分环境萌发的适应特征。基于此方法,科学家已从陆稻中鉴定出许多抗旱基因[11, 20-21]。
深播被认为是旱直播栽培中抗旱保墒的重要途径[22]。胚芽鞘具有保护胚芽中幼叶和生长锥的作用[23],在其下方有一个短茎,称为中胚轴。胚芽鞘和中胚轴在幼苗出土过程中起到关键作用。不同作物的种子在萌发出土过程中延伸器官可能不同。高粱深播中胚轴伸长使其幼苗顶出土壤表面,大麦和小麦的中胚轴几乎没有伸长,而它们的胚芽鞘显著伸长[24-25]。有研究表明,胚芽鞘和中胚轴伸长被认为是水稻幼苗出土的主要动力源[26-28]。当前研究主要用出苗率来表示出土能力,出苗率越高其出土能力越强[29-30],而大多研究均以水稻为主[31-32],缺乏对特有陆稻种质资源出土能力相关指标的综合评价[33]。通过开展陆稻早期幼苗陆生适应性的综合评价,筛选具有较强低水分胁迫萌发及深土出苗能力的种质资源,可为后续陆生适应性遗传机理解析、节水栽培和耕作研究及陆稻育种奠定基础。
世界各地的陆稻,包括低纬度低海拔(含赤道附近)的陆稻地方品种及改良品种以粳稻为主,水稻与陆稻的遗传分化主要发生在粳稻亚种内[15]。云南省是中国稻种遗传和生态多样性中心之一,其南部雨热同季、多山的环境孕育了丰富的陆稻资源,为筛选具有优良陆生适应性的种质提供了大量的资源[34-35]。本研究利用150 g/L PEG6000模拟低水分胁迫和8 cm深土播种进行典型水、陆稻早期幼苗陆生适应性的差异指标筛选,同时对246份地方陆稻种质资源进行综合评价,以期明确评价标准,筛选出具有优良陆生适应性的代表性品种,为进一步创新利用云南陆稻种质资源提供理论依据。
1. 材料与方法
1.1 试验材料
试验材料选用典型水稻和改良陆稻品种。24份典型的水稻品种主要来源于长江中下游及东北地区;24份典型陆稻品种主要来源于国内外改良品种,246份地方陆稻品种均来源于云南省,由中国科学院西双版纳热带植物园作物保护与育种基地扩繁保育提供试验。
1.2 试验方法
1.2.1 陆稻低水分胁迫萌发能力鉴定
试验于2022年9—12月在中国科学院西双版纳热带植物园温室内进行。参试材料选取籽粒饱满、大小一致的种子60粒,使用质量分数为1%的次氯酸钠消毒液消毒15 min,清洗干净后将种子置于垫有滤纸的9 cm培养皿中。设置对照组(蒸馏水)和低水分胁迫组(150 g/L PEG6000溶液) 2个处理,每处理3个重复。处理组加入5 mL的150 g/L PEG6000溶液,对照组加入等体积的蒸馏水,培养皿加盖置于28 ℃恒温、光周期为14 h光照/10 h黑暗的温室中培养。从种子置床之日起开始观察,以胚根或胚芽达种子长的1/2为发芽标准,每天定时统计发芽种子数[36]。处理7 d后,每个处理取10株幼苗,测量芽长、根长、根数等指标。
1.2.2 陆稻深土出苗能力鉴定
每个参试材料选取45粒饱满的种子,使用孔径为8 mm的筛子除去土壤大颗粒,填充于11 cm 深、底部钻有9个孔的黑色塑料培养盒中,每个塑料盒先平铺3 cm土壤,播种后将盒子填满(播种深度8 cm),以模拟田间土壤播种条件。然后将培养盒放入3 cm水深的容器中,反渗吸水确保土壤充分浸润,放置24 h后取出置于苗床上培养。每盒播种3个材料,设置3个重复。7 d后调查幼苗生长情况,取样测量胚芽鞘长、中胚轴长、根数和根长等指标。
1.3 数据处理与分析
试验数据采用Excel 2016录入并绘制图表,利用SPSS软件进行描述性统计、方差和主成分分析。采用模糊数学隶属函数法进行综合鉴定,并进行聚类分析[37]。具体计算公式如下:
$$ 发芽势=第3天发芽种子数/种子总数 \times 100{\text{%}}, $$ (1) $$ 发芽率=第7天发芽种子数/种子总数 \times 100{\text{%}} ,$$ (2) $$ 相对值= {\rm{PEG}}胁迫处理下的值/对照值 \times 100{\text{%}} , $$ (3) 隶属函数值计算公式:
$$ {u}\left(X_{{j}}\right)=(X_{{j}}-X_{\mathrm{m}\mathrm{i}\mathrm{n}})/(X_{\mathrm{m}\mathrm{a}\mathrm{x}}-X_{\mathrm{m}\mathrm{i}\mathrm{n}}), $$ (4) 权重(Wj)计算公式:
$$ {W}_{j}=\dfrac{{P}_{j}}{{\displaystyle\sum} _{j=1}^{n}{P}_{j}}, $$ (5) 综合低水分胁迫萌发/出土能力(D)计算公式:
$$ {D}={\displaystyle\sum} _{j=1}^n{u}_{j}{W}_{j}, $$ (6) 式中,Xj为某项指标的测定值,Xmax为全部供试材料某项指标的最大值,Xmin为全部供试材料某项指标的最小值;Pj表示第j个综合指标贡献率;uj表示第j个综合指标的隶属函数,Wj表示第j个权重。
2. 结果与分析
2.1 典型水稻和改良陆稻品种早期幼苗的陆生适应性评价
在早期幼苗陆生适应性的相关性状中,典型水稻、改良陆稻品种间观测的几乎所有指标均表现出极显著差异,陆稻的相对发芽率与相对发芽势大于0.700,而水稻则小于0.150。陆稻的相对根长、相对根数分别为水稻的5倍和3倍;此外,水稻的各相对指标的变异系数均大于200%,而陆稻除相对根长外均低于70%,表现出更稳定、更强的适应性。对这些材料的深土出苗观察分析发现,除根数外,其余性状指标在水、陆稻间均存在显著的差异,特别是根长、中胚轴长显示出极显著差异,根长、根数、胚芽鞘与芽长较水稻的变异程度更低,陆稻表现出更强的适应深播的能力(表1)。
表 1 典型水、陆稻陆生适应性差异性分析Table 1. Difference analysis of aerobic adaptability between typical lowland rice and upland rice生态型
Ecotype性状
Trait平均值1)
Mean最大值
Max最小值
Min极差
Range标准差
SD变异系数/%
CV陆稻
Upland rice相对发芽势 Relative germination potential 0.796** 1.267 0.105 1.162 0.252 31.7 相对发芽率 Relative germination rate 0.856** 1.333 0.100 1.233 0.255 29.8 相对根长 Relative root length 0.724** 3.273 0.021 3.252 0.718 99.2 相对芽长 Relative bud length 0.142** 0.341 0.000 0.341 0.095 67.2 相对根数 Relative root number 0.366** 0.857 0.118 0.739 0.208 56.9 根长/cm Root length 7.634** 10.400 4.667 5.733 1.481 19.4 根数 Root number 3.812 5.333 1.500 3.833 0.966 25.3 中胚轴长/cm Mesocotyl length 0.271** 0.817 0.100 0.717 0.192 70.6 胚芽鞘长/cm Coleoptile length 2.835* 3.900 2.033 1.867 0.486 17.1 芽长/cm Bud length 3.959* 5.783 2.400 3.383 0.729 18.4 水稻
Lowland rice相对发芽势 Relative germination potential 0.139 0.950 0.000 0.950 0.298 215.0 相对发芽率 Relative germination rate 0.133 10.000 0.000 1.000 0.290 218.6 相对根长 Relative root length 0.132 1.631 0.000 1.631 0.378 286.9 相对芽长 Relative bud length 0.038 0.385 0.000 0.385 0.104 274.9 相对根数 Relative root number 0.106 1.000 0.000 1.000 0.241 226.9 根长/cm Root length 6.237 10.133 3.150 6.983 1.981 31.8 根数 Root number 3.299 4.833 1.400 3.433 1.075 32.6 中胚轴长/cm Mesocotyl length 0.148 0.250 0.100 0.150 0.057 38.2 胚芽鞘长/cm Coleoptile length 2.483 3.433 1.300 2.133 0.561 22.6 芽长/cm Bud length 3.406 5.133 1.625 3.508 1.032 30.3 1) “*”和“**”分别表示2种生态型在0. 05和0. 01水平上差异显著(t检验)
1) “*” and “**” indicate significant differences between two ecotypes at 0. 05 and 0. 01 levels, respectively (t test)在150 g/L PEG6000处理下,有3份典型水稻品种的芽长、根数和根长均为0,而5份改良陆稻品种的芽长和根数为典型水稻品种的10倍,根长为典型水稻品种的30~50倍,均显著强于典型的水稻品种(图1)。
图 1 不同水、陆稻品种在150 g/L PEG6000条件下培养7 d后的生长情况结果用平均值±标准差表示;柱子上方的不同小写字母表示差异显著(P< 0.05,Duncan’s检验)Figure 1. Growth of different lowland rice and upland rice varieties after cultured for 7 days under 150 g/L PEG6000 conditionsData are represented as mean±SD; Different lowercase letters on bars indicate significant differences (P< 0.05, Duncan’s test)在深土萌发下,陆稻品种的各项指标表现更好,同时发现部分水稻品种的根数、根长上也有不错的表现,可进一步用于发掘相关优良基因(图2)。以上结果表明,低水分胁迫萌发、出土能力等相关指标除根数外,均可用于陆稻早期幼苗陆生适应性的筛选。
图 2 不同水、陆稻品种在深土8 cm深土播种条件下培养7 d后的生长情况结果用平均值±标准差表示;柱子上方的不同小写字母表示差异显著(P< 0.05,Duncan’s检验)Figure 2. Growth of different lowland rice and upland rice varieties after cultured for 7 days under 8 cm deep-seeding conditionsData are represented as mean±SD; Different lowercase letters on bars indicate significant differences (P< 0.05, Duncan’s test)2.2 早期幼苗陆生适应性性状的相关性分析
在150 g/L PEG6000胁迫条件下,对294份供试材料的相对芽长、相对根数、相对发芽率等5个指标的相对值进行相关性分析,结果表明各性状均呈现显著相关,其中相对芽长与相对根数之间的相关系数达0.611,相对芽长与相对发芽率相关系数达0.465。这些结果说明陆稻苗期的陆生适应性可以在多个性状指标上得以体现,需要综合考虑多个指标,才能进行更准确地鉴定(表2)。
表 2 150 g/L PEG6000 胁迫下生长性状的相关性分析1)Table 2. Correlation analysis of growth traits under 150 g/L PEG6000 conditions性状
Trait相对发芽势
Relative germination
potential (RGP)相对发芽率
Relative germination
rate (RGR)相对根长
Relative root
length (RRL)相对芽长
Relative bud
length (RBL)相对根数
Relative root
number (RRN)RGP 1 RGR 0.345** 1 RRL 0.133* 0.326** 1 RBL 0.135* 0.465** 0.455** 1 RRN 0.197** 0.460** 0.450** 0.611** 1 1) “*”和“**”分别表示在0. 05和0. 01水平上显著相关(Pearson相关性分析)
1) “*” and “**” indicate significant correlations at 0. 05 and 0. 01 levels, respectively (Pearson correlation analysis)在8 cm深土播种条件下,除中胚轴与根长、芽长之间无显著相关外,其余各性状指标之间均显著相关。芽长与胚芽鞘长相关系数达0.691,这与在幼苗出土过程中,胚芽鞘保护幼芽穿过土壤的生物学过程一致(表3)。此外,胚芽鞘长与中胚轴长间存在极显著相关性,与前人关于中胚轴和胚芽鞘的伸长是种子出苗的主要动力源的观点相吻合[26]。根数在陆稻中与各指标均存在显著相关性,而在典型水陆稻中不存在显著差异(表3)。这些结果表明数量性状的复杂性,说明陆稻幼苗的出土能力受到多个性状的共同调控。
表 3 8 cm深土播种条件下生长性状的相关性分析1)Table 3. Correlation analysis of growth traits under 8 cm deep-seeding conditions性状
Trait根长
Root length (RL)根数
Root number (RN)中胚轴长
Mesocotyl length (ML)胚芽鞘长
Coleoptile length (CL)芽长
Bud length (BL)RL 1 RN 0.486** 1 ML 0.021 0.149* 1 CL 0.373** 0.291** 0.348** 1 BL 0.628** 0.581** 0.111 0.691** 1 1) “*”和“**”分别表示在0. 05和0. 01水平上显著相关(Pearson相关性分析)
1) “*” and “**” indicate significant correlations at 0. 05 and 0. 01 levels, respectively (Pearson correlation analysis)2.3 早期幼苗陆生适应性的主成分分析
主成分分析能够提取出数据中的主要特征和结构,保留数据中最重要的信息,可方便快捷地对供试样品的相似性进行科学评价。对早期幼苗陆生适应性的低水分胁迫萌发和出土能力指标分别进行主成分分析,以累计贡献率大于80%为原则选择主成分。在150 g/L PEG6000处理条件下,因子分析提取了3个主成分,其贡献率分别为50.038%、19.683%和 12.547%,累计贡献率达82.268%,表明可以解释原始数据82.268%的总变异,涵盖了所有指标的大部分信息。在8 cm深土条件下,由于典型水陆稻间根数性状不存在显著差异,因而只对根长、中胚轴、胚芽鞘、芽长进行主成分分析,该过程将原来的4个单项指标组合为2个新的互相独立的综合指标,2个主成分贡献率分别为55.082%和26.351%,累计贡献率为81.433%,可以代替大多数指标。
主成分与所有相关性状的因子负荷量反映了彼此间的相关性。在150 g/L PEG6000条件下,构成载荷分析表明,在第1主成分中所有性状指标均起着重要作用;相对根数的特征向量(0.814)最高,表明了根系对于水分吸收的重要性;在第2主成分中,相对发芽势特征向量(0.851)数值最大,说明种子的自身活力同样对低水分萌发起着重要的作用;在第3主成分中,相对根长对应特征向量(0.637)数值最大,表明发达的根系对于适应低水分的重要性。对深土出苗评价发现,在第1主成分当中,除中胚轴外,其余指标的特征向量均较高,它们起着主要作用;在第2主成分中,中胚轴特征向量较高,对深土出苗发挥着主要作用,表明在深土条件下这些指标均需要考虑作为幼苗出土能力的重要评价指标(表4)。
表 4 在150 g/L PEG6000和8 cm深土播种条件下主成分性状特征值、贡献率和累积贡献率1)Table 4. The characteristic value, contribution rate and cumulative contribution rate of principal component traits under 150 g/L PEG6000 and 8 cm deep-seeding conditions处理 Treatment 指标 Index C1 C2 C3 150 g/L
PEG6000相对发芽势 Relative germination potential 0.411 0.851 0.227 相对发芽率 Relative germination rate 0.742 0.276 −0.324 相对根长 Relative root length 0.686 −0.290 0.637 相对芽长 Relative bud length 0.806 −0.264 −0.205 相对根数 Relative root number 0.814 −0.176 −0.152 特征值 Eigen value 2.502 0.984 0.627 贡献率/% Contribution rate 50.038 19.683 12.547 累积贡献率/% Cumulative contribution rate 50.038 69.722 82.268 8 cm深土播种
8 cm deep-seeding根长 Root length 0.741 −0.422 中胚轴长 Mesocotyl length 0.341 0.886 胚芽鞘长 Coleoptile length 0.848 0.226 芽长 Bud length 0.905 −0.200 特征值 Eigen value 2.203 1.054 贡献率/% Contribution rate 55.082 26.351 累积贡献率/% Cumulative contribution rate 55.082 81.433 1) C1~C3分别为第1~3主成分
1) C1−C3 are the first to third principal components, respectively2.4 早期幼苗陆生适应性的聚类分析
通过主成分分析得到因子得分值,作为鉴定陆生适应性的综合指标。利用公式(4)计算各综合指标的隶属函数值,再用公式(5)通过综合指标的贡献率计算权重。在150 g/L PEG6000胁迫下,3个主成分的权重依次是0.608、0.239和0.153。在8 cm深土条件下,2个主成分的权重依次是0.608和0.392。最后采用公式(5)计算得到综合评价值D。对D均值采用欧式距离平方法进行系统聚类分析(表5)。
表 5 294份参试材料的陆生适应性等级及分类Table 5. Aerobic adaptation level and classification of 294 tested germplasms类群
Group品种数量
No. of
varieties水稻品种数量
No. of lowland
rice varieties地方陆稻品种数量
No. of local upland
rice varieties改良陆稻品种数量
No. of improved upland
rice varietiesD均值1)
D meanⅠ 7 0 7 0 0.636a Ⅱ 96 0 92 4 0.483b Ⅲ 157 3 139 15 0.391c Ⅳ 29 16 8 5 0.260d Ⅴ 5 5 0 0 0.140e 1) 该列数据后的不同小写字母表示不同类群陆生适应性差异显著(P < 0.05,Duncan’s检验)
1) Different lowercase letters of this column indicate significant differences in aerobic adaptation of different groups (P < 0.05,Duncan’s test)结果表明,在欧式距离等于5时,可将294份供试材料的陆生适应性划分为极强型(Ⅰ类)、强型(Ⅱ类)、中间型(Ⅲ类)、弱型(Ⅳ类)、极弱型(Ⅴ类) 5类。第I类群包含‘N90-253大长谷’‘黑花谷’‘夺哥谷2’‘大香糯’‘大麻谷’‘红壳谷’和‘黄壳谷’等7份种质,为来自于云南的地方陆稻品种,说明地方种质具有优异的陆生适应性特性,对地方资源的挖掘评价具有重大意义。第II类群包含96份种质,除地方品种外,还涵盖有4份改良的陆稻品种。第Ⅲ类群包含157份种质,除了3份水稻外,绝大多数为地方及改良陆稻品种。第Ⅳ类群包含29份种质,大部分为典型水稻品种,但也有5份改良的陆稻品种,这表明在陆稻改良品种时可能注重于单个性状,而忽视了对其陆生适应性的方面。第Ⅴ类群包含5份种质,全为典型水稻品种,说明典型水稻品种的陆生适应性确有很大的提升潜力(表5)。这些结果表明,陆生适应性的评价是一个全面综合的评价过程,一些改良的陆稻由于育种过程可能仅注重单方面抗性的提高,忽略了出土能力等性状的改良,导致其在陆生适应性综合评价中依旧表现不佳。参试云南地方陆稻品种的陆生适应性强弱参差不齐,说明该省陆稻地方种质资源类型多样、遗传丰富,筛选出的陆生适应性强的地方陆稻品种可深入挖掘并加以利用。
3. 讨论与结论
水、陆稻在陆生适应性相关性状方面存在明显的遗传差异,陆稻适应性关键遗传差异是水、陆稻遗传差异的基础[38-39];陆稻的陆生适应性需在生长发育过程中与土壤水分供应特征保持一致,并具备对干旱逆境的抵抗、忍耐与恢复能力,以及较强的出土能力[40]。目前,缺乏有效的陆生适应性系统鉴定评价方法,极大地限制了优良陆稻种质资源在育种中的利用。在幼苗的抗旱性鉴定研究中,主要利用PEG6000溶液模拟低水分胁迫环境,将萌发相关的生长指标作为抗旱鉴定的指标,已成为幼苗抗旱鉴定研究的重要手段[41]。杨瑰丽等[42]研究发现,干旱胁迫严重影响了水稻的萌发,明显抑制根的生长,与芽相比,根中的干物质积累易受干旱胁迫的抑制。李其勇等[43]研究模拟干旱对水稻育种材料‘川香29B’近等基因导入系种子萌发的影响,发现从轻度到重度的水分胁迫对种子发芽的抑制作用呈现增强的趋势。丁国华等[44]发现,干旱胁迫条件下杂草稻的发芽率、茎长、根长、根数、茎干质量、根干质量和根冠比等指标均显著降低,与水稻对同样胁迫条件的表现没有显著差异。
水、陆稻对干旱胁迫响应存在着巨大的遗传多样性,特别是地方陆稻品种往往具有很强的干旱胁迫耐受性[45-46]。陆稻地方品种虽然存在较多不足,但其适应于干旱环境等潜在的遗传变异可以用于稻作新品种耐旱性的遗传改良。传统的陆稻主要分布于湿润旱地,生长季节与雨热同期,耐旱性可能不是陆稻驯化的主要推动力[47]。陆稻耐直播性使其适应低水分萌发、耐深埋、扎根快,有利于其适应陆生有氧的旱地环境并快速完成苗期形态建成,是陆稻陆生适应性的重要体现。发达的根系通过维持水分和矿物质,在赋予植物耐旱性方面发挥着重要作用,陆稻品种深、粗的根系使其能从深层土壤中获取水分来抵御水分亏缺[48]。Gao等[12]发现水稻根系发育的负调控因子Robust Root System 1(RRS1)在抗旱性中起着重要作用。我们的研究发现相对根数、根长与低水分胁迫萌发能力显著相关,表明发达的根系对于适应旱生环境具有重要作用。
胚芽鞘和中胚轴的伸长被认为是幼苗出土的主要动力源[26-28]。中胚轴长是影响水稻种子出苗的主要因素,中胚轴伸长对深播种子的出苗起关键作用,长胚轴种质出土动力来自于胚芽鞘与中胚轴的共同作用;而短中胚轴出苗动力主要来源于胚芽鞘的伸长[28]。我们的研究发现,芽长与胚芽鞘长、胚芽鞘长与中胚轴长间存在显著相关性,说明胚芽鞘在保护嫩芽穿过土壤中起着重要作用[23, 27]。已有研究通过数量性状位点(QTL)定位和全基因组关联分析的方法, 发掘了50余个水稻中胚轴伸长相关位点,分布在水稻全基因组中[31]。Zhao等[49]发现控制中胚轴伸长的2个主效基因OsML1和OsML2,其优良单倍型组合可使水稻中胚轴长度增加。通过GWAS对208个水稻种质的中胚轴进行分析,发现16个与中胚轴伸长显着相关的基因座[31]。利用长中胚轴品种‘Changai’和短中胚轴品种‘IR 145’构建F2遗传分离群体,发现LOC_Os03g52450、LOC_Os03g56060和LOC_Os03g58290为水稻中胚轴伸长相关的候选基因,它们参与植物激素和细胞分裂调控[32]。通过研究播种深度与中胚轴和胚芽鞘长度相关的QTL,发现qMel-1和qMel-3增加品种‘Kasalath’中胚轴长,而qMel-6增加‘Nipponbare’的中胚轴长;另外,qCol-3和qCol-5增加‘Nipponbare’的胚芽鞘长[50]。本研究发掘7个优异陆稻种质资源将可用于胚芽鞘和中胚轴等关键性状调控机理的研究。
在我国的云南、海南、四川和贵州等山区,坡地种植陆稻的生长主要依赖于自然降雨,较强的陆生适应性是保障前期出苗率和后期齐苗、壮苗的关键环节。本研究紧密结合陆稻生产中种子低水分胁迫萌发和深播幼苗出土问题,通过对早期幼苗低水分胁迫萌发和出土能力鉴定,采用相关性状指标相对值的主成分、隶属函数等分析方法对陆生适应性进行综合评价。发现150 g/L PEG6000胁迫下的相对发芽率、相对发芽势和相对根长,以及8 cm深土下的胚芽鞘长和中胚轴长,可作为陆稻早期幼苗陆生适应性鉴定的主要指标。通过聚类分析,将294份种质资源分为陆生适应性极强型(7个)、强型(96个)、中间型(157个)、弱型(29个)和极弱型(5个)。本研究建立了陆稻早期幼苗陆生适应性的筛选评价体系,为后续陆稻种质资源挖掘、创新利用及优良陆生适应性新品种的培育提供了种质资源和理论依据。
-
表 1 近来报道的控制水稻种子发芽速度相关基因
Table 1 Recently reported genes involving in the speed of seed germination in rice
基因代号
Gene code基因全称
Gene full name基因功能
Gene function参考文献
ReferenceOsIAGLU Indole-3-acetate beta-glucosyltransferase 通过IAA和ABA互作影响OsABIs表达调控种子活力 [26] OsHIPL1 HIPL1 protein 通过ABA信号途径调控种子活力 [27] OsRACK1A WD repeat-containing protein 通过调控ABA和 H2O2含量,并两者相互作用调控种子萌发 [28] OsIPMS1 2-Isopropylmalate synthase B 通过影响氨基酸含量、GA合成和TCA循环调控种子活力 [29] OsCDP3.10 Cupin domain containing protein 通过影响氨基酸含量、促进H2O2积累调控种子活力 [30] OsPK5 Pyruvate kinase 通过影响糖酵解、糖含量、能量水平以及 GA/ABA平衡调控种子活力 [31] OsOMT 2-Oxoglutarate/malate translocator 通过影响氨基酸含量、糖酵解和TCA循环调控种子活力 [32] 表 2 近来报道的控制种子耐逆萌发相关基因
Table 2 Recently reported genes involving in seed germination under stress conditions
基因代号
Gene code基因全称
Gene full name基因功能
Gene function参考文献
ReferenceOsHAK21 Potassium transporter 通过改变K+、Na+吸收以及ABA和ROS含量调控种子耐盐萌发 [35] OsSAE1 AP2 domain containing protein 直接结合到OsABI5启动子区,通过ABA信号通路调控种子耐盐萌发 [36] RSM1 Radialis-like SANT/MYB 1 通过调控ABI5表达和下游ABA和胁迫响应基因表达调控种子耐盐萌发 [37] ABI4 Abscisic acid-insensitive 4 ABI4-RbohD/VTC2分子模块通过影响ROS代谢和细胞膜完整性调控种子耐盐萌发 [38] AtSRT2 Histone deacetylase 通过影响H2O2囊泡运输相关膜蛋白基因VAMP714启动子区的组蛋白乙酰化调控种子耐盐萌发 [39] qLTG3-1 LTP family protein precursor 通过组织弱化、降低对胚芽鞘生长的机械阻力,促进低温条件下种子萌发 [40] OsSAP16 C2H2 zinc finger protein 基因表达高低决定了种子耐低温萌发能力,但作用机制未知 [41] AtKP1 Plant-specific kinesin 与AtVDAC3特异性相互作用,参与低温条件下种子发芽过程中的呼吸调控作用 [42] HSP70-16 Heat shock protein 70 与AtVDAC3相互作用,激活AtVDAC3离子通道的开放,促进ABA从胚乳流向胚,从而抑制种子低温发芽 [43] SOM Zinc-finger protein AGL67-EBS复合物通过组蛋白H4K5乙酰化激活SOM表达,抑制高温胁迫下种子发芽 [44] OsTPP7 Glycosyl hydrolase 通过增加T6P运转,从而增强淀粉分解以驱动胚和胚芽鞘生长,提升种子耐淹萌发能力 [45] miR393a MicroRNA 促进胚芽鞘顶端游离吲哚乙酸的积累,从而抑制淹水条件下气孔发育和胚芽鞘伸长 [46] OsCBL10 Calcineurin B 通过影响Ca2+流量和α−淀粉酶活性调控种子耐淹萌发 [47] miR167 MicroRNA 通过miR167a-ARF-GH3分子模块影响IAA积累,调控种子耐淹萌发 [48] OsGF14h 14-3-3 protein 通过与转录因子OsHOX3和OsVP1互作,维持ABA和GA动态平衡,调控种子耐淹萌发 [49] OsUGT75A UDP-glucosyltransferase OsUGT75A 通过糖基化ABA和JA,影响种子和胚芽鞘中游离态ABA和JA含量介导淹水条件下胚芽鞘伸长 [50] TERF1 Ethylene-responsive transcription factor 1 通过激活GA信号通路,负向调控种子发芽过程中对甘露醇处理的敏感性 [51] FLOE1 Formin-like protein 在水合作用时相分离,使植物胚胎能够感知水压力,调控种子发芽最佳时间 [52] -
[1] SUN Q, WANG J H, SUN B Q. Advances on seed vigor physiological and genetic mechanisms[J]. Agricultural Sciences in China, 2007, 6(9): 1060-1066. doi: 10.1016/S1671-2927(07)60147-3
[2] FINCH-SAVAGE W E, BASSEL G W. Seed vigour and crop establishment: Extending performance beyond adaptation[J]. Journal of Experimental Botany, 2016, 67(3): 567-591. doi: 10.1093/jxb/erv490
[3] PELLIZZARO A, NEVEU M, LALANNE D, et al. A role for auxin signaling in the acquisition of longevity during seed maturation[J]. The New Phytologist, 2020, 225(1): 284-296. doi: 10.1111/nph.16150
[4] FAROOQ M, SIDDIQUE K H M, REHMAN H, et al. Rice direct seeding: experiences, challenges and opportunities[J]. Soil & Tillage Research, 2011, 111(2): 87-98.
[5] CHEN C, HE B, LIU X, et al. Pyrophosphate-fructose 6-phosphate 1-phosphotransferase (PFP1) regulates starch biosynthesis and seed development via heterotetramer formation in rice (Oryza sativa L. )[J]. Plant Biotechnology Journal, 2020, 18(1): 83-95. doi: 10.1111/pbi.13173
[6] HUANG X, LU Z, WANG X, et al. Imprinted gene OsFIE1 modulates rice seed development by influencing nutrient metabolism and modifying genome H3K27me3[J]. The Plant Journal, 2016, 87(3): 305-317. doi: 10.1111/tpj.13202
[7] WANG X, ZHOU W, LU Z, et al. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice[J]. Plant Science, 2015, 239: 200-208. doi: 10.1016/j.plantsci.2015.07.016
[8] SANO N, MASAKI S, TANABATA T, et al. Proteomic analysis of stress-related proteins in rice seeds during the desiccation phase of grain filling[J]. Plant Biotechnology, 2013, 30(2): 147-156. doi: 10.5511/plantbiotechnology.13.0207a
[9] HE D, YANG P. Proteomics of rice seed germination[J]. Frontiers in Plant Science, 2013, 4: 246.
[10] WANG W Q, LIU S J, SONG S Q, et al. Proteomics of seed development, desiccation tolerance, germination and vigor[J]. Plant Physiology and Biochemistry, 2015, 86: 1-15. doi: 10.1016/j.plaphy.2014.11.003
[11] SALVI P, VARSHNEY V, MAJEE M. Raffinose family oligosaccharides (RFOs): Role in seed vigor and longevity[J]. Bioscience Reports, 2022, 42(10): BSR20220198. doi: 10.1042/BSR20220198
[12] HOWELL K A, NARSAI R, CARROLL A, et al. Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process[J]. Plant Physiology, 2009, 149(2): 961-980. doi: 10.1104/pp.108.129874
[13] SANO N, RAJJOU L, NORTH H M. Lost in translation: physiological roles of stored mRNAs in seed germination[J]. Plants, 2020, 9(3): 347. doi: 10.3390/plants9030347
[14] PENFIELD S. Seed dormancy and germination[J]. Current Biology, 2017, 27(17): R874-R878. doi: 10.1016/j.cub.2017.05.050
[15] BARRERO J M, MILLAR A A, GRIFFITHS J, et al. Gene expression profiling identifies two regulatory genes controlling dormancy and ABA sensitivity in Arabidopsis seeds[J]. The Plant Journal, 2010, 61(4): 611-622. doi: 10.1111/j.1365-313X.2009.04088.x
[16] DING Z J, YAN J Y, LI G X, et al. WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA[J]. The Plant Journal, 2014, 79(5): 810-823. doi: 10.1111/tpj.12597
[17] LEE K, LEE H G, YOON S, et al. The Arabidopsis MYB96 transcription factor is a positive regulator of ABSCISIC ACID-INSENSITIVE4 in the control of seed germination[J]. Plant Physiology, 2015, 168(2): 677-689. doi: 10.1104/pp.15.00162
[18] LEE S, LEE M H, KIM J I, et al. Arabidopsis putative MAP kinase kinase kinases Raf10 and Raf11 are positive regulators of seed dormancy and ABA response[J]. Plant and Cell Physiology, 2015, 56(1): 84-97. doi: 10.1093/pcp/pcu148
[19] SHU K, ZHANG H, WANG S, et al. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis[J]. PLoS Genetics, 2013, 9(6): e1003577. doi: 10.1371/journal.pgen.1003577
[20] VAISTIJ F E, GAN Y, PENFIELD S, et al. Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(26): 10866-10871.
[21] WOJTYLA Ł, LECHOWSKA K, KUBALA S, et al. Different modes of hydrogen peroxide action during seed germination[J]. Frontiers in Plant Science, 2016, 7: 66.
[22] BARBA-ESPIN G, DIAZ-VIVANCOS P, JOB D, et al. Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach[J]. Plant, Cell & Environment, 2011, 34(11): 1907-1919.
[23] ORACZ K, BOUTEAU H E M, FARRANT J M, et al. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation[J]. The Plant Journal, 2007, 50(3): 452-465. doi: 10.1111/j.1365-313X.2007.03063.x
[24] VERMA G, MISHRA S, SANGWAN N, et al. Reactive oxygen species mediate axis-cotyledon signaling to induce reserve mobilization during germination and seedling establishment in Vigna radiata[J]. Journal of Plant Physiology, 2015, 184: 79-88. doi: 10.1016/j.jplph.2015.07.001
[25] CHANDRASEKARAN U, ZHAO X, LUO X, et al. Endosperm weakening: The gateway to a seed’ s new life[J]. Plant Physiology and Biochemistry, 2022, 178: 31-39. doi: 10.1016/j.plaphy.2022.02.016
[26] HE Y, ZHAO J, YANG B, et al. Indole-3-acetate beta-glucosyltransferase OsIAGLU regulates seed vigour through mediating crosstalk between auxin and abscisic acid in rice[J]. Plant Biotechnology Journal, 2020, 18(9): 1933-1945. doi: 10.1111/pbi.13353
[27] HE Y, CHEN S, LIU K, et al. OsHIPL1, a hedgehog-interacting protein-like 1 protein, increases seed vigour in rice[J]. Plant Biotechnology Journal, 2022, 20(7): 1346-1362. doi: 10.1111/pbi.13812
[28] ZHANG D, CHEN L, LI D, et al. OsRACK1 is involved in abscisic acid- and H2O2-mediated signaling to regulate seed germination in rice (Oryza sativa L. )[J]. PLoS One, 2014, 9(5): e97120. doi: 10.1371/journal.pone.0097120
[29] HE Y, CHENG J, HE Y, et al. Influence of isopropylmalate synthase OsIPMS1 on seed vigour associated with amino acid and energy metabolism in rice[J]. Plant Biotechnology Journal, 2019, 17(2): 322-337. doi: 10.1111/pbi.12979
[30] PENG L, SUN S, YANG B, et al. Genome-wide association study reveals that the cupin domain protein OsCDP3.10 regulates seed vigour in rice[J]. Plant Biotechnology Journal, 2022, 20(3): 485-498. doi: 10.1111/pbi.13731
[31] YANG B, CHEN M, ZHAN C, et al. Identification of OsPK5 involved in rice glycolytic metabolism and GA/ABA balance for improving seed germination via genome-wide association study[J]. Journal of Experimental Botany, 2022, 73(11): 3446-3461. doi: 10.1093/jxb/erac071
[32] LI W, YANG B, XU J, et al. A genome-wide association study reveals that the 2-oxoglutarate/malate translocator mediates seed vigor in rice[J]. The Plant Journal, 2021, 108(2): 478-491. doi: 10.1111/tpj.15455
[33] WANG Z, CAO H, SUN Y, et al. Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly regulate primary seed dormancy via abscisic acid-ethylene antagonism mediated by histone deacetylation[J]. The Plant Cell, 2013, 25(1): 149-166. doi: 10.1105/tpc.112.108191
[34] WANG Z, CHEN F Y, LI X Y, et al. Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1[J]. Nature Communications, 2016, 7: 13412. doi: 10.1038/ncomms13412
[35] HE Y, YANG B, HE Y, et al. A quantitative trait locus, qSE3, promotes seed germination and seedling establishment under salinity stress in rice[J]. The Plant Journal, 2019, 97(6): 1089-1104. doi: 10.1111/tpj.14181
[36] LI Y, ZHOU J, LI Z, et al. Salt and ABA response erf1 improves seed germination and salt tolerance by repressing ABA signaling in rice[J]. Plant Physiology, 2022, 189(2): 1110-1127. doi: 10.1093/plphys/kiac125
[37] YANG B, SONG Z, LI C, et al. RSM1, an Arabidopsis MYB protein, interacts with HY5/HYH to modulate seed germination and seedling development in response to abscisic acid and salinity[J]. PLoS Genetics, 2018, 14(12): e1007839. doi: 10.1371/journal.pgen.1007839
[38] LUO X, DAI Y, ZHENG C, et al. The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress[J]. The New Phytologist, 2021, 229(2): 950-962. doi: 10.1111/nph.16921
[39] TANG W S, ZHONG L, DING Q Q, et al. Histone deacetylase AtSRT2 regulates salt tolerance during seed germination via repression of vesicle-associated membrane protein 714 (VAMP714) in Arabidopsis[J]. The New Phytologist, 2022, 234(4): 1278-1293. doi: 10.1111/nph.18060
[40] FUJINO K, SEKIGUCHI H, MATSUDA Y, et al. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34): 12623-12628.
[41] WANG X, ZOU B, SHAO Q, et al. Natural variation reveals that OsSAP16 controls low-temperature germination in rice[J]. Journal of Experimental Botany, 2018, 69(3): 413-421. doi: 10.1093/jxb/erx413
[42] YANG X Y, CHEN Z W, XU T, et al. Arabidopsis kinesin KP1 specifically interacts with VDAC3, a mitochondrial protein, and regulates respiration during seed germination at low temperature[J]. The Plant Cell, 2011, 23(3): 1093-1106. doi: 10.1105/tpc.110.082420
[43] ASHRAF M, MAO Q, HONG J, et al. HSP70-16 and VDAC3 jointly inhibit seed germination under cold stress in Arabidopsis[J]. Plant, Cell & Environment, 2021, 44(11): 3616-3627.
[44] LI P, ZHANG Q, HE D, et al. AGAMOUS-LIKE67 cooperates with the histone mark reader EBS to modulate seed germination under high temperature[J]. Plant Physiology, 2020, 184(1): 529-545. doi: 10.1104/pp.20.00056
[45] KRETZSCHMAR T, PELAYO M A, TRIJATMIKO K R, et al. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice[J]. Nature Plants, 2015, 1: 15124. doi: 10.1038/nplants.2015.124
[46] GUO F, HAN N, XIE Y, et al. The miR393a/target module regulates seed germination and seedling establishment under submergence in rice (Oryza sativa L. )[J]. Plant, Cell & Environment, 2016, 39(10): 2288-2302.
[47] YE N H, WANG F Z, SHI L, et al. Natural variation in the promoter of rice calcineurin B-like protein10 (OsCBL10) affects flooding tolerance during seed germination among rice subspecies[J]. The Plant Journal, 2018, 94(4): 612-625. doi: 10.1111/tpj.13881
[48] LEE K W, CHEN J J W, WU C S, et al. Auxin plays a role in the adaptation of rice to anaerobic germination and seedling establishment[J]. Plant, Cell & Environment, 2023, 46(4): 1157-1175.
[49] SUN J, ZHANG G, CUI Z, et al. Regain flood adaptation in rice through a 14-3-3 protein OsGF14h[J]. Nature Communications, 2022, 13: 5664. doi: 10.1038/s41467-022-33320-x
[50] HE Y, SUN S, ZHAO J, et al. UDP-glucosyltransferase OsUGT75A promotes submergence tolerance during rice seed germination[J]. Nature Communications, 2023, 14: 2296. doi: 10.1038/s41467-023-38085-5
[51] LIU H, YUAN L, GUO W, et al. Transcription factor TERF1 promotes seed germination under osmotic conditions by activating gibberellin acid signaling[J]. Plant Science, 2022, 322: 111350. doi: 10.1016/j.plantsci.2022.111350
[52] DORONE Y, BOEYNAEMS S, FLORES E, et al. A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation[J]. Cell, 2021, 184(16): 4284-4298. doi: 10.1016/j.cell.2021.06.009
[53] OSTERLUND M T, HARDTKE C, WEI N, et al. Targeted destabilization of HY5 during light-regulated development of Arabidopsis[J]. Nature, 2000, 405(6785): 462-466. doi: 10.1038/35013076
[54] XU X, PAIK I, ZHU L, et al. Illuminating progress in phytochrome-mediated light signaling pathways[J]. Trends in Plant Science, 2015, 20(10): 641-650. doi: 10.1016/j.tplants.2015.06.010
[55] XU D, JIANG Y, LI J, et al. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(27): 7655-7660.
[56] LEIVAR P, QUAIL P H. PIFs: Pivotal components in a cellular signaling hub[J]. Trends in Plant Science, 2011, 16(1): 19-28. doi: 10.1016/j.tplants.2010.08.003
[57] SHI H, LYU M, LUO Y, et al. Genome-wide regulation of light-controlled seedling morphogenesis by three families of transcription factors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(25): 6482-6487.
[58] LU X D, ZHOU C M, XU P B, et al. Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis[J]. Molecular Plant, 2015, 8(3): 467-478. doi: 10.1016/j.molp.2014.11.025
[59] SHEERIN D J, MENON C, ZUR OVEN-KROCKHAUS S, et al. Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex[J]. The Plant Cell, 2015, 27(1): 189-201. doi: 10.1105/tpc.114.134775
[60] ZUO Z, LIU H, LIU B, et al. Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis[J]. Current Biology, 2011, 21(10): 841-847. doi: 10.1016/j.cub.2011.03.048
[61] LIU B, ZUO Z, LIU H, et al. Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light[J]. Genes & Development, 2011, 25(10): 1029-1034.
[62] LIAN H L, HE S B, ZHANG Y C, et al. Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism[J]. Genes & Development, 2011, 25(10): 1023-1028.
[63] REN H, HAN J, YANG P, et al. Two E3 ligases antagonistically regulate the UV-B response in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(10): 4722-4731.
[64] LEE B D, CHA J Y, KIM M R, et al. Photoperiod sensing system for timing of flowering in plants[J]. BMB Reports, 2018, 51(4): 163-164. doi: 10.5483/BMBRep.2018.51.4.052
[65] LIN F, CAO J, YUAN J, et al. Integration of light and brassinosteroid signaling during seedling establishment[J]. International Journal of Molecular Sciences, 2021, 22(23): 12971. doi: 10.3390/ijms222312971
[66] WANG Z, REN Z, CHENG C, et al. Counteraction of ABA-mediated inhibition of seed germination and seedling establishment by ABA signaling terminator in Arabidopsis[J]. Molecular Plant, 2020, 13(9): 1284-1297. doi: 10.1016/j.molp.2020.06.011
[67] CHENG H, LIANG Q, CHEN X, et al. Hydrogen peroxide facilitates Arabidopsis seedling establishment by interacting with light signalling pathway in the dark[J]. Plant, Cell & Environment, 2019, 42(4): 1302-1317.
[68] SUN S, WANG T, WANG L, et al. Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling[J]. Nature Communications, 2018, 9(1): 2523. doi: 10.1038/s41467-018-04952-9
[69] XIONG Q, MA B, LU X, et al. Ethylene-inhibited jasmonic acid biosynthesis promotes mesocotyl/coleoptile elongation of etiolated rice seedlings[J]. The Plant Cell, 2017, 29(5): 1053-1072. doi: 10.1105/tpc.16.00981
[70] YU Z, MA J, ZHANG M, et al. Auxin promotes hypocotyl elongation by enhancing BZR1 nuclear accumulation in Arabidopsis[J]. Science Advances, 2023, 9(1): eade2493. doi: 10.1126/sciadv.ade2493
[71] RIGAL A, DOYLE S M, RITTER A, et al. A network of stress-related genes regulates hypocotyl elongation downstream of selective auxin perception[J]. Plant Physiology, 2021, 187(1): 430-445. doi: 10.1093/plphys/kiab269
[72] PARK Y J, KIM J Y, PARK C M. SMAX1 potentiates phytochrome B-mediated hypocotyl thermomorphogenesis[J]. The Plant Cell, 2022, 34(7): 2671-2687. doi: 10.1093/plcell/koac124
[73] ZHANG L L, SHAO Y J, DING L, et al. XBAT31 regulates thermoresponsive hypocotyl growth through mediating degradation of the thermosensor ELF3 in Arabidopsis[J]. Science Advances, 2021, 7(19): eabf4427. doi: 10.1126/sciadv.abf4427
[74] ZENG Y, WANG J, HUANG S, et al. HSP90s are required for hypocotyl elongation during skotomorphogenesis and thermomorphogenesis via the COP1-ELF3-PIF4 pathway in Arabidopsis[J]. The New Phytologist, 2023, 239(4): 1253-1265. doi: 10.1111/nph.18776
[75] LIU H, ZHANG Y, LU S, et al. HsfA1d promotes hypocotyl elongation under chilling via enhancing expression of ribosomal protein genes in Arabidopsis[J]. The New Phytologist, 2021, 231(2): 646-660. doi: 10.1111/nph.17413
[76] NGHI K N, TONDELLI A, VALE G, et al. Dissection of coleoptile elongation in japonica rice under submergence through integrated genome-wide association mapping and transcriptional analyses[J]. Plant, Cell & Environment, 2019, 42(6): 1832-1846.
[77] NGHI K N, TAGLIANI A, MARIOTTI L, et al. Auxin is required for the long coleoptile trait in japonica rice under submergence[J]. New Phytologist, 2021, 229(1): 85-93. doi: 10.1111/nph.16781
[78] YIN C C, HUANG Y H, ZHANG X, et al. Ethylene-mediated regulation of coleoptile elongation in rice seedlings[J]. Plant, Cell & Environment, 2023, 46(4): 1060-1074.
[79] CAI G, KIM S C, LI J, et al. Transcriptional regulation of lipid catabolism during seedling establishment[J]. Molecular Plant, 2020, 13(7): 984-1000. doi: 10.1016/j.molp.2020.04.007
[80] CREPIN N, ROLLAND F. SnRK1 activation, signaling, and networking for energy homeostasis[J]. Current Opinion in Plant Biology, 2019, 51: 29-36. doi: 10.1016/j.pbi.2019.03.006
[81] BAENA-GONZALEZ E, SHEEN J. Convergent energy and stress signaling[J]. Trends in Plant Science, 2008, 13(9): 474-482. doi: 10.1016/j.tplants.2008.06.006
[82] HENNINGER M, PEDROTTI L, KRISCHKE M, et al. The evolutionarily conserved kinase SnRK1 orchestrates resource mobilization during Arabidopsis seedling establishment[J]. The Plant Cell, 2022, 34(1): 616-632. doi: 10.1093/plcell/koab270
[83] HUANG Z, YING J, PENG L, et al. A genome-wide association study reveals that the cytochrome b5 involved in seed reserve mobilization during seed germination in rice[J]. Theoretical and Applied Genetics, 2021, 134(12): 4067-4076. doi: 10.1007/s00122-021-03948-2
-
期刊类型引用(0)
其他类型引用(2)