• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

基于高密度遗传图谱的水稻穗长QTL定位与分析

韦敏益, 张月雄, 马增凤, 黄大辉, 刘驰, 秦媛媛, 卢颖萍, 鄢柳慧, 吴子帅, 周小龙, 吴旭祥, 秦钢

韦敏益, 张月雄, 马增凤, 等. 基于高密度遗传图谱的水稻穗长QTL定位与分析[J]. 华南农业大学学报, 2023, 44(6): 889-895. DOI: 10.7671/j.issn.1001-411X.202306061
引用本文: 韦敏益, 张月雄, 马增凤, 等. 基于高密度遗传图谱的水稻穗长QTL定位与分析[J]. 华南农业大学学报, 2023, 44(6): 889-895. DOI: 10.7671/j.issn.1001-411X.202306061
WEI Minyi, ZHANG Yuexiong, MA Zengfeng, et al. Detection and analysis of QTL for panicle length in rice using a high-density genetic map[J]. Journal of South China Agricultural University, 2023, 44(6): 889-895. DOI: 10.7671/j.issn.1001-411X.202306061
Citation: WEI Minyi, ZHANG Yuexiong, MA Zengfeng, et al. Detection and analysis of QTL for panicle length in rice using a high-density genetic map[J]. Journal of South China Agricultural University, 2023, 44(6): 889-895. DOI: 10.7671/j.issn.1001-411X.202306061

基于高密度遗传图谱的水稻穗长QTL定位与分析

基金项目: 广西科技计划(桂科AB21220016);广西自然科学基金(2021GXNSFDA075013,2022GXNSFAA035266);广西农业科学院基本科研业务专项及科技发展基金(桂农科2022JM21,桂农科2021JM05,桂农科2021YM04,桂农科2021YT027)
详细信息
    作者简介:

    韦敏益,助理研究员,硕士,主要从事水稻优异基因挖掘和新品种选育研究,E-mail: 714951516@qq.com

    通讯作者:

    吴旭祥,高级农艺师,硕士,主要从事水稻优良基因的挖掘应用及新品种选育与推广研究,E-mail: wxx8939@126.com

    秦 钢,研究员,硕士,主要从事水稻育种与栽培研究,E-mail: 68578721@qq.com

  • 中图分类号: S511;S33

Detection and analysis of QTL for panicle length in rice using a high-density genetic map

  • 摘要:
    目的 

    深入挖掘与穗长相关的新基因,为水稻穗长调控的遗传机理研究及分子育种提供依据。

    方法 

    以2个优良亲本‘ZP37’和‘R8605’及其杂交衍生的208个高世代重组自交系(Recombinant inbred lines,RILs)为作图群体,利用全基因组重测序高密度连锁图谱对3个不同环境下的穗长数量性状座位(Quantitative trait locus,QTL)进行定位,同时分析它们的聚合效应。

    结果 

    共检测到11个穗长QTL,分别分布在第3、4、7、8、9和12号染色体上,其似然函数比对数值(Log of odds,LOD)介于3.07~12.87之间,贡献率在2.17%~10.94%之间,有7个QTL是新位点,其余4个QTL位点与已报道的穗长基因和QTL位置重叠或相近。在2个不同环境下重复检测到4个稳定的QTL位点;对聚合了不同数量穗长QTL株系的分析结果表明,穗长QTL表现出累加效应,QTL数量的增加能显著增加水稻穗长。

    结论 

    本研究结果为水稻穗长QTL的克隆和功能解析奠定坚实的基础,为水稻高产育种提供理论依据和遗传资源。

    Abstract:
    Objective 

    To deeply explore new genes related to panicle length and provide a basis for the study of genetic mechanism of panicle length regulation and molecular breeding in rice.

    Method 

    Two superior parents, ‘ZP37’ and ‘R8605’, as well as 208 recombinant inbred lines (RILs) derived from the cross of ZP37/R8605 were used as a mapping population to locate quantitative trait loci (QTLs) for panicle length in three different environments through the high-density linkage map of whole genome resequencing, and to analyze their pyramiding effects.

    Result 

    A total of 11 QTLs for panicle length were detected on chromosomes 3, 4, 7, 8, 9 and 12, with the logs of odds (LODs) ranging from 3.07 to 12.87 and contribution rates ranging from 2.17% to 10.94%, seven of the QTLs were new loci, and the remaining four QTLs overlapped or were close to the reported panicle length genes and QTLs. Among them, four stable QTLs were detected repeatedly in two different environments, and by analyzing the lines that pyramiding different numbers of panicle length QTLs, the results showed that the panicle length QTLs showed an additive effect, and the increase in the number of QTLs significantly increased the panicle length of rice.

    Conclusion 

    The results of this study provide a solid foundation for cloning and functional analysis of rice panicle length QTLs, as well as a theoretical basis and genetic resources for high-yield rice breeding.

  • 图  1   2020年亲本‘ZP37’‘R8605’及部分重组自交系穗长差异

    Figure  1.   Panicle length differences of ‘ZP37’, ‘R8605’ and some RILs in 2020

    图  2   不同环境下RIL群体穗长分布

    Figure  2.   Distribution of panicle length in the RIL population in different environments

    表  1   穗长在RIL群体中的分布情况

    Table  1   Distribution of panicle length traits in RIL population

    环境
    Environment
    亲本穗长/cm
    Parent panicle length
    重组自交系穗长
    RIL panicle length
    ZP37R86051)平均值/cm
    Mean
    变幅/cm
    Range
    偏度
    Skewness
    峰度
    Kurtosis
    变异系数/%
    CV
    201923.1037.56**29.0823.20~38.670.42−0.130.11
    202023.5734.63**26.5019.87~37.200.501.040.11
    202223.4832.05**26.2920.86~33.800.290.180.08
     1)“**”表示与‘ZP37’株系相比差异显著(P < 0.01,t 检验)
     1) “**” indicates significant difference from ‘ZP37’ strains (P < 0.01, t test)
    下载: 导出CSV

    表  2   不同环境下水稻穗长QTL 分析

    Table  2   QTL analysis of panicle length under different environments

    位点
    QTL
    染色体
    Chr.
    物理位置/bp
    Physical position
    201920202022
    LOD加性效应
    Additive
    effect
    贡献率/%
    PVE
    LOD加性效应
    Additive
    effect
    贡献率/%
    PVE
    LOD加性效应
    Additive
    effect
    贡献率/%
    PVE
    qPL3-136992384—71974293.11−0.632.28
    qPL3-237324223—78902783.43−0.712.89
    qPL4-1420619799—207025626.22−0.684.54
    qPL4-2424259618—243996413.81−0.692.173.94−0.682.66
    qPL7-1714356324—149827255.210.662.453.140.532.75
    qPL7-2717321645—174187443.120.532.77
    qPL8-1825112712—2601019412.87−1.3910.946.33−0.806.39
    qPL8-2827500184—276827175.99−1.135.87
    qPL9920564403—207708743.22−0.823.085.42−0.704.88
    qPL12-1127167759—74017473.31−0.944.02
    qPL12-21214722574—149187153.07−0.772.70
    下载: 导出CSV

    表  3   穗长QTL的聚合效应分析1)

    Table  3   Pyramiding effect of the QTLs for panicle length

    株系类型QTLRIL数量
    No. of RILs
    不同年份穗长/cm Panicle length in different years
    qPL4-2qPL8-1qPL9201920202022
    Hap 1+++2432.57a29.86a28.75a
    Hap 2++1829.48bc27.15b26.92bc
    Hap 3++1730.39b27.80b27.23b
    Hap 4++3429.63bc26.81bc26.91bc
    Hap 5+1528.91bcd26.34bcd25.71cd
    Hap 6+3028.47cde25.61cde25.62d
    Hap 7+3727.89de25.43de25.57d
    Hap 82026.91e24.44e24.19e
     1) “+”和“−”分别表明含有和不含增效等位基因;同列数据后的不同小写字母表示相同环境下不同株系类型之间差异显著(P < 0.05, LSD法)
     1) “+” and “−” indicate the presence and absence of favorable alleles respectively; Different lowercase letters of the same column indicate significant differences among different types of strains under the same environment (P < 0.05,LSD method)
    下载: 导出CSV
  • [1]

    XING Y, ZHANG Q. Genetic and molecular bases of rice yield[J]. Annual Review of Plant Biology, 2010, 61: 421-442. doi: 10.1146/annurev-arplant-042809-112209

    [2]

    LI X, YAN W, AGRAMA H, et al. Mapping QTLs for improving grain yield using the USDA rice mini-core collection[J]. Planta, 2011, 234(2): 347-361. doi: 10.1007/s00425-011-1405-0

    [3]

    LIU T, LI L, ZHANG Y, et al. Comparison of quantitative trait loci for rice yield, panicle length and spikelet density across three connected populations[J]. Journal of Genetics, 2011, 90(2): 377-382. doi: 10.1007/s12041-011-0083-9

    [4]

    HUANG X, QIAN Q, LIU Z, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics, 2009, 41(4): 494-497. doi: 10.1038/ng.352

    [5]

    LI S, QIAN Q, FU Z, et al. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size[J]. The Plant Journal, 2009, 58(4): 592-605. doi: 10.1111/j.1365-313X.2009.03799.x

    [6]

    LI F, LIU W, TANG J, et al. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation[J]. Cell Research, 2010, 20(7): 838-849. doi: 10.1038/cr.2010.69

    [7]

    QIAO Y, PIAO R, SHI J, et al. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2011, 122(7): 1439-1449. doi: 10.1007/s00122-011-1543-6

    [8]

    LI M, TANG D, WANG K, et al. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice[J]. Plant Biotechnology Journal, 2011, 9(9): 1002-1013. doi: 10.1111/j.1467-7652.2011.00610.x

    [9]

    LI X, QIAN Q, FU Z, et al. Control of tillering in rice[J]. Nature, 2003, 422(6932): 618-621. doi: 10.1038/nature01518

    [10]

    KOMATSU M, MAEKAWA M, SHIMAMOTO K, et al. The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development[J]. Developmental Biology, 2001, 231(2): 364-373. doi: 10.1006/dbio.2000.9988

    [11]

    LU Z, YU H, XIONG G, et al. Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE 1 reveals a complex network regulating rice plant architecture[J]. The Plant Cell, 2013, 25(10): 3743-3759. doi: 10.1105/tpc.113.113639

    [12]

    YUAN H, QIN P, HU L, et al. OsSPL18 controls grain weight and grain number in rice[J]. Journal of Genetics and Genomics, 2019, 46(1): 41-51. doi: 10.1016/j.jgg.2019.01.003

    [13]

    CHO Y, KANG H, LEE J, et al. Identification of quantitative trait loci in rice for yield, yield components, and agronomic traits across years and locations[J]. Crop Science, 2007, 47(6): 2403-2417. doi: 10.2135/cropsci2006.08.0509

    [14]

    MARATHI B, GULERIA S, MOHAPATRA T, et al. QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (Oryza sativa L.)[J]. BMC Plant Biology, 2012, 12(1): 137. doi: 10.1186/1471-2229-12-137

    [15]

    WEI M, LUO T, HUANG D, et al. Construction of high-density genetic map and QTL mapping for grain shape in the rice RIL population[J/OL]. Plants, 2023, 12(16): 2911. https://doi.org/10.3390/plants12162911.

    [16]

    MENG L, LI H, ZHANG L, et al. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations[J]. The Crop Journal, 2015, 3: 269-283. doi: 10.1016/j.cj.2015.01.001

    [17] 王建康. 数量性状基因的完备区间作图方法[J]. 作物学报, 2009, 35(2): 239-245.
    [18]

    MCCOUCH S, KOCHERT G, YU Z, et al. Molecular mapping of rice chromosomes[J]. Theoretical and Applied Genetics, 1988, 76(6): 815-829. doi: 10.1007/BF00273666

    [19]

    PAN Q, ALI F, YANG X, et al. Exploring the genetic characteristics of two recombinant inbred line populations via high-density SNP markers in maize[J]. PLoS One, 2012, 7(12): e52777. doi: 10.1371/journal.pone.0052777

    [20]

    CHEN Z, WANG B, DONG X, et al. An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population[J]. BMC Genomics, 2014, 15(1): 433. doi: 10.1186/1471-2164-15-433

    [21]

    GOLICZ A, BAYER P, EDWARDS D. Skim-based genotyping by sequencing[M]//Methods in Molecular Biology. New York: Springer New York, 2014: 257-270.

    [22] 张亚东, 梁文化, 赫 磊, 等. 水稻RIL群体高密度遗传图谱构建及粒型QTL定位[J]. 中国农业科学, 2021, 54(24): 5163-5176.
    [23] 宋博文, 王朝欢, 赵哲, 等. 基于高密度遗传图谱对水稻粒形QTL定位及分析[J]. 作物学报, 2022, 48(11): 2813-2829.
    [24] 闫晓霞, 朱满山, 王丰, 等. 利用高密度遗传图谱定位水稻耐低氧萌发QTL[J]. 广东农业科学, 2023, 50(4): 13-21.
    [25] 潘俊峰, 崔克辉, 刘彦卓, 等. 利用高密度Bin图谱定位水稻叶绿素含量QTL[J]. 广东农业科学, 2022, 49(9): 132-140.
    [26]

    ZHANG M, ZHOU Z, CHEN Y, et al. Finding new addictive QTL for yield traits based on a high-density genetic map in hybrid rice[J]. Plant Growth Regultion, 2021, 93: 105-115. doi: 10.1007/s10725-020-00669-2

    [27]

    LI X, WU L, WANG J, et al. Genome sequencing of rice subspecies and genetic analysis of recombinant lines reveals regional yield- and quality-associated loci[J]. BMC Biology, 2018, 16: 102. doi: 10.1186/s12915-018-0572-x

    [28]

    XING Z, TAN F, HUA P, et al. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice[J]. Theoretical and Applied Genetics, 2002, 105(2/3): 248-257. doi: 10.1007/s00122-002-0952-y

    [29] 贾佩陇, 李 彪, 黎明辉, 等. 基于水稻染色体片段代换系的苗期耐低氮QTL分析[J]. 华南农业大学学报, 2019, 40(4): 16-24.
    [30] 陈燕华, 黄大辉, 邱永福, 等. 水稻主要农艺性状的QTL分析[J]. 华南农业大学学报, 2014, 35(5): 42-51.
    [31] 淳 雁, 李学勇. 水稻穗型的遗传调控研究进展[J]. 植物学报, 2017, 52(1): 19-29.
    [32]

    LIU E B, LIU Y, WU G C, et al. Identification of a candidate gene for panicle length in rice (Oryza sativa L.) via association and linkage analysis[J]. Frontiers in Plant Science, 2016, 7: 596.

    [33] 徐华山, 孙永建, 周红菊, 等. 构建水稻优良恢复系背景的重叠片段代换系及其效应分析[J]. 作物学报, 2007, 33(6): 979-986.
    [34] 魏少博, PRIYA L, 王文生, 等. 两个水稻骨干恢复系重要农艺性状的遗传基础研究[J]. 植物遗传资源学报, 2017, 18(5): 801-809.
    [35]

    ZHANG L, WANG J, WANG J, et al. Quantitative trait locus analysis and fine mapping of the qPL6 locus for panicle length in rice[J]. Theoretical and Applied Genetics, 2015, 128(6): 1151-1161. doi: 10.1007/s00122-015-2496-y

    [36]

    FUJITA D, TRIJATMIKO K, TAGLE A, et al. NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(51): 20431-20436.

    [37]

    ZHANG G, LI S, WANG L, et al. LSCHL4 from Japonica cultivar, which is allelic to NAL1, increases yield of Indica super rice 93-11[J]. Molecular Plant, 2014(8): 1350-1364.

    [38]

    KUMAR A, DIXIT S, RAM T, et al. Breeding high-yielding drought-tolerant rice: Genetic variations and conventional and molecular approaches[J]. Journal of Experimental Botany, 2014, 65(21): 6265-6278.

    [39] 韦敏益, 黄大辉, 张月雄, 等. 分子标记辅助选育香型优质稻新品种‘桂野香占’[J/OL]. 分子植物育种, 2021: 1-18. (2021-09-28) [2023-07-01]. http://kns.cnki.net/kcms/detail/46.1068.S.20210928.0926.012.html.
    [40]

    ZONG G, WANG A, WANG L, et al. A pyramid breeding of eight grain-yield related quantitative trait loci based on marker-assistant and phenotype selection in rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics, 2012, 39(7): 335-350. doi: 10.1016/j.jgg.2012.06.004

    [41]

    MALLIKARJUNA S, AHMED H U, HENRY A, et al. Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega-variety IR64 under drought[J]. PLoS One, 2013, 8(5): e62795. doi: 10.1371/journal.pone.0062795

图(2)  /  表(3)
计量
  • 文章访问数:  963
  • HTML全文浏览量:  186
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-09
  • 网络出版日期:  2023-11-12
  • 发布日期:  2023-09-19
  • 刊出日期:  2023-11-09

目录

    /

    返回文章
    返回